JPS58106483A - Radiation measuring device - Google Patents

Radiation measuring device

Info

Publication number
JPS58106483A
JPS58106483A JP20568381A JP20568381A JPS58106483A JP S58106483 A JPS58106483 A JP S58106483A JP 20568381 A JP20568381 A JP 20568381A JP 20568381 A JP20568381 A JP 20568381A JP S58106483 A JPS58106483 A JP S58106483A
Authority
JP
Japan
Prior art keywords
radiation
measurement
measurement sample
circuit
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20568381A
Other languages
Japanese (ja)
Inventor
Mitsuo Ishibashi
石橋 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP20568381A priority Critical patent/JPS58106483A/en
Publication of JPS58106483A publication Critical patent/JPS58106483A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/08Means for conveying samples received

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve measurement sensitivity without decreasing the moving speed of a sample of measurement by using plural radiation detectors. CONSTITUTION:Radiation from a moving sample 11 of measurement is detected by plural, e.g. two radiation detectors 12 and 13, whose detection pulses are processed by integrating circuits 18 and 19, an adding circuit 20, etc., controlled through waveform shaping circuits 16 and 17, and a timer 21 to measure the radiation. In this case, since two detectors 12 and 13 are used, integration time T is twice as long as when only one detector is used on condition that the sample speed is unchanged, thereby increasing the sensitivity by 2<1/2> times on the basis of an equation. Thus, the measurement sensitivity is improved without reducing the moving speed of the sample of measurement.

Description

【発明の詳細な説明】 発明の技術分野 本発明は放射線測定装置の改良に関する。[Detailed description of the invention] Technical field of invention The present invention relates to improvements in radiation measuring devices.

発明の技術的背景 一般に複数の放射性物質の放射=tを測定するには放射
線検出器を固定し、放射性物質を測定台に載せこの測定
台を放射線検出器近くを通過させる手段が用いられてい
る。この手段によれば能率良く数多くの放射性物質の放
射線測定が行なえる。
Technical Background of the Invention Generally, in order to measure the radiation = t of a plurality of radioactive substances, a method is used in which a radiation detector is fixed, the radioactive substance is placed on a measuring stand, and the measuring stand is passed near the radiation detector. . According to this means, radiation measurements of a large number of radioactive substances can be carried out efficiently.

そこで、この種の測定装置の従来例を第1図に示し、こ
れを説明する。1は一定速度で矢印方向に移動する測定
台でこの測定台1上に測定試料2が載せられている。こ
の測定試料2は測定台1によって放射線検出器3の直下
を前記の一定速度で通過する。放射線検出器3には検出
長Aなる検出面4があり、この検出面4によシ前記測定
試料2が通過する時IIJ1測定試料2の放射線を検出
する。そして検出された放射#菫はその線量に応じた・
やルス信号として放射線検出a3よす出力される。この
・ぐルス信号は放射線検出器3に接続されている波形整
形回路5によって波形優形され、さらに同整形回路5に
接続されている積算計数回路6によって所定の積算時間
で積算され計数率が得られる。
Therefore, a conventional example of this type of measuring device is shown in FIG. 1 and will be explained. Reference numeral 1 denotes a measuring stand that moves at a constant speed in the direction of the arrow, and a measurement sample 2 is placed on this measuring stand 1. This measurement sample 2 is passed directly under the radiation detector 3 by the measurement stage 1 at the above-mentioned constant speed. The radiation detector 3 has a detection surface 4 having a detection length A, and when the measurement sample 2 passes through this detection surface 4, the radiation of IIJ1 measurement sample 2 is detected. And the detected radiation #violet depends on the dose.
The radiation detection signal a3 is output as a signal. The waveform of this signal is shaped by a waveform shaping circuit 5 connected to the radiation detector 3, and then integrated over a predetermined integration time by an integration counting circuit 6 connected to the shaping circuit 5 to determine the counting rate. can get.

