JPS58106397A - Production of heat-exchanging medium - Google Patents

Production of heat-exchanging medium

Info

Publication number
JPS58106397A
JPS58106397A JP20453281A JP20453281A JPS58106397A JP S58106397 A JPS58106397 A JP S58106397A JP 20453281 A JP20453281 A JP 20453281A JP 20453281 A JP20453281 A JP 20453281A JP S58106397 A JPS58106397 A JP S58106397A
Authority
JP
Japan
Prior art keywords
solution
treatment
heat exchange
oxide film
exchange medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20453281A
Other languages
Japanese (ja)
Other versions
JPS601558B2 (en
Inventor
Tetsuji Iwama
岩間 哲治
Tsuyoshi Katsumata
堅 勝又
Koji Mitamura
三田村 康二
Isao Takeuchi
竹内 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP20453281A priority Critical patent/JPS601558B2/en
Publication of JPS58106397A publication Critical patent/JPS58106397A/en
Publication of JPS601558B2 publication Critical patent/JPS601558B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To form a heat-exchanging medium without damaging an oxide film, by a method wherein an aluminum blank material is treated with a solution of a hypohalite to produce an oxide film on the surface thereof, is further treated with a solution of a silicate, and is worked. CONSTITUTION:An aluminum blank material is immersed into or sprayed with an aqueous solution containing at least one compound selected from the group consisting of, for example, hypochlorites and hypobromites of potassium, sodium and calcium to produce an oxide film on the surface of the blank material in a film thickness of, for example, about 2-10mg/dm<2>, desirably about 5-8mg/dm<2>. Then, the blank material is immersed into a solution of a silicate, for example, for about 5-60sec or is sprayed with the solution, and the solution is dried.

Description

【発明の詳細な説明】 本発明は熱交換媒体製造法に係り、アルミニウム又はア
ルミニウム合金材を次亜ハロゲン酸塩溶液で処理して酸
化皮膜を生成させた後、この酸化皮膜をケイ酸塩溶液で
処理し、その後このように表面処理された素材を例えば
ドロープレス加工又はドローレスプレス加工等の成形加
工を行ない組み立てることにより、製造能率よく、すな
わち加工性及び製造歩留り良く熱交換媒体を低コストで
簡単に製造できるようになり、しかもこのようにして作
られた熱交換媒体はその耐食性及び熱交換効率等の特性
に優れたものである熱交換媒体製造法を提供することを
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat exchange medium, in which aluminum or aluminum alloy material is treated with a hypohalite solution to form an oxide film, and then the oxide film is treated with a silicate solution. After that, the surface-treated material is subjected to forming processing such as draw press processing or drawless press processing, and then assembled, thereby producing a heat exchange medium with high production efficiency, that is, good processability and production yield, and at low cost. It is an object of the present invention to provide a method for manufacturing a heat exchange medium that can be easily manufactured and in which the heat exchange medium thus manufactured has excellent characteristics such as corrosion resistance and heat exchange efficiency.

従来、アルミニウム又はアルミニウム合金(以下単にア
ルミニウムという)製の熱交換媒体は、熱交換効率及び
防錆性の点からアルミニウム表面に表面処理皮膜が施さ
れている。そして、この表面処理皮膜はアルミニウム材
を所定形状のフィンに成形加工して組み立て後に生成さ
れているのであるが、このようなポストコート処理法は
、■処理性の点からフィンの形状、フィンピッチに制約
が有り、■形状が複雑な為、均一な処理が困難で、液だ
まり発生等による外観不良及びさらには熱交換効率の低
下を起こしゃすい、■処理液が表面に付着したまま処理
槽から取り出されるので処理液の骨出しが多く、不経済
である、等の欠点があり、従ってアルミニウム材をフィ
ンに成形加工して組み立てる前の段階において表面処理
皮膜を形成、すなわちプレコート処理できるものであれ
ば、表面処理をあらかじ行なっておく方が望ましい。
BACKGROUND ART Conventionally, heat exchange media made of aluminum or aluminum alloy (hereinafter simply referred to as aluminum) have been provided with a surface treatment film on the aluminum surface in view of heat exchange efficiency and rust prevention. This surface treatment film is produced after the aluminum material is molded into fins of a predetermined shape and assembled, but this post-coat treatment method requires ■Due to the complex shape, it is difficult to process uniformly, resulting in poor appearance due to the formation of liquid pools, and furthermore, a decrease in heat exchange efficiency.■Do not use the treatment tank while the treatment liquid is still attached to the surface. Since the treatment solution is taken out from the fins, there are disadvantages such as a large amount of the treatment solution being removed and it is uneconomical. Therefore, it is not possible to form a surface treatment film on the aluminum material at a stage before forming and assembling the fins, that is, pre-coating. If so, it is preferable to perform surface treatment in advance.

