JPS58107685A - Manufacture of schottky barrier diode - Google Patents

Manufacture of schottky barrier diode

Info

Publication number
JPS58107685A
JPS58107685A JP20671581A JP20671581A JPS58107685A JP S58107685 A JPS58107685 A JP S58107685A JP 20671581 A JP20671581 A JP 20671581A JP 20671581 A JP20671581 A JP 20671581A JP S58107685 A JPS58107685 A JP S58107685A
Authority
JP
Japan
Prior art keywords
barrier
schottky barrier
temperature
barrier height
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20671581A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamijo
上條 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20671581A priority Critical patent/JPS58107685A/en
Publication of JPS58107685A publication Critical patent/JPS58107685A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain barrier height values over the wide range of a Schottky barrier, by performing evaporation using Pd as a barrier metal, and changing heat treating temperature in a vacuum or inactive atmosphere. CONSTITUTION:Pd is evaporated as the barrier metal. The barrier height is changed by changing the heat treating temperature between 150-350 deg.C. Therefore the barrier height can be arbitrarily controlled. In general, SBD has the barrier height of 0.65-0.80eV, but it is controlled by changing the heat treating temperature. The heat treating temperature is changed in response to the required characteristic. In general, the lower the temperature, the higher the barrier height, and the barrier height becomes low with the increase in the temperature.

Description

【発明の詳細な説明】 本発明は、ショットキバリアダイオードのショットキバ
リアの形成方法に関する。さらに詳しくは、本発明は、
ある範囲内で任意に制御できるバリアハイドを持つショ
ットキバリアを有するショットキバリアダイオードの製
造方法に関する〇この種のショットキノく、リアダイオ
ード(以下、8BDと略記する)は、一般に、高温にお
ける逆方向漏れ電流が小さく、ブレークダウン電圧が高
く、また順方向電圧降下が小さいことが望まれる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a Schottky barrier in a Schottky barrier diode. More specifically, the present invention includes:
Regarding the manufacturing method of a Schottky barrier diode having a Schottky barrier with a barrier hydride that can be arbitrarily controlled within a certain range, this kind of Schottky rear diode (hereinafter abbreviated as 8BD) generally has reverse leakage at high temperatures. It is desired that the current is small, the breakdown voltage is high, and the forward voltage drop is small.

8BDのバリアメタルとしては、従来から種々の金属が
適用されている。代表的なバリアメタルをバリアハイド
の小さい順に並さると、Cr(0,58〜0.60 e
V )、Mo (〜0.66 eV )、Ag (0,
70eV)、Pdz8i (0,72〜0.75 eV
)、Pi Si (0,82〜0.87eV)であり、
その他にPt−Ni合金、Au 、 Zn 、 kl、
 Au −Cu合金、Au−Ag合金等がある。しかし
、ここにあげた全ての金属が製品としてのショットキバ
リアダイオードに適用できるわけではなく、基板シリコ
ンとの密着強度、半田付するために蒸着される上部多層
金属膜(例えばNi−Au等)との密着性、半田付性、
安定性等によって使用可能な金属は°限定される。一般
的には、−Cr、Mo、 Pt−Ni等が実用化されて
いる。しかし、Cr、Mo及びPt−Niのバリアハイ
ドは、それぞれ〜0.60eV、 〜0.66 eV及
び0.70 eVであって、その種類によって固定字れ
た値であり、それぞれの金属が持つバリアハイドの中間
の値を得ることは不可能であった。
Various metals have been used as barrier metals for 8BD. When typical barrier metals are arranged in descending order of barrier hide, Cr(0.58~0.60 e
V), Mo (~0.66 eV), Ag (0,
70 eV), Pdz8i (0,72-0.75 eV
), PiSi (0.82-0.87eV),
In addition, Pt-Ni alloy, Au, Zn, kl,
There are Au-Cu alloy, Au-Ag alloy, etc. However, not all of the metals listed here can be applied to Schottky barrier diodes as products, and the adhesion strength with the substrate silicon, the upper multilayer metal film (e.g. Ni-Au, etc.) deposited for soldering, etc. adhesion, solderability,
Usable metals are limited by stability etc. Generally, -Cr, Mo, Pt-Ni, etc. are put into practical use. However, the barrier hydrides of Cr, Mo, and Pt-Ni are ~0.60 eV, ~0.66 eV, and 0.70 eV, respectively, which are fixed values depending on the type, and each metal has It was not possible to obtain intermediate values for barrier hydride.