また上記装置の放射線検出器3によって求められた計数
率は、縦軸に計数率K、横軸に時間tをとった第2図で
表わされる。この図中の斜線部の面積が測定試料2に比
例した放射−強度を示すものである。なお、tlは積算
時間で、検出長Aを測定台1の移動速度で割った時間に
相当する。また斜線部以外の計数率レベルは測定試料6
以外からの・々ツクグラウンド計数率である。この様に
通常、放射線測定にはパラフグ1 ラウンド計数を伴ないこれに上乗せした形で測定試料の
放射線が測定される。
Further, the count rate determined by the radiation detector 3 of the above-mentioned apparatus is expressed in FIG. 2, with the count rate K on the vertical axis and the time t on the horizontal axis. The shaded area in this figure indicates the radiation intensity proportional to the measurement sample 2. Note that tl is an integrated time, which corresponds to the time obtained by dividing the detection length A by the moving speed of the measuring table 1. In addition, the counting rate level other than the shaded area is measured sample 6.
This is the ground count rate from other sources. In this way, radiation measurement is usually accompanied by one-round counting of Parafugu, and the radiation of the measurement sample is measured in addition to this.

ところで放射線を測定する装置における感度とは・々ツ
クグラウンド計数率に対して測定試料を測定した時のデ
ータが統計上どの程度の有意差をもっているかを尺度と
している。すなわちこの有意差を認め得る値を係る装置
の感度として定義されている。これを式で表わすと一般
に次式の様になる。
By the way, the sensitivity of a device that measures radiation is a measure of the statistically significant difference between the data obtained when measuring a measurement sample and the background count rate. In other words, the value at which this significant difference can be recognized is defined as the sensitivity of the device. Generally speaking, this can be expressed as the following formula.

感度=に〆篩;]−・・・・・(1) すなわちパックグラウンド計数率RBGが小か、積算時
間Tが大のものが感度の良いものとなる1そこで上記従
来装+1における感度は上記定義よシ第2図の時間t1
でのパックグラウンド計数率の面積と測定試料を測定し
た時の計数率の面積(同図斜線部)によって決定される
Sensitivity = sieve;] - (1) In other words, the smaller the pack ground count rate RBG or the larger the integration time T, the better the sensitivity1.Therefore, the sensitivity of the conventional device +1 is as follows. Define time t1 in Figure 2.
It is determined by the area of the pack ground counting rate at the time of measurement and the area of the counting rate when measuring the measurement sample (the shaded area in the figure).

背景技術の問題点 上記構成の装置において感度向上を図るとした場合、感
度決定要素となる測定試料の移動速度を遅くするかある
いは放射線検出器の検出長を長くすることが考えられる
。しかしながら測定台の移動速度を遅くすることは放射
性物質を長時間測定台上に放置することになシ好ましく
ない。また検出長を長くすること積算時間を長くとれる
が検出されるパックグラウンド計数率も増加するために
結果的には感度向上にならない欠点をもっている。
Problems with the Background Art In order to improve the sensitivity of the apparatus configured as described above, it is conceivable to slow down the moving speed of the measurement sample, which is a factor determining the sensitivity, or to lengthen the detection length of the radiation detector. However, slowing down the moving speed of the measurement table is not preferable because radioactive materials are left on the measurement table for a long time. Furthermore, although increasing the detection length allows for a longer integration time, it also increases the detection background count rate, which has the disadvantage that sensitivity cannot be improved as a result.

発明の目的 本発明は測定試料の移動速度を遅くすることなく放射線
測定の感度を向上することの出来る放射線測定装置を提
供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a radiation measurement device that can improve the sensitivity of radiation measurement without slowing down the moving speed of a measurement sample.

発明の概要 本発明は、上記目的達成のため、移動する放射性測定試
料の放射線を測定する放射線測定装置において、放射線
検出器を複数個用いて、1つの放射性測定試料の放射線
を順次検出すること。そして、これら検出器より検出さ
れた検出時間に応じた量の放射線量をそれぞれ計数積算
し、後に両者を加算して、この加算値を前記放射性測定
試料の放射線強度とすることとした放5− 射射線測定装置である。
Summary of the Invention In order to achieve the above object, the present invention uses a plurality of radiation detectors to sequentially detect the radiation of one radioactivity measurement sample in a radiation measurement device that measures radiation of a moving radioactivity measurement sample. Then, the amount of radiation detected by these detectors according to the detection time is counted and integrated, and the two are added later, and this added value is used as the radiation intensity of the radioactivity measurement sample. It is a ray measuring device.

