JPS5810694A - Method of detecting failed fuel assembly - Google Patents
Method of detecting failed fuel assemblyInfo
- Publication number
- JPS5810694A JPS5810694A JP56108827A JP10882781A JPS5810694A JP S5810694 A JPS5810694 A JP S5810694A JP 56108827 A JP56108827 A JP 56108827A JP 10882781 A JP10882781 A JP 10882781A JP S5810694 A JPS5810694 A JP S5810694A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- control rod
- damaged
- fuel assembly
- signal level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、高速増殖炉における破損燃料集合体の同定(
確認)を制御棒の挿入・引抜き操作により行う破損燃料
集合体の検出方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the identification of damaged fuel assemblies in fast breeder reactors.
This invention relates to a method for detecting damaged fuel assemblies by inserting and withdrawing control rods (confirmation).
高速増殖炉の燃料集合体は、ラッパ管内に多数本の燃料
要素(燃料ビンとも称す)がスペーサを介して等間薩に
配列六れており、原子炉の通常運転時には燃料要素の被
覆管に装填された燃料ペレット内の核分裂物質たとえば
UO2が中性子と反応して核分裂し、多量の核分裂生成
片を生成する。The fuel assembly of a fast breeder reactor consists of a large number of fuel elements (also called fuel bins) arranged in a trumpet tube in an evenly spaced arrangement with spacers interposed between them. Fissile material, such as UO2, in the loaded fuel pellets reacts with neutrons and undergoes fission, producing a large amount of fission product fragments.
燃料要素は一般にUO2粉末を円柱状に圧粉成形し焼結
した燃料ペレットをたとえばステンレス鋼製円筒状被覆
管と、その被覆管の上、下端部を閉塞する端栓から構成
されている。核分裂により生成する核分裂生成物は被覆
管内に封じ込められ、外部に放出しないような構造にな
っている。A fuel element generally comprises a cylindrical cladding tube made of, for example, stainless steel, and end plugs for closing the upper and lower ends of the cladding tube. The structure is such that the fission products produced by nuclear fission are contained within the cladding and are not released to the outside.
しかしながら、原子炉の運転時には、何らかの予測し得
ない原因により、被覆管が破損し、封じ込められるべき
核分裂生成物が燃料要素外へ放出される可能性がある。However, during operation of a nuclear reactor, there is a possibility that the cladding tube may break due to some unpredictable cause, and fission products that should be contained may be released outside the fuel element.
燃料要素が破損したまま原子炉を運転することは、安全
性上はもとよシ運転上からも好ましいことではないので
、一般に高速増殖炉には破損燃料を速やかに検出できる
検出装置が設置されている。Since operating a nuclear reactor with a damaged fuel element is not desirable from a safety or operational perspective, fast breeder reactors are generally equipped with a detection device that can quickly detect damaged fuel. ing.
従来、この検出装置には二種類知られている。Conventionally, two types of detection devices are known.
一つは、原子炉容器内の冷却材の上部に封入されている
カバーガスをサンプリングし、そのカバーガス中に核分
裂生成物の気体成分が含まれているか否かを測定する方
法であり、CG法と呼ばれている。他の一つは原子炉容
器に連なる一次冷却系配管に中性子検出器を設け、冷却
材中に含まれる核分裂生成物からの連発中性子を測定す
ることにより、燃料集合体の破損を検出する方法で、D
N法と呼ばれている。しかし、上記二つの方法は、通常
の使用方法ではトータルつまり、炉心内燃料集合体の破
損の有無を確認できても、炉心内のどの位置に配置され
た燃料集合体が破損したかを同定することは出来ない欠
点がある。One method is to sample the cover gas sealed above the coolant in the reactor vessel and measure whether the cover gas contains gaseous components of fission products. It's called the law. The other method is to install a neutron detector in the primary cooling system piping connected to the reactor vessel and detect damage to the fuel assembly by measuring continuous neutrons from fission products contained in the coolant. ,D
It is called the N method. However, in normal usage, the above two methods can confirm whether or not the fuel assemblies in the core are damaged, but they cannot identify which fuel assemblies in the core are damaged. There is a drawback that it cannot be done.
