JPH0390895A - Detection of failed fuel assembly - Google Patents

Detection of failed fuel assembly

Info

Publication number
JPH0390895A
JPH0390895A JP1227472A JP22747289A JPH0390895A JP H0390895 A JPH0390895 A JP H0390895A JP 1227472 A JP1227472 A JP 1227472A JP 22747289 A JP22747289 A JP 22747289A JP H0390895 A JPH0390895 A JP H0390895A
Authority
JP
Japan
Prior art keywords
fuel
level
withdrawing
fuel assembly
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227472A
Other languages
Japanese (ja)
Inventor
Yuji Nishi
西 裕士
Tsugio Yokoyama
次男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1227472A priority Critical patent/JPH0390895A/en
Publication of JPH0390895A publication Critical patent/JPH0390895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To detect the presence or absence of a failure by fluctuating the output level of the used fuel assembly during in-pile storage by the withdrawing operation of shielding bodies. CONSTITUTION:The shielding bodies 2, 4 are disposed on the outer periphery of the reactor core and further, the used fuel 3, 5 are stored on the outer side thereof. The core output is kept constant and the level of the radiation detection signal of a failed fuel detecting system rises to about 10 times the level before the withdrawing and the presence or absence of the failure is easily known, for example, the shielding body 4 is withdrawn and if the fuel assembly 5 enclosing the failed fuel element is adjacent thereto. The detection is executed by a method of waiting until the signal level of a radiation detector is held constant by a cover gas method or delay neutron method, then withdrawing one piece of the shielding bodies 2, 4 adjacent to the reactor core side and comparing the level of the radiation detection signal before and after the withdrawing of the shielding bodies 2, 4 while maintaining the reactor output constant. This procedure is repeated and if the signal level attains the specified value or above before and after the withdrawing of the shielding body 4 where there is a change in the signal level during the course of this repetition, the fuel adjacent to this shielding body 4 is regarded to be failed and this position is determined.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉における炉内貯蔵中の燃料集合体の
破損同定(確認)を遮蔽体の引抜き操作により行う破損
燃料集合体の検出方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a method for identifying (confirming) damage to a fuel assembly during storage in a fast breeder reactor by pulling out a shield. Concerning a method for detecting aggregates.

(従来の技術) 高速増殖炉の燃料集合体はラッパ管内に多数本の燃料要
素(燃料ピンとも称す)がスペーサを介して等間隔に配
列されており、原子炉の通常運転時には燃料要素の被覆
管に装填された燃料ペレット内の核分裂物質たとえばP
uが中性子と反応して核分裂し、多量の核分裂生成文を
生成する。燃料要素は一般にPup、およびUO□粉末
を円柱状に圧粉成形し焼結した燃料ペレットをたとえば
ステンレス鋼製円筒状被覆管と、その被覆管の上。
(Prior art) A fuel assembly for a fast breeder reactor has a large number of fuel elements (also called fuel pins) arranged in a wrapper tube at equal intervals with spacers interposed therebetween.During normal operation of the reactor, the fuel elements are coated. The fissile material in the fuel pellets loaded into the tube, e.g.
u reacts with neutrons and undergoes nuclear fission, producing a large amount of fission products. The fuel element is generally Pup, and fuel pellets obtained by compacting and sintering UO□ powder into a cylindrical shape are placed on a cylindrical cladding tube made of stainless steel, for example, and on the cladding tube.

下端部を閉塞する端栓から構成されている。核分裂によ
り生成する核分裂生成物は被覆管内に封じ込められ、外
部に放出しないような構造になっている。
It consists of an end plug that closes the lower end. The structure is such that the fission products produced by nuclear fission are contained within the cladding and are not released to the outside.

(発明が解決しようとする課題) しかしながら、原子炉の運転時には、何らかの予測し得
ない原因によって被覆管が破損し、封じ込められるべき
核分裂生成物が燃料要素外へ放出される可能性がある。
(Problem to be Solved by the Invention) However, during operation of a nuclear reactor, there is a possibility that the cladding tube may be damaged due to some unpredictable cause, and fission products to be contained may be released outside the fuel element.

燃料要素が破損したままの状態で原子炉を運転すること
は、安全性上はもとより運転上からも好ましいことでは
ない。そこで、一般に高速増殖炉には破損燃料を速やか
に検出できる検出装置が設置されている。
Operating a nuclear reactor with a damaged fuel element is not desirable from the standpoint of safety as well as operation. Therefore, fast breeder reactors are generally equipped with a detection device that can quickly detect damaged fuel.