発明の実施例 本発明の実施例を第3図、第4図を用いて説明する。な
お第3図は構成図、第4図は測定データを示す図である
Embodiment of the Invention An embodiment of the invention will be described with reference to FIGS. 3 and 4. Note that FIG. 3 is a configuration diagram, and FIG. 4 is a diagram showing measurement data.

第3図において、10は一定速度で矢印方向へ移動する
測定台でこの測定台10上に測定試料11が載せられて
いる。そして測定試料11が通過する真上に測定試料1
1の放射a量に応じて・やルス信号を出力する放射線検
出器12゜13が、それぞれの検出面14.15を測定
台1θに向けて、測定台10の移動方向に直線的に並ぶ
様に設置されている。なお、前記検出面14.15は測
定台1θの移動方向Bの検出長をもっている。放射線検
出器12.13には出力される・ぐルス信号を波形整形
する波形整形回路16.17がそれぞれ接続されている
。さらにこれら波形整形回路16.17にはパルス信号
を所定の時間で積算し計数率にする積算計数回路18.
19がそれぞれ接続されている。そ6一 してこれら積算計数回路18.19の出力の加算を行な
う加算回路20が両積算計数回路18゜19に接続され
ている。まだ前記積算計数回路18.19の積算開始お
よび停止のタイミングと、前記加算回路20の加算タイ
ミングを決めるタイマー回路21が前記積算計数回路1
8゜19および加算回路20に接続されている。
In FIG. 3, reference numeral 10 denotes a measurement table that moves at a constant speed in the direction of the arrow, and a measurement sample 11 is placed on this measurement table 10. Then, the measurement sample 1 is placed directly above the measurement sample 11 passing through.
Radiation detectors 12 and 13 that output a radial signal according to the amount of radiation a of 1 are arranged in a straight line in the direction of movement of the measurement table 10, with their respective detection surfaces 14 and 15 facing the measurement table 1θ. It is installed in Note that the detection surfaces 14 and 15 have a detection length in the moving direction B of the measuring table 1θ. Waveform shaping circuits 16 and 17 for shaping the waveforms of the output signals are connected to the radiation detectors 12 and 13, respectively. Furthermore, these waveform shaping circuits 16 and 17 include an integration counting circuit 18.
19 are connected to each other. An adding circuit 20 for adding the outputs of these integrating counting circuits 18 and 19 is connected to both integrating counting circuits 18 and 19. The timer circuit 21 that determines the timing of starting and stopping the integration of the integration counting circuits 18 and 19 and the addition timing of the addition circuit 20 is connected to the integration counting circuit 1.
8° 19 and the adder circuit 20.

次に上記構成される装置の作用を説明する。Next, the operation of the apparatus configured as described above will be explained.

測定台10の移動によって測定試料11がまず、放射線
検出器12の検出面14の範囲に侵入すると、タイマー
回路21が積算計数回路18に積算動作させる。したが
ってこの積算計数回路18は放射線検出器12よ)出力
される測定試料11の放射線量に応じた・ぐルス信号を
波形整形回路16を介して積算する。この積算時間は、
測定試料11が検出面14の範囲を脱出するまでの時間
で、検出面14の検出長Bを測定台10の移動速度で割
った時間に相当する。以上の時間の経過後積算計数回路
18の出力は加算回路20に保持され、タイマー回路2
1は積算計数回路18の積算停止を行なう。さらに、測
定試料11が移動し放射線検出器13の検出面15の範
囲に侵入した時も上記と同様にタイマー回路21によっ
て積算計数回路19は積算開始を行ない、上記と同じ積
算時間経過後同計数回路19の出力が加算回路20に入
力されタイマー回路20によって積算停止が行なわれる
When the measurement sample 11 first enters the range of the detection surface 14 of the radiation detector 12 due to the movement of the measurement table 10, the timer circuit 21 causes the integration counting circuit 18 to perform an integration operation. Therefore, this integration counting circuit 18 integrates the signal outputted from the radiation detector 12 according to the radiation dose of the measurement sample 11 via the waveform shaping circuit 16. This cumulative time is
The time required for the measurement sample 11 to escape from the range of the detection surface 14 corresponds to the time obtained by dividing the detection length B of the detection surface 14 by the moving speed of the measurement table 10. After the above time has elapsed, the output of the integration counting circuit 18 is held in the adding circuit 20, and the timer circuit 2
1 causes the integration counting circuit 18 to stop the integration. Furthermore, when the measurement sample 11 moves and enters the range of the detection surface 15 of the radiation detector 13, the integration counting circuit 19 starts integration by the timer circuit 21 in the same way as above, and after the same integration time as above has passed, the same counting is performed. The output of the circuit 19 is input to the adding circuit 20, and the timer circuit 20 stops the integration.