本発明は上記欠点を除去するためになされたもので、破
損した燃料要素を含む燃料集合体を上記CG?!i!i
:マたはDN法を用いて炉心内のどの位置の燃料集合体
が破損しているかを容易かつ速やかに同定できる破損燃
料集合体の検出方法を提供する−10(B−10)装荷
量の多い順に制御棒を挿入することを特徴とする破損燃
料集合体の検出方法である。The present invention has been made in order to eliminate the above-mentioned drawbacks, and the present invention has been made to eliminate the above-mentioned drawbacks, and to replace the fuel assembly containing the damaged fuel element with the above-mentioned CG? ! i! i
: To provide a method for detecting damaged fuel assemblies that can easily and quickly identify the location of damaged fuel assemblies in the reactor core using the M/DN method.-10 (B-10) This is a method for detecting damaged fuel assemblies, which is characterized by inserting control rods in descending order of the number of control rods.
以下に本発明の一実施例を図面を参照して説明する。な
お、本発明は本実施例に限定されるものではなく、同様
の趣旨の実施例にも適用され得るものである。An embodiment of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this embodiment, but can be applied to other embodiments having the same meaning.
図は熱出カフ00 MW級の高速増殖炉の炉心を上部か
ら見た概念的平面図である。多数本の燃料要素をラッパ
管内に収納した多数本の燃料集合体】は図示の如く、ハ
ニカム状に六角配列されて、炉心を構成している。The figure is a conceptual plan view of the core of a 00 MW class fast breeder reactor with a heat output cuff viewed from above. As shown in the figure, multiple fuel assemblies containing multiple fuel elements housed in wrapper tubes are arranged hexagonally in a honeycomb shape to constitute the reactor core.
なお、図中六角形枠内に丸印で示した部分B1〜5、C
1〜13は、制御棒の位置を表わしておたB】〜B6は
Booの装荷量が1体当ル約43002含まれる制御棒
集合体の後備炉停止棒をそれぞれ示している。In addition, the parts B1 to B5 and C indicated by circles within the hexagonal frame in the figure
1 to 13 represent the positions of the control rods, and B to B6 represent the backup reactor shutdown rods of the control rod assembly each containing approximately 43,002 Boo loads.
通常運転時には、これらの制御棒は概ね引抜かれており
、%に燃料破損の生じ易い運転サイクル末期には殆んど
全ての制御棒が引抜かれている。During normal operation, these control rods are generally withdrawn, and at the end of the operating cycle, when fuel damage is most likely to occur, almost all of the control rods are withdrawn.
ここで、通常運転時に、前期CG法またはDN法によシ
核分裂生成物が検出された状態を想定する。Here, it is assumed that fission products are detected by the CG method or the DN method during normal operation.
たとえばある燃料要素の破損後、一定時間経過した後に
は、破損した孔からの核分裂生成物の放出は一定となり
、核分裂生成物の生成率すなわち出力レベルに比例した
値となるのでCG法またはDN法の放射線検出器の信号
レベルは一定となる。For example, after a certain period of time has elapsed after a fuel element is damaged, the release of fission products from the damaged hole becomes constant and becomes a value proportional to the production rate of fission products, that is, the output level. The signal level of the radiation detector becomes constant.
しかし、この状態では、各集合体の出力レベルまたは燃
料要素の出力レベルと放射線検出器の信号レベルの相関
関係は明らかでないので、どの燃料集合体に含まれる燃
料要素が破損したかを量定することは°できない。However, in this state, the correlation between the output level of each fuel assembly or the output level of the fuel element and the signal level of the radiation detector is not clear, so it is difficult to quantify which fuel element in which fuel assembly is damaged. I can't do that.