また、一般的にいって、バリアハイドを高くすると高温
での逆方向漏れ電流は減少するが、順方向電圧降下は増
大してしまう。反対にバリアハイドを低くすると順方向
電圧降下は小さいものが得られるが、高温での漏れ電流
が増大する。従来、使用温度範囲100〜125℃では
Crが、また150℃ではMoがバリアメタルとして使
用されていた。しかし、近年さらに高温での動作保障が
要求されるに到って、さらに高いバリアハイドが要求さ
れるようになってきた。
Generally speaking, increasing the barrier hydride reduces the reverse leakage current at high temperatures, but increases the forward voltage drop. On the other hand, if the barrier hide is lowered, a small forward voltage drop can be obtained, but the leakage current at high temperatures will increase. Conventionally, Cr has been used as a barrier metal in the operating temperature range of 100 to 125°C, and Mo has been used as a barrier metal in the operating temperature range of 150°C. However, in recent years, there has been a demand for guaranteed operation at even higher temperatures, and even higher barrier hides have been required.

したがって、本発明の目的は、上述のような欠点を除去
して、ある範囲内で任意に制御できるバリアハイドを持
つショットキバリアの形成方法を提供することである。
Therefore, an object of the present invention is to provide a method for forming a Schottky barrier having barrier hydride that can be arbitrarily controlled within a certain range by eliminating the above-mentioned drawbacks.

さらに、本発明の目的は、そのように制御されたバリア
ハイドを持つショットキバリアを有する8BDを提供す
ることである。
Furthermore, it is an object of the present invention to provide an 8BD with a Schottky barrier with such a controlled barrier hide.

ここに、SBDのショットキバリアを形成するにあたり
、バリアメタルとしてPdを使用して蒸着させた後、真
空又は不活性雰囲気中での熱処理温度を変えることによ
り、ある範囲内で任意に制御できるバリアハイドを持つ
ショットキバリアが得られることが見出された。これに
より、高温漏れ電流と順方向電圧降下とのバランスを考
慮して要求特性に応じた広い範囲にわたるバリアハイド
値を持つショットキバリアを有するSBDの製造が可能
となった。
Here, in forming the Schottky barrier of SBD, Pd is used as a barrier metal, and after being vapor-deposited, the barrier hide can be controlled arbitrarily within a certain range by changing the heat treatment temperature in a vacuum or an inert atmosphere. It was found that a Schottky barrier with As a result, it has become possible to manufacture an SBD having a Schottky barrier having a barrier-hide value over a wide range according to required characteristics, taking into consideration the balance between high-temperature leakage current and forward voltage drop.

したがって、本発明によれば、SBDのショットキバリ
アを形成するにあたり、バリアメタルとしてPdを蒸着
させ、次いで半田付性を良好にするためにNi及びAu
を多層蒸着させた後、真空又は不活性雰囲気中で熱処理
することを特徴とする、一定の範囲で任意に制御できる
バリアハイドを持つショットキバリアを有する8BDO
製造方法が提供される。
Therefore, according to the present invention, when forming a Schottky barrier for an SBD, Pd is vapor-deposited as a barrier metal, and then Ni and Au are deposited to improve solderability.
8BDO having a Schottky barrier with a barrier hide that can be arbitrarily controlled within a certain range, characterized by depositing multiple layers of and then heat-treating in a vacuum or inert atmosphere.
A manufacturing method is provided.

本発明の8BDO製造方法にお−ては、バリアメタルと
してPdが用−られるoddをバリアメタルとして蒸着
させ、その後O熱処理温度を変化させることKよ)バリ
アハイドが変化し、し喪がってバリアハイドを任意に制
御することが可能であることがわかった0本発明の方法
で製造される8BDd、一般K OJ 5〜0.80 
eV tarバリアハイドを有するが、これ紘熱処運温
度を変えることによって制御することができる・ Pd
紘任意の厚さで蒸簾させることができるが、好ましくは
1ooo〜5oooi t>asで蒸着せしめられる@
PdO蒸着に次いで半田付用金属層としてNi及びムw
#lI1次に蒸着されるoNi及びムO厚さは、好重し
く紘。
In the 8BDO production method of the present invention, Pd is used as a barrier metal.The barrier metal is vapor-deposited as a barrier metal, and then the O heat treatment temperature is changed. It has been found that barrier hydride can be arbitrarily controlled.8BDd produced by the method of the present invention, general K OJ 5 to 0.80
eV tar has a barrier hydride, but this can be controlled by changing the heat treatment temperature.Pd
Although it can be vapor-deposited to any desired thickness, it is preferably 100 to 500% thick.
After PdO deposition, Ni and Mu w were applied as a metal layer for soldering.
#lI1 The next deposited oNi and MuO thicknesses are very thin.