以上2つの放射線検出器12.13を測定試料11が通
過後加算回路20はタイマー回路21からのタイミング
信号によって前記積算計数回路18,19の両計数率の
加算を行なう。
After the measurement sample 11 passes through the two radiation detectors 12 and 13, the addition circuit 20 adds the counting rates of the integration counting circuits 18 and 19 in response to a timing signal from the timer circuit 21.

なお、タイマー回路21の積算計数回路18゜19の積
算タイミングおよび加算回路20の加算タイミングは測
定台10の移動速度、検出面’14 、 J 5の検出
長Bおよび両横出面14.15の間隔などよシ簡単に設
定出来る。
Note that the integration timing of the integration counting circuits 18 and 19 of the timer circuit 21 and the addition timing of the addition circuit 20 depend on the moving speed of the measuring table 10, the detection length B of the detection surfaces '14 and J5, and the distance between the two side surfaces 14 and 15. You can easily set it up.

以上、上記の構成にて各放射線検出器12゜13よシ得
られる計数率応答曲線は第4図(a)。
The count rate response curve obtained from each radiation detector 12 and 13 with the above configuration is shown in FIG. 4(a).

(b)の様になる。なお、縦軸に計数率に1横軸に時間
Tを表わしく、)が放射線検出器12よυ、(b)が放
射線検出器13よ郵測定されるものである。
It will look like (b). The vertical axis represents the counting rate, and the horizontal axis represents the time T. ) is measured by the radiation detector 12, and (b) is measured by the radiation detector 13.

また斜線部は両検出器12.13より測定された放射線
強度に比例した量を表わし、時間T1は積算計数回路1
8.19の積算時間を示す。
In addition, the shaded area represents the amount proportional to the radiation intensity measured by both detectors 12 and 13, and time T1 is the amount proportional to the radiation intensity measured by both detectors 12 and 13.
Shows the cumulative time of 8.19.

ここで、この実施例の放射線検出器12゜13、測定台
10の移動速度、測定試料11を第1図の従来装置の構
成と全く同一とした場合、各放射線検出器3,12.1
3から得られる計数率応答曲線も同じとなる。以上の条
件で従来装置との比較をすると、第2図および第4図(
a)。
Here, if the radiation detectors 12, 13, the moving speed of the measurement table 10, and the measurement sample 11 of this embodiment are completely the same as those of the conventional apparatus shown in FIG.
The count rate response curve obtained from 3 is also the same. When compared with the conventional device under the above conditions, Figures 2 and 4 (
a).

(b)からも明らかなように測定時に測定試料から得ら
れるデータ(各図斜線部)は従来に比べ本実施例は2倍
の量が得られることになる。すなわち上記の感度の定義
の統計上の有意差において2倍の有意差が得られこの分
感度の向上となる。
As is clear from (b), the amount of data obtained from the measurement sample during measurement (the shaded area in each figure) is twice as much in this example as compared to the conventional one. That is, a statistically significant difference in the above definition of sensitivity is twice as significant, resulting in an improvement in sensitivity.

