JPS58105042A - Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer - Google Patents

Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer

Info

Publication number
JPS58105042A
JPS58105042A JP20419881A JP20419881A JPS58105042A JP S58105042 A JPS58105042 A JP S58105042A JP 20419881 A JP20419881 A JP 20419881A JP 20419881 A JP20419881 A JP 20419881A JP S58105042 A JPS58105042 A JP S58105042A
Authority
JP
Japan
Prior art keywords
methyl alcohol
absorption
reaction tank
tank
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20419881A
Other languages
Japanese (ja)
Other versions
JPH0123056B2 (en
Inventor
Takehiko Osawa
武彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP20419881A priority Critical patent/JPS58105042A/en
Publication of JPS58105042A publication Critical patent/JPS58105042A/en
Publication of JPH0123056B2 publication Critical patent/JPH0123056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To measure a very small quantity of methyl alcohol in regenerated ultrapure water continuously in a short time, by mixing the regenerated ultrapure water with an I2 solution of prescribed concentration, and by measuring the absorption strength thereof at the absorption peak in an ultraviolet region by a spectroscopic method. CONSTITUTION:A sample which is introduced into a sampling unit 2 from a regenerated ultrapure water tank, etc. by a pump 1 and led therefrom into a reaction tank 4 by a weighing pump 3 is mixed with a prescribed quantity of iodine solution which is led from an iodine solution tank 5 by a weighing pump 6. The sample thus mixed is introduced into a flow cell 8 made of quartz by a weighing pump 7 and the absorption strength thereof at the absorption peak of a complex substance is measured by a spectroscopic method. The result of measurement is transduced into an electric signal, and the signal is amplified and recorded. When the measurement is ended, solenoid valves 9, 10, 12 and 13 are opened, and the reaction tank 4 and the flow cell 8 are cleansed with cleansing water.

Description

【発明の詳細な説明】 この発明は、ウェハー洗浄廃水の再利用システムにおけ
る新規なメチルアルコールの検知測定手段の提供に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the provision of a novel means for detecting and measuring methyl alcohol in a wafer cleaning wastewater reuse system.

最近、半導体製造工場において、用水の節約あるいは工
場排水の総量規制対策としての工場排水量の低減化から
ウエハー洗浄廃水音処理し、再利用する方向にある。
Recently, in semiconductor manufacturing factories, there has been a trend toward sound treatment and reuse of wafer cleaning wastewater in order to reduce the amount of factory wastewater as a measure to conserve water or to regulate the total amount of factory wastewater.

半導体製造工場での洗浄廃水はその洗浄工程のちがいに
より種々の性質の廃水があるが、その中で特に脱脂工程
から排出されるメチルアルコール洗浄廃水の再利用シス
テムでは、遣水技術として、ほぼ現状技術で対応出来る
が、水質管理技術の確立が技術的FIA題として残され
ている。
Cleaning wastewater from semiconductor manufacturing factories has various properties depending on the cleaning process, but in particular, the system for reusing methyl alcohol cleaning wastewater discharged from the degreasing process is almost the current state of the art as a water supply technology. However, the establishment of water quality management technology remains a technical FIA issue.

特に、再利用水中の極〈倣菫のメチルアルコールの検知
測定技術の確立が望1れているーすなわち、半導体製造
工程での再利用水としての超純水の要求される水質は雄
もグレードが高く、その水質管理指標としては、比抵抗
(MΩ)、微粒子数(α2μm以下個/m+4)、微生
物数(個/mt)有機物濃度等がある。
In particular, it is desired to establish a detection and measurement technology for extremely violet methyl alcohol in reused water.In other words, the water quality required for ultrapure water used as reused water in semiconductor manufacturing processes is of a high grade. Water quality management indicators include specific resistance (MΩ), number of fine particles (α2μm or less/m+4), number of microorganisms (number/mt), and organic matter concentration.