それヤれ3000−5000λ及び300〜700λで
ある0これらの金属の蒸着線画業界で周知の方法で実施
することができる0 上記のように多層金属(Pd−Ni−ムU)を蒸着せし
められ友シリコン基板は、次いで通常の後処理工程、例
えばフォトリソグラフィ一工程でパターニングした後に
lXl0  torr以下の真空中で又はヘリウム、ア
ルゴン等のような不活性雰囲気中で熱処理に付される。
It is 3000-5000λ and 300-700λ. Vapor deposition of these metals can be carried out by methods well known in the line drawing industry. The silicon substrate is then patterned in a conventional post-processing step, such as a single photolithography step, and then subjected to a heat treatment in a vacuum of less than 1X10 torr or in an inert atmosphere such as helium, argon, or the like.

熱処理温度は、要求特性に応じて変えることができる。The heat treatment temperature can be changed depending on the required characteristics.

一般に、温度が低いほどバリアハイドは高く、温度が高
くなるにつれてバリアハイドは低くなる。例えば、熱処
理温度150℃〜350℃の範囲において、Pdバリア
のバリアハイドは0.76 eVから0.70 eV 
iで変化する。
Generally, the lower the temperature, the higher the barrier hide, and the higher the temperature, the lower the barrier hide. For example, in the heat treatment temperature range of 150°C to 350°C, the barrier hydride of the Pd barrier is 0.76 eV to 0.70 eV.
Changes with i.

熱処理時間も任意に選定できるが、一般に10分〜1時
間であってよい。このように、適切な熱処理条件を選択
することにより所望の特性を持つSBDを製造すること
ができる。
Although the heat treatment time can also be arbitrarily selected, it may generally be 10 minutes to 1 hour. In this way, by selecting appropriate heat treatment conditions, an SBD with desired characteristics can be manufactured.

以上のように、本発明によれば、従来バリアメタルの種
類によって固定されていたバリアハイドを、Pdを選択
することによってかなり広い範囲で制御することができ
、これにより高温漏れ電流と順方向電圧降下のバランス
を見ながら適切なバリアハイドを実現することが可能と
なった。
As described above, according to the present invention, the barrier hide, which was conventionally fixed depending on the type of barrier metal, can be controlled over a fairly wide range by selecting Pd. It became possible to achieve an appropriate barrier hide while monitoring the balance of the descent.

本発明の方法で製造された8BDは、多くの用途に使用
できるが、特に、高温での動作保障が要求される用途、
例えば電力用に使用することができる。
The 8BD manufactured by the method of the present invention can be used in many applications, especially those that require guaranteed operation at high temperatures.
For example, it can be used for power.

実施例 電極窓あけしたシリコン基板を真空中で100〜150
℃のバックヒートを行ないながら、まずPdを約400
OAの厚さに蒸着する0 しかる後、半田付用金属層と
して連続して約4oooiのNiと約500にのAuを
蒸着させる。このように形成した蒸着膜を通常のフォト
リソグラフィ一工程でバターニングした後に、lXl0
  torr以下の真空中で加分間熱処理した0熱処理
源度は150℃から350℃の範囲で変えた。得られた
生成物のバリアハイドの変化を第1図に示す。適切な熱
処理温度を選択することにより所望のバリアハイド値を
持つSBDを得ることが可能であることがわかる。
Example: A silicon substrate with an electrode window is heated to 100 to 150 µm in vacuum.
While backheating at ℃, Pd was first heated to about 400℃.
The thickness of the OA is then evaporated to approximately 400 mm.Ni and about 500 mm of Au are then successively deposited as a soldering metal layer. After patterning the vapor deposited film thus formed in one step of normal photolithography, lXl0
The temperature of the zero heat treatment performed in a vacuum of torr or less was varied in the range of 150°C to 350°C. FIG. 1 shows the change in barrier hydride of the obtained product. It can be seen that by selecting an appropriate heat treatment temperature, it is possible to obtain an SBD with a desired barrier-hide value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法で得られたSBDのバリアハイ
ドと熱処理温度との関係を示す線図であるO
FIG. 1 is a diagram showing the relationship between the barrier hide of SBD obtained by the method of the present invention and the heat treatment temperature.