それでは前記条件の内で従来の構成の放射線検出器3の
検出面4の検出長を本実施例の放射線検出部12.13
の検出面14.15の検出長の和に相当する長さ、つま
92倍にすると、9− 測定試料が検出面を通過する時間が2倍になシ得られデ
ータも2倍になる。しかしながら検出長が2倍であるた
めパックグラウンドの放射線を受ける面も2倍となるた
め結来的にパックグラウンド計数率も2倍となってしま
う。したがって、前記の統計上の有意差は元の検出長の
時と変わらず何ら感度の向上につながらない。このこと
を削代(1)の形で表わすと、次の様になる。
Now, within the above conditions, the detection length of the detection surface 4 of the radiation detector 3 of the conventional configuration is determined by the radiation detection section 12.13 of this embodiment.
If the length corresponding to the sum of the detection lengths of the detection surfaces 14 and 15 is multiplied by 92, the time for the measurement sample to pass through the detection surfaces will be doubled, and the data obtained will also be doubled. However, since the detection length is doubled, the surface of the pack ground that receives radiation is also doubled, and as a result, the pack ground counting rate also doubles. Therefore, the above-mentioned statistically significant difference is unchanged from the original detection length and does not lead to any improvement in sensitivity. This can be expressed in the form of cutting allowance (1) as follows.

本実施例の感度=に2て閉つ−・・・・・・・・・(2
)但し、kは比例係数、RBGはパックグラウンド計数
率、Tは前記放射線検出器3,12.13を同一ものと
した時の各積算時間でおる。また係数2は(2)式にお
いては放射線検出器の個数を、(3)式においては(2
)式の放射線検出器1個当りの検出長に対する(3)式
の検出器の検出長の倍数を示すものである。
Sensitivity in this example is closed by 2.
) However, k is a proportionality coefficient, RBG is a background counting rate, and T is each integrated time when the radiation detectors 3, 12, and 13 are the same. In addition, the coefficient 2 represents the number of radiation detectors in equation (2), and the coefficient 2 represents the number of radiation detectors in equation (3).
) shows the multiple of the detection length of the detector in equation (3) with respect to the detection length per one radiation detector in equation (3).

以上述べたように検出長を長くしても感度の向上は図れ
ず本発明の実施例の様に2個あるい10− は複数個の放射線検出器を用いることによって、測定台
の移動速度を遅くすることなく感度の向上が図れる。な
お複数個使用した場合感度は(2)式の係数2を使用個
数に置換えたもので表わされる。
As mentioned above, even if the detection length is lengthened, the sensitivity cannot be improved, but by using two or 10- or more radiation detectors as in the embodiment of the present invention, the moving speed of the measuring table can be increased. Sensitivity can be improved without slowing down. Note that when a plurality of sensors are used, the sensitivity is expressed by replacing the coefficient 2 in equation (2) with the number of devices used.

また、本発明は上記実施例の様に放射線検出器1組の使
用ばかシでなく例えば第5図の様に複数組を配置するこ
とによシ効果を拡大出来る。
Further, the present invention does not only use one set of radiation detectors as in the above embodiment, but can expand the effect by arranging a plurality of sets as shown in FIG. 5, for example.

なお、同図は放射線検出器の検出面の配置のみを示した
。そこで図中、30’−1、30’−2は積算計数回路
系Aによって積算計数される一組の放射線検出器を表わ
しこれらの内部に検出面3θ−1,30−2をもってい
る。同様に積算計数回路系Bには検出面31−1.31
−2をそれぞれもった放射線検出器、91’ −1、3
1’−2の1mが接続され、積算計数回路系Cには検出
面32−1.32−2をそれぞれもった放射線1・1゜ 検出器32’ −1、J 2’−2の1組が接続されて
いる。そして矢印方向に測定試料を移動させる。
Note that the figure only shows the arrangement of the detection surface of the radiation detector. In the figure, reference numerals 30'-1 and 30'-2 represent a pair of radiation detectors that are integrated and counted by the integrating and counting circuit system A, and have detection surfaces 3θ-1 and 30-2 inside them. Similarly, the integration counting circuit system B has a detection surface 31-1.31.
-2 radiation detectors, 91' -1, 3
1'-2 is connected, and the integration counting circuit system C has a set of radiation 1 and 1° detectors 32'-1 and J2'-2 each having a detection surface 32-1 and 32-2. is connected. Then, move the measurement sample in the direction of the arrow.

そうすると移動方向に前記回路系Aの1組の放射線検出
器によって領域■、前記回路系Bの1組の放射線検出器
によって領域(つ、前記回路系Cの1組の放射線検出器
によって領域・の測定領域が形成される。
Then, in the movement direction, one set of radiation detectors in the circuit system A is used to form an area (2), one set of radiation detectors in the circuit system B is used to form an area (2), and one set of radiation detectors in the circuit system C is used to form an area A measurement area is formed.