そこで本発明ではこの状態において、制御棒の挿入・引
抜き操作を一定の手原によル行うことによシ、各集合体
の出力レベルを変動させ、その出力レベルに比例したC
G法またはDN法に訃ける放射線検出器の信号レベルを
利用することによシ、破損燃料要素を含む燃料集合体を
同定することで・ある。Therefore, in the present invention, in this state, the output level of each assembly is varied by manually inserting and withdrawing the control rods, and the C
By utilizing the signal level of a radiation detector using either the G method or the DN method, fuel assemblies containing damaged fuel elements are identified.
本手法ではまず図におけるBoo装荷量の多い制御棒、
すなわちB1.B2.B3.B4.B5−B6の順で1
本ずつ制御棒の挿入及び引抜き操作を行なう。ここであ
る制御棒の周囲6本すなわちB2制御棒に対していえば
、6本の燃料集合体2についての挿入後の出力レベルは
炉心の全出力を一定とした場合挿入前の出力レベルの7
0係以下となる。In this method, first, the control rod with a large Boo loading in the figure,
That is, B1. B2. B3. B4. 1 in the order of B5-B6
Insert and withdraw control rods one by one. Here, for the six surrounding control rods, that is, the B2 control rod, the output level after insertion for the six fuel assemblies 2 is 7 of the output level before insertion, assuming the total power of the core is constant.
It will be below 0.
従って、もし破損した燃料要素を包囲した燃料集合体が
挿入した制御棒の周囲の6本に含まれていれば炉心出力
を一定として、上記破損燃料検出系の放射線検出器の信
号レベルは挿入前に比較して挿入後は70%以下となる
。また、その外側り列以内の燃料集合体のいずれかが破
損している場合は70チ以上90%以下に変化する。Therefore, if the fuel assembly surrounding the damaged fuel element is included in the six surrounding control rods inserted, the signal level of the radiation detector of the damaged fuel detection system will be the same before the insertion, assuming the core output is constant. Compared to that, after insertion it is less than 70%. Furthermore, if any of the fuel assemblies within the outer row is damaged, the ratio changes to 70 or more and 90% or less.
このように制御棒の挿入によシ、炉心の出力は低下する
が、挿入前後の炉心全出力を計算上一定として、放射線
検出器の信号のレベルを比較するため、信号レベルを比
較する前に原子炉熱出力計によシ正規化する。In this way, the core output decreases due to control rod insertion, but the total core output before and after insertion is assumed to be constant in calculations, and the radiation detector signal levels are compared, so before comparing the signal levels. Normalized by reactor thermal power meter.
同様の正規化は、以下に示す制御棒操作に対しても実施
し、信号レベルを一定の炉心全出力のもとで比較する。Similar normalization is performed for the control rod operations shown below, and the signal levels are compared under constant full core power.
従って、6本の制御棒の操作手順の途中で、ある制御棒
の挿入後の放射線検出器の信号レベルが前記炉心全出力
正規化後に90%以下となった場合には制御棒の周囲の
三列の燃料集合体に破損燃料要素が含まれると見做し、
以下の制御棒の操作は行われない。次に制御棒の周囲に
ある制御棒の操作を以下の手順で行う。Therefore, in the middle of the operation procedure for six control rods, if the signal level of the radiation detector after insertion of a certain control rod becomes 90% or less after the normalization of the full core power, the three control rods surrounding the control rod It is assumed that the fuel assembly in the column contains a damaged fuel element,
The following control rod operations will not be performed. Next, operate the control rods around the control rod as follows.