すなわち、プレコート処理法はポストコート処理法に比
べて格段に容易であり、かつ皮膜形成も均一なものとな
るのであるが、プレコート処理したアルミニウム材を、
例えばプレス機にょシ張出し成型、探しぼシ成型、打抜
き加工あるいはしごき加工等の各種の成型加工を行なう
段階においてプレコート膜を損傷してしまい、耐食性及
び熱交換効率を低下させてしまい、さらには成型加工工
程時に使用するプレス油の付着を除去する為に例えばト
リクレン溶液で処理すると、皮膜の水ヌtq性が低下し
、熱交換効率も悪くなるといった欠点がある。例えば、
塗装によるプレコートを行なった場合には、このプレコ
ート材を成形加工すると、に割れが発生したり、フレア
部が破損し、耐食性及び熱効率が低下したものとなるの
みでなく、加工性が極めて悪く、さらには加工後に行な
うトリクレン脱脂処理によって塗膜層が溶解したりする
といった欠点があり、又、例えばぺ〜マイト処理等によ
ってプレコートを行なった場合には、このプレコート材
を成形加工すると、しごき部に割れが生じ、耐食性及び
熱交換効率が低下したものとなり、加工性は悪く、さら
には加工後に行なうトリクレン脱脂処理によってベーマ
イト皮膜の水ヌレ性は著しく低下したものとなる等の欠
点がある。
In other words, the pre-coat treatment method is much easier than the post-coat treatment method, and the film formation is uniform.
For example, the pre-coat film is damaged during various molding processes such as overhang molding, burr molding, punching, or ironing using a press machine, reducing corrosion resistance and heat exchange efficiency, and furthermore, during molding. If the film is treated with, for example, a trichloride solution to remove the adhesion of press oil used during the processing process, there are disadvantages in that the water-repellent properties of the film are reduced and the heat exchange efficiency is also deteriorated. for example,
When pre-coating is performed by painting, molding of this pre-coated material not only results in cracks and damage to the flared parts, resulting in decreased corrosion resistance and thermal efficiency, but also extremely poor workability. Furthermore, there is a drawback that the coating layer may dissolve due to the triclene degreasing treatment performed after processing.Also, when pre-coating is performed by, for example, Pemite treatment, when this pre-coat material is molded, the Cracks occur, corrosion resistance and heat exchange efficiency are reduced, workability is poor, and the water-wet resistance of the boehmite film is significantly reduced due to trichlene degreasing treatment performed after processing.

本発明は上記欠点を除去したものであり、以下その実施
例について説明する。
The present invention eliminates the above-mentioned drawbacks, and examples thereof will be described below.

本発明になる熱交換媒体製造法は、アルミニウム又はア
ルミニウム合金材を、例えばカリウム、ナトリウム、カ
ルシウムの次亜塩酸塩又は次亜臭素酸塩の中から選ばれ
た少なくとも一種類の化合物を含む水溶液中に浸漬する
か、あるいはこの水溶液を散布することによシ、アルミ
ニウム又はアルミニウム合金材表面に、例えば膜厚が約
ト1Orr@/dA、望ましくは約5〜s mg/dm
’の酸化皮膜を生成させた後、ケイ酸塩溶液に、例えば
約5〜60秒間浸漬あるいは散布して後処理を施して乾
燥し、このような表面処理工程の行なわれたアルミニウ
ム又はアルミニウム合金材をドロープレス加工又はドロ
ーレスプレス加工等の成形加工することによって熱交換
媒体を作るものでおり このようにすることによって耐
食性及び熱交換効率に優れた熱交換媒体を加工性良く、
かつ製造歩留り良く、低コストで作れるようになったの
である。
The method for producing a heat exchange medium according to the present invention is to place aluminum or an aluminum alloy material in an aqueous solution containing at least one compound selected from hypochlorites or hypobromites of potassium, sodium, and calcium. By immersing in or spraying this aqueous solution, the surface of the aluminum or aluminum alloy material can be coated with a film thickness of, for example, about 1 Orr@/dA, preferably about 5 to 5 s mg/dm.
After forming an oxide film, the aluminum or aluminum alloy material is post-treated by dipping or spraying it in a silicate solution for about 5 to 60 seconds, and then dried. A heat exchange medium is made by forming the material using draw press processing or drawless press processing.By doing this, a heat exchange medium with excellent corrosion resistance and heat exchange efficiency can be easily processed.
Moreover, it has become possible to manufacture it at low cost and with good manufacturing yield.