一般に、水中には糧々の成分の有機物が含まれているこ
とが多く、個々成分の濃度を知ることが困難である、 その九めに、有機物#度に関する水質管理指標として、
有機?l’に総括的に表示する指標として’f’Oc 
(全有機体炭素)が用いられている、これは、先ず、小
量の検水t−酸素(または二酸化炭素を除い友空気)と
ともに高温の酸化触媒充填管に送り込み、有機物の炭素
および無機物の炭素を二酸化炭素とした後、その濃度を
非分散型赤外線ガス分析計で測定して全炭素[(TC)
k求める、他方、別に検水tππ初物分解されない流度
に保った酸化触媒充填管に送り、生成した二酸化炭素i
tk測定して無機体炭素(IC) k求める。
In general, water often contains organic matter, which is a component of food, and it is difficult to know the concentration of each component.Ninth, as a water quality management index regarding organic matter concentration,
Organic? 'f'Oc as an indicator to be displayed comprehensively in l'
(total organic carbon) is used. First, this is sent into a tube filled with a high temperature oxidation catalyst together with a small amount of sample water t-oxygen (or friendly air excluding carbon dioxide), and organic carbon and inorganic carbon are removed. After converting carbon to carbon dioxide, its concentration is measured using a non-dispersive infrared gas analyzer to determine total carbon [(TC)
On the other hand, separately test the water tππ and send it to an oxidation catalyst-filled tube maintained at a flow rate that does not decompose the initial product, and collect the generated carbon dioxide i
Determine inorganic carbon (IC) k by measuring tk.

TCからIC全差し引いてTOCを求めるとしたもので
ある。
The TOC is obtained by subtracting the total IC from the TC.

ウェハー洗浄におけるメチルアルコール洗浄廃水の再利
用システムは一般に第1図に示される如くである。
A recycling system for methyl alcohol cleaning waste water in wafer cleaning is generally as shown in FIG.

メチルアルコールが除去されているか否かは図中の遣水
システムの後段から採水し、実験室的に’roc測定装
置によりTOC値會求め、メチルアルコール濃度の代替
指標として判定されている。
Whether methyl alcohol has been removed or not is determined by sampling water from the latter part of the water supply system in the diagram and determining the TOC value using a 'roc measuring device in the laboratory, as an alternative indicator of methyl alcohol concentration.

しかるに、測定結果が出るまで長時間を要し、遣水シス
テムで処理の再生超純水を迅速に再利用に付し得ないと
いう欠点を有する。
However, this method has the disadvantage that it takes a long time to obtain the measurement results, and that the recycled ultrapure water from the treatment cannot be reused quickly in the water supply system.

この点から、再生超純水を製造工程で利用する場合には
、水質の監視は連続かつ自動化した測定機によることが
望ましい。
From this point of view, when recycled ultrapure water is used in the manufacturing process, it is desirable to monitor water quality using a continuous and automated measuring device.

TOC測定においては、連続自動化の測定機もあるが、
このものでは、’1’OCとして2 ppm以下葡精度
よく測定することは困難であるため、上述の再生超純水
システムでは採用されてない。
For TOC measurement, there are continuous automated measuring machines,
With this method, it is difficult to accurately measure 2 ppm or less as '1' OC, so it is not used in the above-mentioned recycled ultrapure water system.

上述の再利用サイクルでに、廃水中に含まれている物質
はメチルアルコールの与と考えてよいので、メチルアル
コールを精度よく測定出来ればよいのであるから、メタ
ノール測定方法としての高速液体クロマトグラフィー、
ガスクロマトグラフィー等の分析化学的手段が考えられ
るが、いずれも時間をくい、連続性に欠けるため工程管
理には使用されにくい。
In the above-mentioned reuse cycle, the substances contained in the wastewater can be considered to be methyl alcohol, so it is sufficient to be able to accurately measure methyl alcohol, so high-performance liquid chromatography as a method for measuring methanol,
Analytical chemical means such as gas chromatography can be considered, but these methods are time-consuming and lack continuity, making them difficult to use for process control.

連続性、精度的にすぐれるものとして、分光学的な測定
があるか、現在、水中のメチルアルコールそのものを分
光学的にその濃度全測定する装置はない。
Spectroscopic measurement is available as a method with excellent continuity and accuracy, and currently there is no device that spectroscopically measures the total concentration of methyl alcohol itself in water.