従来、この検出装置は二種類知られている。一つは原子
炉容器内の冷却材の上部に封入されているカバーガスを
サンプリングし、そのカバーガス中に核分裂生成物の気
体成分が含まれているか否かを測定する方法であり、C
G(カバーガス)法と呼ばれている。他の一つは炉心に
連なる一次冷却系に中性子検出器を設け、冷却材中に含
まれる核分裂生成物からの遅発中性子を測定することに
より、燃料集合体の破損を検出する方法で、DN(デイ
レイニュートロン)法と呼ばれている。従来、上記二つ
の方法を用いて、制御棒の運用と組合せる等の方法によ
り、炉心内燃料集合体については、どの位置の燃料集合
体が破損したかを確認することができた。しかし、炉内
貯蔵されている使用済燃料集合体については、どの位置
に配置された燃料集合体が破損したかを同定することは
できない課題があった。
Conventionally, two types of this detection device are known. One method is to sample the cover gas sealed above the coolant in the reactor vessel and measure whether the cover gas contains gaseous components of fission products.
It is called the G (cover gas) method. The other method is to install a neutron detector in the primary cooling system connected to the reactor core and detect fuel assembly damage by measuring delayed neutrons from fission products contained in the coolant. It is called the (day-ray neutron) method. Conventionally, by using the above two methods and combining them with the operation of control rods, it was possible to confirm which position of the fuel assembly in the core was damaged. However, with regard to spent fuel assemblies stored in the reactor, there is a problem in that it is not possible to identify the location of the damaged fuel assembly.

本発明は上記課題を解決するためになされたもので、破
損した燃料要素を含む燃料集合体を上記CG法またはD
N法を用いて炉内貯蔵燃料の内のどの位置の燃料集合体
が破損しているかを容易かつ速やかに同定できる破損燃
料集合体の検出方法を提供することにある。
The present invention was made in order to solve the above problems, and it is possible to remove fuel assemblies containing damaged fuel elements using the CG method or the D method.
It is an object of the present invention to provide a method for detecting a damaged fuel assembly that can easily and quickly identify which fuel assembly in the fuel stored in a reactor is damaged using the N method.

[発明の構成] (課題を解決するための手段) 本発明は使用済燃料を遮蔽体外周部に炉内貯蔵する原子
炉内破損燃料集合体の検出方法において、前記遮蔽体の
引抜き操作により破損燃料集合体を同定することを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for detecting a damaged fuel assembly in a nuclear reactor in which spent fuel is stored in the reactor on the outer periphery of a shield. It is characterized by identifying fuel assemblies.

(作 用) 遮蔽体の引抜き操作を行うことによって炉内貯蔵中の各
使用済燃料集合体出力レベルを変動させ、引抜き前と引
抜き後の信号レベルを比較して破損の有無を検知し、同
定する。
(Function) By pulling out the shield, the output level of each spent fuel assembly stored in the reactor is varied, and the presence or absence of damage is detected and identified by comparing the signal levels before and after pulling out. do.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

なお、本発明はこの実施例に限定されるものではなく、
同様の趣旨の実施例にも適用され得るものである。
Note that the present invention is not limited to this example,
It can also be applied to embodiments having a similar meaning.

図は電気出力10100O級の高速増殖炉の炉心を上部
から見た概念的平面図である。多数本の燃料要素をラッ
パ管内に収納した多数体の燃料集合体lは図示の如くハ
ニカム状に六角配列されて炉心を構成している。炉心の
外周には中性子を遮蔽するための遮蔽体2が設置され、
さらにその外側に使用済燃料3が炉内貯蔵されている。
The figure is a conceptual plan view of the core of a fast breeder reactor with an electrical output of 10,100 O class, viewed from above. As shown in the figure, a large number of fuel assemblies 1 each containing a large number of fuel elements housed in a trumpet tube are arranged hexagonally in a honeycomb shape to constitute a reactor core. A shield 2 for shielding neutrons is installed around the outer circumference of the core.
Furthermore, spent fuel 3 is stored in the reactor outside of the reactor.

ここで、通常運転時に前記CG法またはDN法により核
分裂生成物が検出された状態を想定する。
Here, it is assumed that fission products are detected by the CG method or the DN method during normal operation.

たとえばある燃料要素の破損後、一定時間経過した後に
は、破損した孔からの核分裂生成物の放出は一定となり
、核分裂生成物の生成率すなわち出力レベルに比例した
値となるので、CG法またはDN法の放射線検出器の信
号レベルは一定となる。
For example, after a certain period of time has elapsed after a fuel element is damaged, the release of fission products from the damaged hole becomes constant and becomes a value proportional to the production rate of fission products, that is, the output level. The signal level of the radiation detector is constant.

しかし、この状態では各集合体の出力レベルまたは燃料
要素の出力レベルと放射線検出器の信号レベルの相関関
係は明らかでないで、どの燃料集合体に含まれる燃料要
素が破損したかを同定することはできない。
However, in this state, the correlation between the output level of each fuel assembly or the output level of the fuel element and the signal level of the radiation detector is not clear, and it is difficult to identify which fuel element in which fuel assembly is damaged. Can not.