この製造工程中、熱交換媒体素材のプレコート処理工程
における次亜ノ・ロゲン酸塩水溶液における処理は、次
亜塩素酸イオン又は次亜臭素酸イオン等の次亜・・ロゲ
ン酸イオンの濃度が低すぎると、酸化力が弱く、耐食性
があまり良好でなく、さらには熱交換媒体に成形加工後
に行なう、例えばトリクレン溶液等による脱脂処理を行
なうと水ヌレ性が著しく低下するものとなるので、又逆
に次亜・・ロゲン酸イオンの濃度が高すぎると、皮膜に
ピッティングが生じたり、均一な膜厚のものとなりにく
く、さらにはトリクレン溶液等による脱脂処理を行なう
と水ヌレ性が低下するものとなるので、次亜ハロゲン酸
イオン濃度は約200〜300(lppm、好ましくけ
約200〜800ppmのものであることが望ましい。
During this manufacturing process, the treatment with an aqueous hypochlorite solution in the pre-coat treatment process of the heat exchange medium material reduces the concentration of hypochlorite ions such as hypochlorite ions or hypobromite ions. If it is too high, the oxidizing power will be weak, and the corrosion resistance will not be very good.Furthermore, if the heat exchange medium is degreased with, for example, a trichloride solution after molding, the water wetting property will be significantly reduced, and vice versa. If the concentration of hypochlorite ions is too high, pitting may occur in the film, it will be difficult to obtain a uniform film thickness, and furthermore, water-wetting properties will decrease when degreasing with a trichloride solution, etc. Therefore, the hypohalite ion concentration is preferably about 200 to 300 (lppm, preferably about 200 to 800 ppm).

又、次亜ハロゲン酸塩水溶液による処理時の溶液の1r
Hは、約10〜12、好ましくは約10.2〜11.4
となるよう水酸化ナトリウム、水酸化カリウム、あるい
は水酸化カルシウム等で調整しておくことが望ましい。
In addition, 1r of the solution during treatment with hypohalite aqueous solution
H is about 10-12, preferably about 10.2-11.4
It is desirable to adjust with sodium hydroxide, potassium hydroxide, calcium hydroxide, etc. so that

又、この処理時の液温は約25〜100u好ましくは約
70〜90℃で、又、処理時間は約1〜20分、好まし
くは約2〜lO分であることが望ましい。さらには、フ
ィンへの加工性の面より酸化皮膜の膜厚が約2〜10■
/dであることが望ましい。
Further, it is desirable that the liquid temperature during this treatment be about 25 to 100 u, preferably about 70 to 90[deg.] C., and the treatment time be about 1 to 20 minutes, preferably about 2 to 10 minutes. Furthermore, from the viewpoint of processability into fins, the thickness of the oxide film is approximately 2 to 10 cm.
/d is desirable.