本発明は、狭止の実情に鑑みなされ7f%ので、上述の
メチルアルコール洗浄廃水の再オ!1用サイクルにおい
て、再生超純水中の極く微量のメチルアルコール(TO
C換算値として2 ’Ppm以下)まで連続的に短時間
に測定可能な手段全開発したものである。
The present invention was developed in view of the actual situation of restriction, and since it is 7f%, the above-mentioned methyl alcohol cleaning waste water can be reused! In the first cycle, a very small amount of methyl alcohol (TO
We have developed a complete method that can continuously measure up to 2' Ppm or less (as a C equivalent value) in a short period of time.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

すなわち、本発明にあっては、第1図に示す半導体製造
工程におけるメタノール洗浄廃水リサイクルシステムで
の再生超純水中の極微量メチルアルコールを分光学的に
測定する。
That is, in the present invention, trace amounts of methyl alcohol in regenerated ultrapure water in the methanol cleaning wastewater recycling system in the semiconductor manufacturing process shown in FIG. 1 are spectroscopically measured.

その原理は、 [)H十I  HQHI    ■ 2 ←      2 HOHI2+CL(80H二fl)H+CH,OHI、
   ■の式に示される如く、沃素は水中にあって0式
に示し7jf()HI、なる錯体を形成するが、今、極
く微量のメチルアルコール(以下CH30Hと齋<)ヲ
含む溶液と沃素(以下■、と薔<)ヲ含む液を混合させ
ると、HOHに比較し、 CH2O(の万が電子供与性
が太きいため■式に示すCH,0f(I2なる電荷移動
錯体を形成する。
The principle is: [)H1I HQHI ■ 2 ← 2 HOHI2+CL (80H2fl)H+CH,OHI,
As shown in the formula (2), iodine in water forms a complex, 7jf()HI, shown in formula 0. When a liquid containing (hereinafter referred to as ``■'' and ``<'') is mixed, a charge transfer complex of CH, 0f (I2 as shown in the formula ``■'' is formed because CH2O() has a greater electron-donating property than HOH.

このw向移動錯体は分光学的には紫外部に吸収全示し、
その吸収強度は、第2図に示すCH30f−II2錯体
の光学密度とCf(80f(濃度の関係のグラフよル明
らかな即く、溶液に含まれるC)1.01(濃度に偵存
し、OH,01(が多くなれば、その吸収強度は大きく
なる。
Spectroscopically, this w-transfer complex shows total absorption in the ultraviolet region,
The absorption intensity is determined by the optical density of the CH30f-II2 complex shown in Fig. 2 and Cf (80f (which is obvious from the graph of the concentration relationship, C contained in the solution) 1.01 (depending on the concentration, As OH,01( increases, its absorption intensity increases.

しかも、同図に示される嫌に、CH,CI(は1■漢算
濃度で’4 ppmまで直線性を有し、がっ、TOOと
して21)9m以下まで検知可能であることがわかり、
この方法によれば従来の連続自動化のTOC測定機では
困難とされる2 ppm以下のCf(、(Eが可能であ
る。
Moreover, as shown in the same figure, it was found that CH, CI (has linearity up to 4 ppm at 1 ■ Kanji concentration, and is 21 as TOO) can be detected up to 9 m.
According to this method, it is possible to achieve Cf(, (E) of 2 ppm or less, which is difficult to achieve with conventional continuous automated TOC measuring instruments.

よって、再生超純水中のCH301(’t−検出するに
は再生超純水と一定m度のI、溶液を混合し、分光学的
方法によジ紫外部領域の吸収極大波長での吸収強度を測
定すればよいこととなる。
Therefore, CH301 ('t-) in recycled ultrapure water can be detected by mixing the recycled ultrapure water with a certain m degree of I solution, and using a spectroscopic method to detect the absorption at the absorption maximum wavelength in the di-ultraviolet region. All that is needed is to measure the strength.

かかる原理よりなる測定装置の構成例を第3図に示す。An example of the configuration of a measuring device based on this principle is shown in FIG.

すなわち、図において、再生超純水槽等からポンプ1に
より試料採取器2へ導入され、次に、秤量ポンプ3によ
り反応槽4へ導かれた試料は沃素溶液タンク5より秤量
ポンプ6により一定音の沃素溶液と混合される。
That is, in the figure, the sample is introduced from a regenerated ultrapure water tank or the like into a sample collector 2 by a pump 1, and then led to a reaction tank 4 by a weighing pump 3. Mixed with iodine solution.