そこで、本発明ではこの状態において、遮蔽体の引抜き
操作を行うことによって炉内貯蔵中の各使用済燃料集合
体の出力レベルを変動させ、その出力レベルに比例した
CGまたはDN法における放射線検出器の信号レベルを
利用することにより破損燃料要素を含む燃料集合体を同
定する。
Therefore, in the present invention, in this state, the output level of each spent fuel assembly stored in the reactor is varied by pulling out the shield, and the radiation detector in the CG or DN method is proportional to the output level. The fuel assembly containing the failed fuel element is identified by utilizing the signal level of the fuel element.

この方法では図中の使用済燃料3の炉心側に隣接する遮
蔽体について1本ずつ引抜き操作を行う。
In this method, the shields adjacent to the core side of the spent fuel 3 in the figure are pulled out one by one.

ここで、ある遮蔽体4についていえば、当該遮蔽体4に
隣接する使用済燃料集合体5の引抜き後の出力レベルは
炉心の全出力を一定とした場合、引抜き前の出力レベル
の10倍程度となる。
Here, regarding a certain shield 4, the output level of the spent fuel assembly 5 adjacent to the shield 4 after extraction is approximately 10 times the output level before extraction, assuming the total power of the core is constant. becomes.

従って、もし破損した燃料要素を包囲した燃料集合体が
引抜いた遮蔽体に隣接していれば炉心出力を一定として
、前記破損燃料検出系の放射線検出器の信号レベルは引
抜き前に比較して引抜き後は10倍程度となる。従って
、破損の有無を容易に検知することができる。
Therefore, if the fuel assembly surrounding the damaged fuel element is adjacent to the pulled-out shield, the signal level of the radiation detector of the damaged fuel detection system will be lower than before the pulled-out shield, assuming the core output is constant. After that, it will be about 10 times more. Therefore, the presence or absence of damage can be easily detected.

すなわち、本発明に係る破損燃料集合体の検出方法の具
体的実施例を列記すれば次のようになる。
That is, specific examples of the method for detecting a damaged fuel assembly according to the present invention are listed below.

(1)CG法またはDN法による放射線検出器の信号レ
ベルが一定となるまで待つ。
(1) Wait until the signal level of the radiation detector using the CG method or the DN method becomes constant.

以下、各遮蔽体の引抜き操作に対しても同様とする。Hereinafter, the same applies to the operation of pulling out each shield.

(2)炉内貯蔵中の使用済燃料の炉心側に隣接する遮蔽
体の中の1本の引抜きの操作を行う。
(2) One of the shields adjacent to the core side of the spent fuel stored in the reactor is pulled out.

(3)放射線検出器の信号レベルを遮蔽体の引抜き操作
の前後で炉出力を一定として比較する。
(3) Compare the signal level of the radiation detector before and after the shield removal operation, assuming the reactor output is constant.

(4)上記(2) 、  (3)の手順を繰り返す。(4) Repeat steps (2) and (3) above.

(5)上記(1)〜(4)の手順の途中で放射線検出器
の信号レベルの変化がある遮蔽体の引抜き前後で一定値
以上になった時は、当該遮蔽体に隣接する燃料が破損し
ていると見做し、破損燃料の位置を決定する。
(5) If the signal level of the radiation detector changes during the steps (1) to (4) above and exceeds a certain value before and after pulling out the shield, the fuel adjacent to the shield will be damaged. Determine the location of the damaged fuel.

なお、遮蔽体は必ずしも完全に引抜く必要はなく、核分
裂物質の設置されている軸方向範囲(通常、「炉心高さ
」と呼ばれる)から遮蔽体を排除できれば、中途引抜き
状態でも全く同様の効果を得ることができる。
It should be noted that the shield does not necessarily have to be completely withdrawn; if the shield can be removed from the axial range where fissile material is installed (usually referred to as the "core height"), the same effect can be obtained even if the shield is partially withdrawn. can be obtained.

また、複数の遮蔽体についての引抜き時の放射線検出器
の信号レベルの変化を組合せることによって、さらに位
置決めの同定精度(破損燃料集合体の範囲)を高めるこ
とができる。
Furthermore, by combining the changes in the signal levels of the radiation detectors during extraction for a plurality of shields, the identification accuracy of positioning (range of damaged fuel assemblies) can be further improved.

更に、遮蔽体の代わりに使用済燃料集合体を引抜いても
よい。この場合、引抜かれた集合体が破損していれば、
信号レベルは逆に低下することになるが、前述した例と
全く同様にして破損燃料集合体の同定を行うことができ
る。
Furthermore, the spent fuel assembly may be pulled out instead of the shield. In this case, if the pulled out assembly is damaged,
Although the signal level will conversely decrease, the damaged fuel assembly can be identified in exactly the same manner as in the example described above.