以上の様な構成で測定試料を移動させれば測定領域■@
Oの内のいずれかに測定試料が移動した場合、その領域
和尚の放射線検出器および積算計数回路系が上記の第3
図の構成装置と同様に放射線の測定を行なう。また各領
域■@Oで測定される計数率応答曲線は第6図(イ)(
ロ)(ハ)の様になる。なお縦軸に計数率に1横軸に時
間Tを示し、(イ)(ロ)(ハ)はそれぞれ領域■0θ
に該当するもので、斜線部が放射線強度に比例したデー
タを示す。またT2は積算時間である。この斜線部が前
記各回路系A、B、Cにて最終的にそれぞれ加算される
If you move the measurement sample with the above configuration, the measurement area■@
If the measurement sample moves to one of the areas O, the radiation detector and integration counting circuit system of that area will be transferred to the third area.
Radiation is measured in the same way as the configuration device shown in the figure. In addition, the count rate response curves measured in each region ■@O are shown in Figure 6 (A) (
B) It will look like (C). The vertical axis shows the counting rate, and the horizontal axis shows time T, and (a), (b), and (c) are the areas ■0θ, respectively.
The shaded area indicates data proportional to radiation intensity. Further, T2 is an integrated time. The shaded portions are finally added in each of the circuit systems A, B, and C.

以上、第5図の様に構成された装置では放射線の検出す
る面の幅を広げたことになる、(領域■@○の谷幅の和
)。したがって、通常使われている放射線検出器は外形
に比べ検出面は小さいものであることによ)生じた同検
出器端部では放射線が検出されないという事を防ぐこと
が出来、゛むらなく測定が可1目である。
As described above, in the apparatus configured as shown in FIG. 5, the width of the radiation detection surface is increased (sum of valley widths of area ■@○). Therefore, it is possible to prevent radiation from not being detected at the edge of the detector (which occurs due to the fact that the detection surface of commonly used radiation detectors is small compared to the external size), and to ensure even measurement. It's a passable score.

さらに本発明は第3図に示した構成の2つの積算計数回
路を切換え回路によ)一つにした第6図の構成とするこ
とも可能である。なお、73図の構成と同一のものは番
号を同じとし説明を省略する。波形整形回路16.17
の出力側に両回路16.17の信号を切換える切換え回
路40を接続し、この切換え回路40に同回路40が選
択した信号を積算計数する積算計数回路41が接続され
る。さらにこの積算計数回路41に加算回路42が接続
される。そして切換え回路40、積算計数回路41、加
算回路42のそれぞれの動作タイミングを決めるタイマ
ー回路43が前記3回路4θ、41.42に接続されて
いる。
Furthermore, the present invention can also be configured as shown in FIG. 6, in which the two integration counting circuits shown in FIG. 3 are combined into one (by means of a switching circuit). Components that are the same as those in FIG. 73 have the same numbers, and their explanation will be omitted. Waveform shaping circuit 16.17
A switching circuit 40 for switching the signals of both circuits 16 and 17 is connected to the output side of , and an integration counting circuit 41 for integrating and counting the signals selected by the circuit 40 is connected to this switching circuit 40. Furthermore, an adder circuit 42 is connected to this integration counting circuit 41. A timer circuit 43 that determines the operation timing of each of the switching circuit 40, the integration counting circuit 41, and the addition circuit 42 is connected to the three circuits 4θ, 41.42.

上記構成の装置において、測定試料1ノが検出面14を
通過する時タイマー回路43は波形整形回路16側へ切
換え回路40を切換える。
In the apparatus configured as described above, when the measurement sample 1 passes the detection surface 14, the timer circuit 43 switches the switching circuit 40 to the waveform shaping circuit 16 side.