又、次亜ハロゲン酸塩水溶液による処理工程後に行なわ
れるケイ酸ナトリウム又はケイ酸カリウム等のケイ酸塩
水溶液による処理は、アルマイト皮膜あるいはMBV皮
膜を封孔処理する場合の処理と異なシ、すなわち皮膜の
耐食性の向上を目的とする封孔作用として作用させるも
のではなく、熱交換媒体への成形加工後に行なわれるト
リクレン溶液等による脱脂処理時に皮膜の水ヌレ性が低
下しないように防市作用として働らくよう処理されるも
のである。このことは、次亜ハロゲン酸塩水溶液による
酸化皮膜表面に、ケイ酸塩で総称されるアルカリ金属酸
化物と二酸化ケイ素を含有する溶液中の二酸化ケイ素と
金属酸化物とを数分子層結合させることを意味するもの
であり工従ってケイ酸塩溶液による処理条件は、溶液の
PpHが約lO〜12、好ましくけ約10.5−11.
5となるよう水酸化ナトリウム、水酸化カリウム、アル
キルエタノールアミン等の塩基性有機化合物で調整して
おくことが望ましく、処理温度が約25〜100℃、好
ましくは約60〜95℃で、処理時間が約5〜60秒、
好ましくは約20〜45秒であることが望ましい。例え
ば、ケイ酸塩水溶液による処理時間が長すき゛ると、す
なねち封孔処理のような処理になると皮膜が脆化し、そ
の結果素材を熱交換媒体に成形加工する加工性が低下す
るものとなり、又、逆に処理時間が短かすぎると、素材
を熱交換媒体に成形かロエした後に行なうトリクレン溶
液等による曖脂処理によって皮膜表面の水ヌレ性が低下
する。
Furthermore, the treatment with an aqueous silicate solution such as sodium silicate or potassium silicate that is performed after the treatment step with an aqueous hypohalite solution is different from the treatment when sealing an alumite film or MBV film. It does not act as a pore-sealing effect for the purpose of improving the corrosion resistance of the heat exchange medium, but acts as an anti-corrosion effect to prevent the water-wetting property of the film from decreasing during degreasing treatment with a trichloride solution, etc., which is performed after molding into a heat exchange medium. It can be easily processed. This means that several molecular layers of silicon dioxide and metal oxides in a solution containing alkali metal oxides and silicon dioxide, collectively known as silicates, are bonded to the surface of an oxide film formed by an aqueous hypohalite solution. Therefore, the treatment conditions with the silicate solution are such that the PpH of the solution is about 10 to 12, preferably about 10.5 to 11.
5 with a basic organic compound such as sodium hydroxide, potassium hydroxide, or alkylethanolamine, and the treatment temperature is approximately 25 to 100°C, preferably approximately 60 to 95°C, and the treatment time is takes about 5 to 60 seconds,
Preferably, it is about 20 to 45 seconds. For example, if the treatment time with an aqueous silicate solution is too long, the film becomes brittle during treatments such as pore sealing, and as a result, the workability of forming the material into a heat exchange medium decreases. On the other hand, if the treatment time is too short, the water wettability of the film surface will be reduced due to the fat treatment with a trichlene solution or the like, which is performed after the material is molded into a heat exchange medium or roted.

又、ケイ酸塩処理後に行なう乾燥は、水洗後に230℃
以下の温度、好ましくは約100〜150℃で乾燥させ
ることが望ましい。これは、乾燥温度が低すぎると、ケ
イ酸塩と酸化皮膜との結合が不充分なものとなシ、又逆
に高すぎると、素材の機械的性質が変化し、熱交換媒体
への成形加工性が悪くなるからである。
In addition, drying after silicate treatment is performed at 230℃ after washing with water.
It is desirable to dry at a temperature below, preferably about 100 to 150°C. This is because if the drying temperature is too low, the bond between the silicate and the oxide film will be insufficient, and if the drying temperature is too high, the mechanical properties of the material will change and it will not be possible to form it into a heat exchange medium. This is because processability deteriorates.

次に、本発明の具体的実施例について述べる。Next, specific examples of the present invention will be described.

実施例I J I S 12QO−H26アルミニウム合金の薄肉
展伸材(コイル巾500mm、コイル長さ3000m、
 :、イル厚さ0.110mm )を、温度約80〜8
5℃のCa(C[0)−水溶液(1約11.2、cto
濃度約5ooppm)に約4分間浸漬処理して、展伸材
表面に約8.0mg1品の膜厚の酸化皮膜を生成させた
後、水洗を行ない、その後温度約95℃の水ガラス溶液
(水ガラス濃度的xs、f′pH約1u)に約45秒間
浸漬処理を行ない、次にシャワー後浸漬水洗をなし、そ
の後約100℃で30秒間乾燥処理する。
Example I J I S 12QO-H26 aluminum alloy thin-walled wrought material (coil width 500 mm, coil length 3000 m,
:, thickness 0.110mm), temperature approx. 80~8
Ca(C[0)-aqueous solution (1 about 11.2, cto
After forming an oxide film with a thickness of about 8.0 mg per product on the surface of the wrought material by immersion treatment in a water glass solution (concentration of about 5 ooppm) for about 4 minutes, it is washed with water, and then soaked in a water glass solution (water glass solution with a temperature of about 95°C). Glass concentration xs, f' pH about 1 u) was immersed for about 45 seconds, followed by a shower followed by immersion washing, followed by drying at about 100° C. for 30 seconds.

このようにして、展伸材表面にプレコート処理を施した
後、このプレコート展伸材をドローレスプレス加工する
ことによって所定形状のフィンを形成し、加工工程後フ
ィンにトリクレン脱脂処理を施し、加工工程中に付着し
た油を除去し、最後にフィンの組み立を行なってフィン
ピッチの小さな熱交換器を構成する。
After pre-coating the surface of the wrought material in this way, fins of a predetermined shape are formed by applying drawless press processing to the pre-coated wrought material, and after the processing step, the fins are subjected to Triclean degreasing treatment, and The oil adhering to the inside is removed, and finally the fins are assembled to form a heat exchanger with a small fin pitch.