[発明の効果] 本発明によれば遮蔽体または燃料集合体の引抜き操作と
いう簡単な手法によって早期に破損燃料集合体を同定ま
たは特定することができ、原子炉の運転性、稼働率およ
び安全性が向上する効果がある。
[Effects of the Invention] According to the present invention, a damaged fuel assembly can be identified or specified at an early stage by a simple method of pulling out a shield or a fuel assembly, thereby improving the operability, availability, and safety of a nuclear reactor. It has the effect of improving.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る破損燃料集合体の同定方法の一実施例
を説明するために炉心を上方から見た概念的平面図であ
る。 1・・・燃料集合体 2・・・遮蔽体 3・・・使用済燃料集合体 4・・・使用済燃料集合体に隣接する遮蔽体5・・・遮
蔽体に隣接する使用済燃料集合体(8733)
The figure is a conceptual plan view of the reactor core viewed from above to explain an embodiment of the method for identifying damaged fuel assemblies according to the present invention. 1... Fuel assembly 2... Shielding body 3... Spent fuel assembly 4... Shielding body adjacent to the spent fuel assembly 5... Spent fuel assembly adjacent to the shielding body (8733)

Claims (1)

【特許請求の範囲】[Claims] (1)使用済燃料を遮蔽体外周部に炉内貯蔵する原子炉
内破損燃料集合体の検出方法において、前記遮蔽体の引
抜き操作によって使用済燃料中の破損燃料集合体を同定
することを特徴とする破損燃料集合体の検出方法。
(1) A method for detecting a damaged fuel assembly in a nuclear reactor in which spent fuel is stored in the reactor on the outer periphery of a shield, characterized in that a damaged fuel assembly in the spent fuel is identified by a pulling operation of the shield. A method for detecting damaged fuel assemblies.
JP1227472A 1989-09-04 1989-09-04 Detection of failed fuel assembly Pending JPH0390895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227472A JPH0390895A (en) 1989-09-04 1989-09-04 Detection of failed fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227472A JPH0390895A (en) 1989-09-04 1989-09-04 Detection of failed fuel assembly

Publications (1)

Publication Number Publication Date
JPH0390895A true JPH0390895A (en) 1991-04-16

Family

ID=16861419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227472A Pending JPH0390895A (en) 1989-09-04 1989-09-04 Detection of failed fuel assembly

Country Status (1)

Country Link
JP (1) JPH0390895A (en)

Similar Documents

Publication Publication Date Title
JP6334704B2 (en) Ionization chamber radiation detector
EP0138542B1 (en) Method and apparatus for determining the nearness to criticality of a nuclear reactor
JP5574399B2 (en) How to improve the deduction of spent nuclear fuel
EP2286414B1 (en) A method of and an apparatus for monitoring the operation of a nuclear reactor
JPH0472200B2 (en)
US4578237A (en) Nondestructive determination of nuclear fuel burnup
JPH0390895A (en) Detection of failed fuel assembly
Rudling et al. Performance and inspection of zirconium alloy fuel bundle components in light water reactors (LWRs)
JPH03215797A (en) Method for monitoring subcriticalness of nuclear reactor
Robertson et al. Fuel defect test-BORAX-IV
Ajdacic et al. Semiconductor measures fluxes in operating core
Eschbach et al. QUICK-A Simplified Fuel Cost Code
Lindgren et al. PLANNED THERMAL IRRADIATION OF MANIFOLDED--VENTED (U, Pu) O $ sub 2$-FUELED ROD IN ORR CAPSULE P-9.
Impink Jr Method and apparatus for continuous on-line synthesis of power distribution in a nuclear reactor core
CA3198964A1 (en) Radioisotope activity surveillance apparatus, system, and method
Versluis CE in-core instrumentation-functions and performance
JPS5810694A (en) Method of detecting failed fuel assembly
Simon et al. Famos III, burn-up measurement system suitable for la Hague acceptance criteria control
Steiger Operating experience with failed fuel elements in the Compact Sodium Cooled Research Reactor KNK II
JPS6385395A (en) Fuel pin for fast breeder reactor
Eccleston et al. Fast facility spent-fuel and waste assay instrument.[Fluorinel Dissolution and Fuel Storage (FAST) Facility]
TAKEUCHI et al. 6.20 Start-up Physics Test Plan of the HTTR
Shaw Control Elements for Sodium Graphite Reactors
Klepfer et al. Severe degradation of BWR fuel failures: Coolant activity analysis. Interim report
Emmerson JASON OPERATING EXPERIENCE--1