13− これによって検出面14から検出された信号は積算計数
回路41にて積算計数される。そして加算回路42にて
保持される。次に測定試料1ノが検出面15を通過する
時タイマー回路43によって波形整形回路17側へ切換
え回路4θは切換えられ、検出された一+W号は積算計
数回路41に積算計数される。さらに加算回路42にて
前記保持された積算計数値と加算されることになる。
13- The signals thus detected from the detection surface 14 are integrated and counted by the integration counting circuit 41. Then, it is held in the adder circuit 42. Next, when the measurement sample 1 passes the detection surface 15, the switching circuit 4θ is switched to the waveform shaping circuit 17 side by the timer circuit 43, and the detected 1+W is integrated and counted by the integration counter circuit 41. Furthermore, it is added to the accumulated count value held in the adder circuit 42.

以上の様に第7図の構成にては積算計数回路は1つで第
3図の構成と同様の効果が得られる。
As described above, in the configuration shown in FIG. 7, the same effect as in the configuration shown in FIG. 3 can be obtained with only one integration counting circuit.

すなわち本発明はその要旨を逸脱しない限シ種々変形出
来るものである◎ 発明の効果 本発明によれば、複数の放射線検出器を使用することに
よシ、同一放射線検出器を1個使用に比べ使用個数の平
方根に比例して感度を向上させることが出来る。したが
って測定試料の移動速度を遅くする必要もなく放射性物
質を長く放置しなくても済む、また放射線量の少ない物
14− 質の放射−1も容易に測定出来、さらに放射線検出器の
配直によってむ4)い測定が可能となる放射線測定装置
を提供出来るものである。
In other words, the present invention can be modified in various ways without departing from the gist thereof.◎ Effects of the Invention According to the present invention, by using a plurality of radiation detectors, compared to using one identical radiation detector, Sensitivity can be improved in proportion to the square root of the number used. Therefore, there is no need to slow down the moving speed of the measurement sample, and there is no need to leave radioactive substances for a long time.Also, objects with low radiation doses can be easily measured, and furthermore, the radiation detector can be re-arranged. 4) It is possible to provide a radiation measurement device that enables high measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射線測定装置の構成図、第2図は第7
図の構成の装置の計数率応答曲線図、第3図は本発明に
係る放射線測定装置の一実施例の構成図、第4図は第3
図の構成の装置の計数率応答曲線図、第5図は本発明に
係る放射線測定装置の第1の変形例の構成図、第6図は
第5図の構成の装置の計数率応答曲線図、第7図は本発
明に係る放射線測定装置の第2の変形例の構成図である
。 12.13・・・放射線検出器、18.19・・・積算
計数回路、20.42・・・加算回路、21゜43・・
・タイマー回路。 出願人代理人  弁理士 鈴 江 武 彦15− 第2図
Figure 1 is a configuration diagram of a conventional radiation measurement device, and Figure 2 is a 7
A count rate response curve diagram of the device having the configuration shown in the figure, FIG. 3 is a configuration diagram of one embodiment of the radiation measuring device according to the present invention, and FIG.
Figure 5 is a block diagram of the first modified example of the radiation measuring device according to the present invention; Figure 6 is a diagram of the count rate response curve of the apparatus configured as shown in Figure 5. , FIG. 7 is a configuration diagram of a second modification of the radiation measuring device according to the present invention. 12.13...Radiation detector, 18.19...Integration counting circuit, 20.42...Addition circuit, 21°43...
・Timer circuit. Applicant's agent Patent attorney Takehiko Suzue 15- Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  移動する1つの放射性測定試料から所定の検
出時間に応じた量の放射線を順次検出するa数の検出器
とこの各検出器の検出量を所定タイミングでそれぞれ8
%しかつそれぞれの積算値を加算する積算・那算手段と
を備え、前記績d・加算手段の加算出力を放射性測定試
料の放射線強度とすることを特徴とする放射線測定装置
(1) A number of detectors that sequentially detect an amount of radiation according to a predetermined detection time from one moving radioactivity measurement sample and 8 detectors each detecting the amount of radiation detected by each detector at a predetermined timing.
A radiation measuring device 0 characterized in that it is equipped with an integrating/subtracting means for adding up the integrated values of each integrated value, and the addition output of the adding means is used as the radiation intensity of the radioactivity measurement sample.
(2)移動する1つの放射性測定試料から所定の検出時
間に応じた量の放射線を順次検出する複数の検出器をも
った複数の検出系を放射性測定試料の移動方向と直交す
る方向に分割した測定領域ごとに配置する手段と、この
手段によって配置された複数の検出系の各検出器の検出
量を各別に所定のタイミングでそれぞれ積算しかつそれ
ぞれの積算値を加算する複数の積算・加算手段とを備え
、前記各積算・加算手段の加算出力を放射性測定試料の
放射線強度とすることを特徴とする放射線測定装置。
(2) Multiple detection systems with multiple detectors that sequentially detect an amount of radiation according to a predetermined detection time from one moving radioactivity measurement sample are divided in a direction perpendicular to the moving direction of the radioactivity measurement sample. A means arranged for each measurement area, and a plurality of integrating/adding means for respectively integrating the detection amount of each detector of the plurality of detection systems arranged by this means at a predetermined timing and adding the respective integrated values. A radiation measuring device, characterized in that the summation output of each of the integrating/adding means is taken as the radiation intensity of the radioactivity measurement sample.
JP20568381A 1981-12-19 1981-12-19 Radiation measuring device Pending JPS58106483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20568381A JPS58106483A (en) 1981-12-19 1981-12-19 Radiation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20568381A JPS58106483A (en) 1981-12-19 1981-12-19 Radiation measuring device