すなわち、例えば図において、B2制御棒の挿入によシ
タ0−以下の信号変動を得た場合Bs、C3゜cl、C
2,C12,C7の順で制御棒の挿入、引抜き操作を行
い、前記と同様の信号レベルの正規化操作を行う。この
場合、B2制御棒挿入による正規化後信号変動が70係
以下の場合にはもし、B5制御棒に近接する2本の燃料
集合体のいずれかに破損燃料要素が含まれるとすれば、
正規化後信号レベルの変化は80チ以下である。その他
の制御棒すなわちC3,C1、C2,C12,C7K近
接スル2本の燃料集合体の一場合は9咋以下となる。各
制御棒に近接する燃料集合体は隣接の制御棒に近接する
燃料集合体と1本ずつオーバーラツプしているので、ど
の燃料集合体に破損燃料要素が含まれているかを同定す
ることができる。That is, for example, in the figure, if a signal fluctuation of less than 0 - is obtained by inserting the B2 control rod, Bs, C3°cl, C
The control rods are inserted and withdrawn in the order of 2, C12, and C7, and the signal level is normalized in the same manner as described above. In this case, if the normalized signal fluctuation due to the insertion of the B2 control rod is less than a factor of 70, if one of the two fuel assemblies adjacent to the B5 control rod contains a damaged fuel element, then
The change in signal level after normalization is 80 degrees or less. For other control rods, that is, one fuel assembly with two adjacent control rods, C3, C1, C2, C12, and C7K, it will be 9 liters or less. Since the fuel assembly adjacent to each control rod overlaps one fuel assembly adjacent to an adjacent control rod, it is possible to identify which fuel assembly contains the damaged fuel element.
また、B2制御棒による正規化後信号レベルの変化が7
0チ〜90%である場合には、もしB5制御棒の挿入に
よ〕正規化後信号レベルが701以下となればB5制御
棒に接し、かっB2制御棒から数えて第2、第3列目の
燃料集合体3のいずれかに破損燃料が含まれていると見
做される。この場合、C7・B2・C3の挿入後の正規
化後信号レベルの変化により、4本の燃料集合体3のど
れが破損塗料集合体であるかを、前記と同様の手法にょ
シ同定することができる。同様KB2制御棒による正規
化後、信号レベルの変化が70%〜90%の場合でかつ
、C3,C1,C2,C12,C7のいずれかの挿入に
よる正規化後信号レベルが80qb以下となった場合に
は、制御棒に接する4本の集合体のどれかに破損燃料集
合体が含まれていると見做すれ、同様に挿入・引芦き操
作した制御棒の周囲の最も近い複数の制御棒の挿入によ
る信号レベルの変化からその4本のどれが破損燃料集合
体であるかを同定できる。In addition, the change in signal level after normalization due to the B2 control rod is 7
If the normalized signal level becomes 701 or less due to the insertion of the B5 control rod, it will contact the B5 control rod and the second and third rows counting from the B2 control rod will be inserted. It is assumed that one of the second fuel assemblies 3 contains damaged fuel. In this case, which of the four fuel assemblies 3 is the damaged paint assembly can be identified using the same method as above based on the change in the normalized signal level after insertion of C7, B2, and C3. I can do it. Similarly, after normalization using the KB2 control rod, the change in signal level is between 70% and 90%, and the signal level after normalization due to the insertion of any of C3, C1, C2, C12, or C7 is 80qb or less. In this case, it is assumed that one of the four assemblies in contact with the control rod contains a damaged fuel assembly, and the closest multiple controls around the control rod that were similarly inserted and withdrawn are It is possible to identify which of the four rods is a damaged fuel assembly from the change in signal level caused by rod insertion.
図において、炉心外側付近の燃料集合体に対しては、周
囲が制御棒で囲まれていないので、この付近に破損燃料
集合体が存在する場合には同定が難しいが、前記と同様
の操作によシ、多くても二体までの特定が可能となる。In the figure, the fuel assemblies near the outside of the core are not surrounded by control rods, so if there are damaged fuel assemblies in this area, it is difficult to identify them, but the same operation as above can be used. Yes, it will be possible to identify at most two bodies.
なお、本発明の実施態様を列記すれば次のような手順を
経ることになる。In addition, if the embodiments of the present invention are listed, the following procedures will be followed.
(])CG法またはDN法による放射線検出器の信号レ
ベルが一定となるまで待つ。以下、各制御棒の挿入、引
抜き操作に対しても同様とする。(]) Wait until the signal level of the radiation detector using the CG method or DN method becomes constant. Hereinafter, the same applies to the insertion and withdrawal operations of each control rod.