実施例2 実施例1と同じ展伸材を、温度約80〜85℃のNaf
Jj6水溶液(11)H約10.6〜IQ、8ρIQ濃
度約zooppm)に約3.5分間浸漬処理して表面に
約6.0■/ゼ厚の酸化皮膜を生成した後、水洗を行な
い、次に温度約90℃の水ガラス溶液(水ガラス濃度o
、 s %、”rfH約112)に約30秒間浸漬処理
して後処理を行ない、シャワー後浸漬水洗をなし、その
後約100℃で30秒間乾燥処理する。
Example 2 The same wrought material as in Example 1 was heated to Naf at a temperature of about 80 to 85°C.
Jj6 aqueous solution (11)H about 10.6~IQ, 8ρIQ concentration about zooppm) for about 3.5 minutes to form an oxide film with a thickness of about 6.0cm/ze on the surface, and then washed with water. Next, a water glass solution at a temperature of about 90°C (water glass concentration o
, s %, "rfH about 112) for about 30 seconds, followed by a shower, immersion washing, and then drying at about 100° C. for 30 seconds.

上記のようなプレコート処理の行なわれた展伸材を、実
施例1と同様な成形加工を行なってフィンを形成し、ト
リクレン脱脂処理を施し、フィンの組み立てを行なって
実施例1と同様な熱交換器を構成する。
The wrought material that has been precoated as described above is subjected to the same molding process as in Example 1 to form fins, subjected to Triclene degreasing treatment, assembled into fins, and heated in the same manner as in Example 1. Configure the exchanger.

実施例3 実施例1におけるCa(aムO・)、水溶液による処理
の代りに、・展伸材を温度約80〜85℃のNaBr0
i溶液(¥IH約11.o 〜11.2 、BrO濃度
約2ooppm)で約4分間処理して、展伸材表面に約
6.51拍′厚の酸化皮膜を生成させた後、実施例1と
同様に行なって熱交換器を構成する。
Example 3 Instead of the treatment with an aqueous solution of Ca(amO) in Example 1, the wrought material was treated with NaBr0 at a temperature of about 80 to 85°C.
After treatment with I solution (IH about 11.0 to 11.2, BrO concentration about 2 oppm) for about 4 minutes to form an oxide film about 6.51 mm thick on the surface of the wrought material, Example A heat exchanger is constructed in the same manner as in Step 1.

実施例4 実施例1におけるCa(6Ae)、水溶液による処理の
代りに、展伸材を温度約80〜85℃のNaC先O水溶
液(pH約10.8〜11.0、ε息O濃度約800p
pm)で約4分間処理して、展伸材表面に約8.5 n
@/a+M厚の酸化皮膜を生成させた後、実施例1と同
様に行なって熱交換器を構成する。
Example 4 Instead of the treatment with Ca (6Ae) and aqueous solution in Example 1, the wrought material was treated with a NaC-based O aqueous solution (pH about 10.8-11.0, ε breath O concentration about 800p
pm) for about 4 minutes, and about 8.5 nm was applied to the surface of the wrought material.
After forming an oxide film with a thickness of @/a+M, a heat exchanger is constructed in the same manner as in Example 1.

実施例5 実施例1におけるCa(・ahω)、水溶液による処理
の代りに、展伸材を温度約70〜75℃QN a 61
Ql水溶液(?H約10.8〜11.0、εムO濃度約
sooppm)で約5分間処理して、展伸材表面に約7
01個厚の酸化皮膜を生成させた後、水洗を行ない、そ
の後温度約60℃で実施例1の水ガラス溶液を用いて同
様な処理を行ない、その後実施例1と同様に行なって熱
交換器を構成する。
Example 5 Instead of the treatment with Ca(・ahω) and aqueous solution in Example 1, the wrought material was heated to a temperature of about 70 to 75°C QN a 61
The surface of the wrought material was treated with a Ql aqueous solution (?H about 10.8 to 11.0, εum O concentration about sooppm) for about 5 minutes to give about 7.
After forming an oxide film with a thickness of 0.01 cm, it was washed with water, and then the same treatment was performed using the water glass solution of Example 1 at a temperature of about 60°C. Configure.