Publications (1)

Publication Number Publication Date
JPS58106483A true JPS58106483A (en) 1983-06-24

Family

ID=16510961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20568381A Pending JPS58106483A (en) 1981-12-19 1981-12-19 Radiation measuring device

Country Status (1)

Country Link
JP (1) JPS58106483A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474485A (en) * 1987-09-17 1989-03-20 Toshiba Corp Radiation monitor device
JP2007114161A (en) * 2005-10-24 2007-05-10 Aloka Co Ltd Article monitor
JP2007171023A (en) * 2005-12-22 2007-07-05 Fuji Electric Systems Co Ltd Article carrying-out monitor, and inspection method of contamination caused by radioactive material using it
JP2017020939A (en) * 2015-07-13 2017-01-26 清水建設株式会社 Radioactivity concentration measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513194A (en) * 1978-06-05 1980-01-30 Sphere Invest Method and device for detecting characteristic of body and sorting it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513194A (en) * 1978-06-05 1980-01-30 Sphere Invest Method and device for detecting characteristic of body and sorting it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474485A (en) * 1987-09-17 1989-03-20 Toshiba Corp Radiation monitor device
JP2007114161A (en) * 2005-10-24 2007-05-10 Aloka Co Ltd Article monitor
JP4528244B2 (en) * 2005-10-24 2010-08-18 アロカ株式会社 Goods monitor
JP2007171023A (en) * 2005-12-22 2007-07-05 Fuji Electric Systems Co Ltd Article carrying-out monitor, and inspection method of contamination caused by radioactive material using it
JP2017020939A (en) * 2015-07-13 2017-01-26 清水建設株式会社 Radioactivity concentration measurement device

Similar Documents

Publication Publication Date Title
Bemporad et al. Experimental determination of the η lifetime by the measurement of the primakoff effect
JPS57151804A (en) Detecting device for cracked grain of rice
JPS58106483A (en) Radiation measuring device
US4398101A (en) Four input coincidence detector
JPS54107791A (en) Radiation exposure detector
JPH033198B2 (en)
JPH056674B2 (en)
JPS6134491A (en) Multiple type radiation detection unit
JP3585356B2 (en) Radiation detector
JPH02157680A (en) Radiation measuring instrument
JPS5920881A (en) Radiation detector
JPH0426073B2 (en)
JPH0375833B2 (en)
JPH0627849B2 (en) Radiation detection signal discrimination circuit
Shoffner A pulse shape analyzer for phoswich detectors
SU668450A1 (en) Method of operation control for measuring low levels of beta-active preparates
JPH0254192A (en) Detecting device of neutron ray
JPS6042896B2 (en) Weighing machine abnormality detection device
Balandin et al. Measurement of the lifetime of the positive muon
JPS58179396A (en) Method and device for measuring coolant flow rate
JP2754696B2 (en) Gamma camera
JPH01221693A (en) Radiation detecting circuit
SU1196690A1 (en) Arrangement for measuring linear dimensions of rolled stock
JPH0210185A (en) Simultaneous counting circuit for position ct device
SU1141882A1 (en) Device for for detecting useful signals from noise