(2)高BIO装荷量制御棒の中の1本の挿入および引
抜きの操作を行う。(2) Insert and withdraw one of the high BIO loading control rods.
(3)放射線検出器の信号レベルを制御棒の挿入時と引
抜き時の炉出力を一定として(正規化して)比較する。(3) Compare the signal level of the radiation detector with the reactor output constant (normalized) when the control rod is inserted and withdrawn.
(4)上記(2) 、 (3)の手順を他の高BIO装
荷景制御棒についても繰シ返す。(4) Repeat the steps (2) and (3) above for other high BIO loading view control rods.
(5)上記(1)〜(4)の手順の途中で放射線検出器
の炉出力規格化後の信号レベルの変化がある高BIO装
荷量の制御棒の挿入前後で一定値以上になった時は、そ
れ以降の高BIO装荷量の制御棒挿入操作は行わず、当
制御棒を引抜いておく。(5) During the steps (1) to (4) above, there is a change in the signal level of the radiation detector after normalizing the reactor output.When the signal level exceeds a certain value before and after inserting a control rod with a high BIO loading. , do not insert the control rod with a high BIO load after that and pull out the control rod.
(Q 上記(5)における挿入制御棒の周囲の制御棒の
内で最も近い制御棒6本の操作をBIO装荷貴の大きい
順に順次挿入、引抜操作を行い、炉出力規格化後の信号
レベルを比較する。(Q) In (5) above, perform the insertion and withdrawal operations of the six closest control rods in order of BIO loading in descending order of the control rods surrounding the inserted control rod, and calculate the signal level after normalizing the reactor output. compare.
(7)上記(5)の信号レベルの変化がある値以上大き
い時は(5)における制御棒に隣接する燃料が破損して
いると見做し、その中のどの燃料であるかぼ(6)での
信号レベルの変化の大きさにより決定する。(7) If the change in the signal level in (5) above is greater than a certain value, it is assumed that the fuel adjacent to the control rod in (5) is damaged, and which of the fuels (6 ) is determined by the magnitude of the change in signal level.
(8)上記(5)の信号レベルの変化がある値以下で、
かつ(5)で示した一定値以上である場合には、手順(
6)において信号レベルの変化が規定された値以上とな
った制御棒に最も近く、かつ、上記(5)および(6)
で挿入・引抜き操作をしなかった3本の制御棒の挿入拳
引抜きにより信号レベルの変化を測定し、上記(5)
、 (6)で得られた信号レベル変化のデータも用いて
、(7)と同様の判断で破損燃料の位置を決定する。(8) When the signal level change in (5) above is below a certain value,
And if it is above the certain value shown in (5), then proceed with step (
The control rod closest to the control rod where the change in signal level exceeded the specified value in 6), and in (5) and (6) above.
The changes in the signal level were measured by inserting and withdrawing the three control rods that were not inserted or withdrawn in the above (5).
, The position of the damaged fuel is determined using the same judgment as in (7), also using the signal level change data obtained in (6).
以上説明したように本発明による破損燃料集合体の検出
方法によれば制御棒の挿入・引抜き操作という簡単な手
法により、早期に破損燃料集合体を同定または特定する
ことができ、原子炉の運転性、稼動率、および安全性が
向上する効果がある。As explained above, according to the method for detecting a damaged fuel assembly according to the present invention, a damaged fuel assembly can be identified or specified at an early stage by the simple method of inserting and withdrawing control rods, and the reactor operation This has the effect of improving performance, availability, and safety.