実施例6 実施例5における次亜塩素酸す) IJウム水溶液によ
る処理温度を約80〜85℃、処理時間を約3分間とし
て展伸材表面に約a、smg/品厚の酸化皮膜を生成さ
せた後、水洗を行ない、その後温度約60℃の水ガラス
溶液(水ガラス濃度05%、 ?H約108)に約45
秒間浸漬処理して後処理を行ない、その後実施例5と同
様に行なって熱交換器を構成する。
Example 6 Hypochlorous acid in Example 5) The treatment temperature with the IJium aqueous solution was approximately 80 to 85°C, and the treatment time was approximately 3 minutes to form an oxide film of approximately 1, smg/product thickness on the surface of the wrought material. After that, it was washed with water, and then soaked in a water glass solution (water glass concentration 05%, ?H about 108) at a temperature of about 60°C for about 45 minutes.
Post-treatment is performed by dipping for a second, and then the same procedure as in Example 5 is carried out to construct a heat exchanger.

実施例7 実施例6における水ガラス溶液による処理を、ジメチル
アミンアルコールで?H約11,0に調整した濃度約0
.05%水ガラス溶液を用いて約90℃で約30秒間と
して、実施例6と同様にして熱交換器を構成する。
Example 7 What about the treatment with water glass solution in Example 6 with dimethylamine alcohol? Concentration approximately 0 adjusted to H approximately 11,0
.. A heat exchanger is constructed as in Example 6 using a 0.5% water glass solution at about 90° C. for about 30 seconds.

実施例8 実施例6における水ガラス溶液による処理を、ジメチル
アミンアルコールで!!H約1O98に調整した濃度約
001チ水ガラス溶液を用いて約60℃で約60秒間と
して、実施例6と同様にして熱交換器を構成する。
Example 8 The treatment with water glass solution in Example 6 was performed with dimethylamine alcohol! ! A heat exchanger is constructed in the same manner as in Example 6, using a water glass solution with a concentration of about 0.001 H adjusted to about 1098 H and heated at about 60° C. for about 60 seconds.

比較例 実施例1における次亜塩素酸カルシウム水溶液による処
理の代9に、0.5%アンモニア水(pH約105)を
用いて温度約95℃で約3.5分間処理して、展伸材表
面に約12. srng/rm厚の酸化皮膜を生成させ
た後、実施例1と同様にして熱交換器を構成する。
Comparative Example In step 9 of the treatment with the calcium hypochlorite aqueous solution in Example 1, the wrought material was treated with 0.5% ammonia water (pH approximately 105) at a temperature of approximately 95°C for approximately 3.5 minutes. Approximately 12. After forming an oxide film with a thickness of srng/rm, a heat exchanger is constructed in the same manner as in Example 1.

上記実施例のようにして作られた熱交換器の熱交換性能
及び耐食性は極めて優れたものであるのに対し、比較例
のようにして作られた熱交換器の熱交換性能及び耐食性
は劣るものであった。特に、比較例になる熱交換器は、
プレコート材をフィンに成形加工する工程において例え
ばフレアーとび等が起き、プレコート膜が破損し、耐食
性が格段に劣るものとなっている。
The heat exchange performance and corrosion resistance of the heat exchanger made as in the above example are extremely excellent, whereas the heat exchange performance and corrosion resistance of the heat exchanger made as in the comparative example are inferior. It was something. In particular, the heat exchanger used as a comparative example is
In the process of molding the precoat material into fins, for example, flaring occurs, the precoat film is damaged, and the corrosion resistance is significantly inferior.

これは、第1図に示された例えば実施例4の処理による
酸化皮膜の走査電子顕微鏡写真と、第2図に示された比
較例の処理による酸化皮膜の電子顕微鏡写真より明らか
なように、本発明の酸化皮膜は花弁状の酸化皮膜の密度
が高く、かつその酸化皮膜が細か′く生成していて、薄
い皮膜にして加工性が良好で耐食性に優れたものとなっ
ている。
This is clear from the scanning electron micrograph of the oxide film treated in Example 4 shown in FIG. 1 and the electron micrograph of the oxide film treated in Comparative Example shown in FIG. The oxide film of the present invention has a high density petal-shaped oxide film, and the oxide film is formed finely, making it a thin film with good workability and excellent corrosion resistance.