Claims (1)

【特許請求の範囲】 l)ショットキバリアダイオードのショットキバリアを
形成するにあたり、バリアメタルとしてパラジウムを蒸
着させ、次いでニッケル及び金を多層蒸着した後、真空
又は不活性雰囲気中で熱処理することを特徴とする、任
意に制御できるバリアハイドを持つショットキバリアを
有するショットキバリアダイオードの製造方法。 2、特許請求の範囲第1項記弊の製造方法において、パ
ラジウム、ニッケル及び金がそれぞれ2000〜500
0λ、3000〜5000k及び300〜700λの厚
さで蒸着されることを特徴とする製造方法。 3)4!許請求の範囲第1項記載の製造方法において、
熱処理温度を150℃〜350℃の間で変化せしめ、こ
れによりバリアハイドを制御することを特徴とする製造
方法。
[Claims] l) In forming the Schottky barrier of the Schottky barrier diode, palladium is deposited as a barrier metal, and then nickel and gold are deposited in multiple layers, followed by heat treatment in a vacuum or an inert atmosphere. A method for manufacturing a Schottky barrier diode having a Schottky barrier with an arbitrarily controllable barrier hydride. 2. Claim 1 In our manufacturing method, palladium, nickel and gold each contain 2,000 to 500
A manufacturing method characterized in that the vapor deposition is performed to a thickness of 0λ, 3000 to 5000k, and 300 to 700λ. 3) 4! In the manufacturing method according to claim 1,
A manufacturing method characterized in that the heat treatment temperature is varied between 150°C and 350°C, thereby controlling barrier hide.
JP20671581A 1981-12-21 1981-12-21 Manufacture of schottky barrier diode Pending JPS58107685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20671581A JPS58107685A (en) 1981-12-21 1981-12-21 Manufacture of schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20671581A JPS58107685A (en) 1981-12-21 1981-12-21 Manufacture of schottky barrier diode

Publications (1)

Publication Number Publication Date
JPS58107685A true JPS58107685A (en) 1983-06-27

Family

ID=16527905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20671581A Pending JPS58107685A (en) 1981-12-21 1981-12-21 Manufacture of schottky barrier diode

Country Status (1)

Country Link
JP (1) JPS58107685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622736A (en) * 1984-01-30 1986-11-18 Tektronix, Inc. Schottky barrier diodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622736A (en) * 1984-01-30 1986-11-18 Tektronix, Inc. Schottky barrier diodes

Similar Documents

Publication Publication Date Title
US4478881A (en) Tungsten barrier contact
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
US4035526A (en) Evaporated solderable multilayer contact for silicon semiconductor
JPS58107685A (en) Manufacture of schottky barrier diode
US20100301989A1 (en) Sputter deposition of cermet resistor films with low temperature coefficient of resistance
CN112553624A (en) Preparation method of black decorative film applied to plastic
US5757032A (en) Semiconductor diamond device having improved metal-diamond contact for excellent operating stability at elevated temperature
US3591413A (en) Resistor structure for thin film variable resistor
JPS63224112A (en) Superconducting wire and its manufacture
JPH03179793A (en) Surface structure of ceramic board and manufacture thereof
JPH0657399A (en) Ceramic-coating method for metal base material
JP2563315B2 (en) Superconductor wire and method of manufacturing the same
CN110230029B (en) Preparation method of spinel-structured manganese-nickel oxide film
IE903774A1 (en) PROCESS FOR PRODUCING OHMIC ELECTRODE FOR p-TYPE CUBIC¹SYSTEM BORON NITRIDE
CH688169A5 (en) Electrical resistance layer.
JPS5858777A (en) Manufacture of semiconductor element
JPH07122724A (en) Ohmic electrode of n-type cubic boron nitride semiconductor and its formation
US3315208A (en) Nitrogen stabilized titanium thin film resistor and method of making same
JPH0654807B2 (en) Method of forming ohmic contact for hydrogenated amorphous silicon
EP0217095A2 (en) Method of producing low-ohmic, transparent indium-tin oxide layers, especially for imagers
JPH0365502A (en) Preparation of superconductive thin film
CN114592172A (en) Interdigital electrode of surface acoustic wave filter, preparation method thereof and surface acoustic wave filter
JPH0745552A (en) Electrode forming method on oxide semiconductor
WO2016049727A1 (en) Precision chip resistor and preparation method thereof
US2903632A (en) Selenium cells