図は本発明に係る破損燃料集合体の同定方法の一実施例
を説明するために炉心を上方から見た概念的平面図であ
る。
1・2・・・燃料集合体、
B1〜B6・・・BIO装荷量の多い制御棒、C1〜C
13・・・BIO装荷量の少ない制御棒。
出願代理人 弁理士 菊 池 五 部The figure is a conceptual plan view of the reactor core viewed from above to explain an embodiment of the method for identifying damaged fuel assemblies according to the present invention. 1.2...Fuel assembly, B1-B6...Control rod with large BIO loading, C1-C
13...Control rod with a small amount of BIO loading. Application agent Patent attorney Gobe Kikuchi
Claims (2)
破損燃料集合体を固定する破損燃料集合体の検出方法に
おいて、ホウ素−10(B−10)装荷量の多い順に制
御棒を挿入・引抜き操作することを特徴とする破損燃料
集合体の検出方法。(1) Insert and pull out the control rods into the reactor core,
A method for detecting a damaged fuel assembly that fixes a damaged fuel assembly, the method comprising inserting and withdrawing control rods in order of increasing boron-10 (B-10) loading.
挿入・引抜き操作した制御棒の周囲の最も近い複数の制
御棒を順次挿入・引抜き操作を繰シ返すことを特徴とす
る特許請求の範囲第1項記載の破損燃料集合体の検出方
法。(2) A patent that is characterized in that when a change in the amount of detected radioactivity exceeds a specified value, the insertion and withdrawal operations are repeated in sequence for a plurality of control rods closest to the inserted or withdrawn control rod. A method for detecting a damaged fuel assembly according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56108827A JPS5810694A (en) | 1981-07-14 | 1981-07-14 | Method of detecting failed fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56108827A JPS5810694A (en) | 1981-07-14 | 1981-07-14 | Method of detecting failed fuel assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5810694A true JPS5810694A (en) | 1983-01-21 |
Family
ID=14494539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56108827A Pending JPS5810694A (en) | 1981-07-14 | 1981-07-14 | Method of detecting failed fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5810694A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0371096A (en) * | 1989-08-11 | 1991-03-26 | Toshiba Corp | Failed fuel position detector |
-
1981
- 1981-07-14 JP JP56108827A patent/JPS5810694A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0371096A (en) * | 1989-08-11 | 1991-03-26 | Toshiba Corp | Failed fuel position detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2449558B1 (en) | Incore instrument core performance verification method | |
CN101939795B (en) | Method of determining the value of a parameter representative of the operability of a nuclear reactor, determining system, computer program and corresponding medium | |
KR101515638B1 (en) | Method of improving the spent nuclear fuel burnup credit | |
Karb et al. | Lwr fuel rod behavior during reactor tests under loss-of-coolant conditions: results of the FR2 in-pile tests | |
Crawford et al. | RIA testing capability of the transient reactor test facility | |
JPS5810694A (en) | Method of detecting failed fuel assembly | |
Kromar et al. | Impact of different fuel temperature models on the nuclear core design predictions of the NPP Krško | |
Rudling et al. | Performance and inspection of zirconium alloy fuel bundle components in light water reactors (LWRs) | |
Asaga et al. | Evaluation of driver fuel performance in the Joyo Mk-II core | |
Baxter et al. | FSV experience in support of the GT-MHR reactor physics, fuel performance, and graphite | |
JPH03215797A (en) | Method for monitoring subcriticalness of nuclear reactor | |
Coucill et al. | Development of a new VVER-440 fuel design | |
Guidez et al. | Neutronics | |
Nojiri et al. | Characteristics of HTTR's startup physics tests | |
Blomberg | Reactor physics problems concerning the startup and operation of power reactors | |
Fujimoto et al. | First criticality prediction of the HTTR by 1/M interposition method | |
JPH0390895A (en) | Detection of failed fuel assembly | |
Swanson | Fast Flux Test Facility Instrumentation Requirements | |
Hiraiwa et al. | Bars: BWR with advanced recycle system | |
Yamanaka et al. | Post irradiation examination of Fugen MOX fuel | |
Asmussen et al. | Fort St. Vrain initial fuel loading and physics tests | |
Vitanza | In-reactor testing capabilities at Halden relevant for ATF fuel | |
Croucher et al. | Experiment requirements to determine and relate fuel damage limits to core-wide conditions in pressurized water reactors | |
Meer et al. | The VIPEX programme for neutron code validation for MOX fuel | |
Coucil et al. | Development of a new WWER-440 fuel design |