すなわち、このような酸化皮膜をケイ酸塩溶液によって
処理した素材をドローレスプレス加工したフィン表面を
観察すると、すなわち第3図に示された例えば実施例4
のフィンのしごき部表面の走査電子顕微鏡写真と、第4
図に示された比較例のフィンのしごき部表面の走査電子
顕微鏡写真とより明らか1ように、本発明のプレコート
膜は成形7110工に際して損傷がほとんどないのに対
し、比較例のプレコート膜では成、彫加工によって大き
な亀裂が生じたものとなっており、その為耐食性が比較
例のものは著しく劣るものとなっている。
That is, when observing the surface of a fin obtained by applying drawless press processing to a material having such an oxide film treated with a silicate solution, for example, Example 4 shown in FIG.
Scanning electron micrograph of the surface of the fin of the fin and the fourth
As is clearer from the scanning electron micrograph of the surface of the ironed part of the fin of the comparative example shown in the figure 1, the pre-coated film of the present invention has almost no damage during the forming step 7110, whereas the pre-coated film of the comparative example has no damage. , large cracks were generated due to the engraving process, and as a result, the corrosion resistance was significantly inferior to that of the comparative example.

又、本へ明の熱交換媒体のプレコート膜は、フィンに成
形加工後に行なう、例えばトリクレン脱脂処理を行なっ
ても、プレコート膜の水ヌレ性ハあまり低下せず、フィ
ンピッチの小さな熱交換媒体を組み立ててもフィン間に
水滴によるブリッジは作られず、従って通風抵抗は大き
くならず、ファンの容量は小さく、省エネルギーなもの
となり、ランニングコスト面でも有利なものである。
Furthermore, even if the precoated film of the heat exchange medium of the present invention is subjected to, for example, trichlene degreasing treatment after the fins are formed, the water wetting properties of the precoated film do not decrease significantly, making it possible to use a heat exchange medium with a small fin pitch. Even when assembled, no bridges due to water droplets are created between the fins, so ventilation resistance is not increased, the capacity of the fan is small, energy is saved, and running costs are also advantageous.

上述の如く、本発明に係る熱交換媒体製造法は、アルミ
ニウム又はアルミニウム合金材を次亜ノ・ロゲン酸塩溶
液で処理して表面に酸化皮膜を形成した後、り゛イ酸塩
溶液で処理し、その後この表面処理されたアルミニウム
又はアルミニウム合金材を成形加工し、この成形加工さ
れたものを組み立てて熱交換媒体を作るものであるので
、アルミニウム又はアルミニウム合金材を成形加工した
後に表面処理して熱交換媒体を作るといった製造法より
も格段にスムーズで、簡単に、かつ鯖よく熱交換媒体を
低コストで製造でき、又表面処理した後に成形加工して
も表面処理膜が破損することなく、加工性よく成形加工
が行なえ、さらには、製造された熱交換媒体の熱交換効
率及び耐食性に優れたものであり、又フィンピッチを小
さくしても水滴が付着してブリッジが形成されることも
なく、ランニングコストも低摩なものであり、かつ製造
すなわち表面処理工程に際して排8液処理に公害上の問
題もない等の特長を有する。
As mentioned above, the method for producing a heat exchange medium according to the present invention involves treating an aluminum or aluminum alloy material with a hypochlorite solution to form an oxide film on the surface, and then treating it with a lysinate solution. Then, this surface-treated aluminum or aluminum alloy material is molded, and the molded material is assembled to make a heat exchange medium, so the surface treatment is performed after the aluminum or aluminum alloy material is molded. It is much smoother, easier, and more efficient to produce heat exchange media at low cost than the production method that involves making heat exchange media using heat exchange media, and the surface treatment film will not be damaged even if it is molded after surface treatment. , it can be molded with good workability, and furthermore, the manufactured heat exchange medium has excellent heat exchange efficiency and corrosion resistance, and even if the fin pitch is small, water droplets will not adhere to it and form bridges. It has features such as low friction, low running cost, and no pollution problems in the treatment of waste liquid during manufacturing, that is, surface treatment process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は、本発明に係る熱交換媒体の成形加
工前及び成形加工後の表面の走査電子顕微鏡写真、第2
図及び第4図は、比較例に係る熱交換媒体の成形加工前
及び成形加工後の表面の走査電子顕微鏡写真でおる。
FIGS. 1 and 3 are scanning electron micrographs of the surface of the heat exchange medium according to the present invention before and after the molding process;
The figure and FIG. 4 are scanning electron micrographs of the surface of the heat exchange medium according to the comparative example before and after the molding process.