混合試料は秤量ポンプ7によジ石英製フローセル8に導
入され分光学的方法により錯体吸収極大波長で吸収強朋
が測定され、元の吸収強度は電気的信号に変換、増幅さ
れ記録される。
The mixed sample is introduced into a diquartz flow cell 8 by a weighing pump 7, and the absorption intensity is measured at the complex absorption maximum wavelength by a spectroscopic method, and the original absorption intensity is converted into an electrical signal, amplified, and recorded.

測定が終了すると電磁弁9.IOが開き、洗浄水により
反応槽4、フローセル8が洗浄され、11ta弁9 、
10 、12 、1.3は全て閉じ全ての操作が終了し
、次の測定が行われる。
When the measurement is completed, the solenoid valve 9. IO opens, the reaction tank 4 and flow cell 8 are washed with washing water, and the 11ta valve 9,
10, 12, and 1.3 are all closed, all operations are completed, and the next measurement is performed.

紙上の如く本発明によるならば、連続的に所定f′p1
度のメタノール濃度を測定することが可能であるので、
半導体製造工場におけるメタノール洗浄廃水の再利用シ
ステムでの新しい水質管理手段として好適である。
According to the present invention as on paper, the predetermined f'p1
Since it is possible to measure the methanol concentration at
It is suitable as a new water quality control means in a methanol cleaning wastewater reuse system in a semiconductor manufacturing factory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はウェハー洗浄におけるメチルアルコール洗浄廃
水の再利用システム説明図、第2図はCH30HI2錯
体の光学密度と0H80H濃度の関係を示すグラフ、第
3図は、本発明測定装置の構成例を示す図である。 2・・・試料採取器   4・・・反応槽5・・・沃素
溶液タンク 8・・・石英製フローセル発明者    
  太 澤 武 彦 出願人   株式会社竹中工務店 代表者  竹  中  統 −
Fig. 1 is an explanatory diagram of a system for reusing methyl alcohol cleaning wastewater in wafer cleaning, Fig. 2 is a graph showing the relationship between the optical density of CH30HI2 complex and 0H80H concentration, and Fig. 3 shows an example of the configuration of the measuring device of the present invention. It is a diagram. 2... Sample collector 4... Reaction tank 5... Iodine solution tank 8... Inventor of quartz flow cell
Takehiko Tazawa Applicant Representative Takenaka Corporation Osamu Takenaka −

Claims (2)

【特許請求の範囲】[Claims] (1)  極く微量のメチルアルコールを含む溶液と沃
素を含む溶液とを混合して、CHIOHI2なる分光学
的には紫外部に吸収を示す電荷移動錯体を生成し、これ
を分光学的方法によp紫外部領域の吸収極太波長での吸
収強度を測定し、既に牌明のOF(B OHI 2錯体
の光字音度とC0aOH磯贋の関係よりメチルアルコー
ル濃度を知るとしたことを%倣とするウェハー洗浄廃水
の再利用システムに於けるメチルアルコール測定方法。
(1) A solution containing a very small amount of methyl alcohol and a solution containing iodine are mixed to produce CHIOHI2, a charge transfer complex that spectroscopically shows absorption in the ultraviolet region, and this is analyzed spectroscopically. By measuring the absorption intensity at the thickest absorption wavelength in the ultraviolet region, we have already determined that the methyl alcohol concentration can be determined from the relationship between the optical sound intensity of the OF(B OHI 2 complex) and the C0aOH isoformity. A method for measuring methyl alcohol in a wafer cleaning wastewater reuse system.
(2)再生超純水槽等から試料金受け、かつ、沃素溶液
タンクから沃累溶&ffi受ける反応槽と、当該反応槽
から混合試料を受けて、これ全分光学的方法で紫外部領
域の吸収極大波長での吸収強度を測定し、これ全電気的
1ぎ号にに換、増幅して記録する測定慎猶と、販混合試
相を収容し九谷器の洗浄装置とから成ることを特徴とす
る請求囲第7項に記載の発明の実施に直接使用するウェ
ハー洗浄廃水の再利用システムに於けるメチルアルコー
ル測定装置。
(2) A reaction tank that receives a sample from a regenerated ultrapure water tank, etc. and receives iodine solution &ffi from an iodine solution tank, and a reaction tank that receives a mixed sample from the reaction tank and absorbs it in the ultraviolet region using a full spectroscopic method. It is characterized by consisting of a measurement device that measures the absorption intensity at the maximum wavelength, converts it into an all-electric signal, amplifies and records it, and a Kutani cleaning device that accommodates the mixed sample phase. A methyl alcohol measuring device in a wafer cleaning wastewater reuse system which is directly used in carrying out the invention according to claim 7.
JP20419881A 1981-12-17 1981-12-17 Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer Granted JPS58105042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20419881A JPS58105042A (en) 1981-12-17 1981-12-17 Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20419881A JPS58105042A (en) 1981-12-17 1981-12-17 Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer

Publications (2)

Publication Number Publication Date
JPS58105042A true JPS58105042A (en) 1983-06-22
JPH0123056B2 JPH0123056B2 (en) 1989-04-28

Family

ID=16486450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20419881A Granted JPS58105042A (en) 1981-12-17 1981-12-17 Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer

Country Status (1)

Country Link
JP (1) JPS58105042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739345A (en) * 1985-04-17 1988-04-19 Tdk Corporation Optical recording disk
JP2003002706A (en) * 2001-06-20 2003-01-08 Mitsubishi Materials Corp Method of treating industrial waste water
RU205340U1 (en) * 2020-12-04 2021-07-12 Станислав Витальевич Рыков Indicator of the presence of methanol in aqueous solutions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739345A (en) * 1985-04-17 1988-04-19 Tdk Corporation Optical recording disk
JP2003002706A (en) * 2001-06-20 2003-01-08 Mitsubishi Materials Corp Method of treating industrial waste water
RU205340U1 (en) * 2020-12-04 2021-07-12 Станислав Витальевич Рыков Indicator of the presence of methanol in aqueous solutions

Also Published As

Publication number Publication date
JPH0123056B2 (en) 1989-04-28

Similar Documents

Publication Publication Date Title
CN103149250B (en) Online total organic carbon water quality analyzer and online total organic carbon water quality analyzing method
CN201740756U (en) On-line ammonia nitrogen monitoring system
CN102042963A (en) Online detector for detecting total organic carbon (TOC) in sewage with ultraviolet spectrometry method
CN105675832A (en) Apparatus and method for measuring total organic carbon (TOC)
JPH0731112B2 (en) Method and apparatus for detecting particulate matter
CN104792704B (en) Tri- index continuous synchronization real-time online determining instrument of TOC, TN, TP
KR102414181B1 (en) Total organic carbon analyzer
JPS58105042A (en) Detecting and measuring means for methyl alcohol in reutilization system for waste water obtained through cleansing wafer
CN105842363B (en) It is a kind of based on the COD detecting and analysing systems of supercritical water oxidation method and its application
JPH0370779B2 (en)
CN203069542U (en) Online total organic carbon water quality analyzer
CN110658139A (en) Permanganate index analysis system
CN106771027B (en) Ocean dissolved inorganic carbon in situ measurement instrument
KR101211335B1 (en) An instrument for detecting microbes in water with pre-treatment system and method thereof
CN101718766A (en) Device for measuring breakthrough sulphur capacity and using method thereof
MacCraith et al. Cross comparison of techniques for the monitoring of total organic carbon (TOC) in water sources and supplies
CN211122512U (en) Permanganate index analysis system
Goulden Automated determination of carbon in natural waters
CN206540820U (en) A kind of chromium method UVCOD all-in-one on-line computing models
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
CN205562574U (en) Aquatic permanganate index autoanalyzer
TWM413120U (en) Water quality measurement equipment for monitoring chemical oxygen demand (COD) and suspended solid (SS)
JPH04343057A (en) Method for determining quantity of ammonia in solution
CN217084577U (en) Bisphenol A crystallizer capable of analyzing crystal grain size distribution on line
CN105954337B (en) The method that on-line cleaning activates boron-doped diamond thin-film electrode