Claims (1)

【特許請求の範囲】 ■アルミニウム又はアルミニウム合金材を次亜ノ\ロゲ
ン酸塩溶液で処理して表面に酸化皮膜を形成した後、ケ
イ酸塩溶液で処理し、その後この表面処理されたアルミ
ニウム又はアルミニウム合金材を成形加工し、この成形
加工されたものを組み立てて熱交換媒体を作ることを特
徴とする熱交換媒体製造法。 ■ケイ酸塩溶液による処理は、酸化皮膜表面に二酸化ケ
イ素が数分子層結合するものである特許請求の範囲第1
項記載の熱交換媒体製造法。 ■酸化皮膜は、膜厚が2〜1oCamのものである特許
請求の範囲第1項又は第2項記載の熱交換媒体製造法。
[Claims] ■ After treating aluminum or an aluminum alloy material with a hypochlorite solution to form an oxide film on the surface, treating it with a silicate solution, and then applying the surface-treated aluminum or A heat exchange medium manufacturing method characterized by forming an aluminum alloy material and assembling the formed material to produce a heat exchange medium. ■The treatment with a silicate solution is such that several molecular layers of silicon dioxide are bonded to the surface of the oxide film.Claim 1
A method for producing a heat exchange medium as described in Section 1. (2) The method for producing a heat exchange medium according to claim 1 or 2, wherein the oxide film has a thickness of 2 to 1 oCam.
JP20453281A 1981-12-19 1981-12-19 Heat exchange medium manufacturing method Expired JPS601558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20453281A JPS601558B2 (en) 1981-12-19 1981-12-19 Heat exchange medium manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20453281A JPS601558B2 (en) 1981-12-19 1981-12-19 Heat exchange medium manufacturing method

Publications (2)

Publication Number Publication Date
JPS58106397A true JPS58106397A (en) 1983-06-24
JPS601558B2 JPS601558B2 (en) 1985-01-16

Family

ID=16492094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20453281A Expired JPS601558B2 (en) 1981-12-19 1981-12-19 Heat exchange medium manufacturing method

Country Status (1)

Country Link
JP (1) JPS601558B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672390A (en) * 1990-11-13 1997-09-30 Dancor, Inc. Process for protecting a surface using silicate compounds
US6358616B1 (en) 2000-02-18 2002-03-19 Dancor, Inc. Protective coating for metals
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672390A (en) * 1990-11-13 1997-09-30 Dancor, Inc. Process for protecting a surface using silicate compounds
US6358616B1 (en) 2000-02-18 2002-03-19 Dancor, Inc. Protective coating for metals
JP2013137153A (en) * 2011-12-28 2013-07-11 Mitsubishi Alum Co Ltd All-aluminum heat exchanger using precoat fin material

Also Published As

Publication number Publication date
JPS601558B2 (en) 1985-01-16

Similar Documents

Publication Publication Date Title
US4828616A (en) Surface treatment chemical for forming a hydrophilic coating
US4462842A (en) Surface treatment process for imparting hydrophilic properties to aluminum articles
JPS58106397A (en) Production of heat-exchanging medium
US4908075A (en) Surface treatment chemical for forming a hydrophilic coating
JP2000239895A (en) Aluminum surface treated material excellent in water repellent property and its production
CN101008083A (en) Preparation method of anticorrosion film of energy-saving type heater condenser
JP4308572B2 (en) Surface treatment method for aluminum alloy substrate for heat exchanger and heat exchanger manufactured by this method
CN112221908A (en) Fluorocarbon roller coating process of aluminum veneer for curtain wall
JPH04356694A (en) Heat exchanger aluminum fin material and manufacture thereof
JPS6210304B2 (en)
JP2579234B2 (en) Aluminum fin material for heat exchanger and method for producing the same
CN107841741B (en) A kind of aluminum substrate surface biological processing oxidation technology
JPH0432583A (en) Production of al sheet having superior coatability
JPH1161433A (en) Aluminum coating material
JPS58153098A (en) Manufacture of heat exchanging medium
JPS63279097A (en) Heat exchanger of aluminum alloy and its manufacturing method
JPH0413437B2 (en)
JPS58208593A (en) Hidrophilic treatment of heat exchanger
JPS63238285A (en) Production of heat exchange medium
JP2677811B2 (en) Method for manufacturing pre-coated fin material for heat exchanger
JPS61222629A (en) Manufacture of material and machine for heat exchanger
JPS6223071B2 (en)
JPH0227599B2 (en) NETSUKOKANBAITAISEIZOHO
JPH0432585A (en) Production of aluminum sheet having superior coatability
JP2004293916A (en) Method of manufacture of aluminum coating material for fin of heat exchanger