JPS58102904A - Underwater natural lighting device - Google Patents

Underwater natural lighting device

Info

Publication number
JPS58102904A
JPS58102904A JP56203180A JP20318081A JPS58102904A JP S58102904 A JPS58102904 A JP S58102904A JP 56203180 A JP56203180 A JP 56203180A JP 20318081 A JP20318081 A JP 20318081A JP S58102904 A JPS58102904 A JP S58102904A
Authority
JP
Japan
Prior art keywords
pipe body
pipe
sea
tube
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56203180A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
宏 伊藤
Hiroshi Fujimura
寛 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP56203180A priority Critical patent/JPS58102904A/en
Publication of JPS58102904A publication Critical patent/JPS58102904A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PURPOSE:To introduce effectively the sunbeams into the sea, by floating a hollow pipe body which is covered with light transmitting materials at its both ends and a high light reflection factor secured on its inner wall surface along with the specific gravity set generally at approximately 1 and its heat part above the surface of the sea. CONSTITUTION:The inner wall surface 2 of a hollow light guide pipe body is formed with a plastic film vapor-deposited with aluminum or a thin mirror, etc. in order to secure a high light reflection factor. Both ends of the pipe body 1 are covered watertight with light transmitting covers 3A and 3B, and a wiper 14 is attached to the lower edge 3A. The pipe body 1 contains an inner pipe 10 and an outer pipe 11. The ballast 13 for weight controll, etc. is filled between both pipes 10 and 11 to set the apparent specific gravity approximately at 1, and a float 4 is provided at the place near the top of the pipe body 1. An anchor 5 is attached to the lower end of the pipe body 1 with a chain. Then the pipe body 1 is floated in the sea with its head part above the surface of the sea. As a result, the sunbeams are led effectively into the sea and then applied suitably to an ocean ranch.

Description

【発明の詳細な説明】 本発明は海洋牧場等に好適′な水中採光装置に関する。[Detailed description of the invention] The present invention relates to an underwater lighting device suitable for marine farms and the like.

海水中あるいは湖水中に太陽光を導入すると魚類や海草
類の成育が著るしく助長されることは知C〕れているが
、海水、湖水は年々汚染によって透明度が低下しつつあ
り、太陽光の到達水深は次第に浅くなっている。
It is known that introducing sunlight into seawater or lake water significantly promotes the growth of fish and seaweed, but the transparency of seawater and lake water is decreasing year by year due to pollution. The depth reached is gradually becoming shallower.

一方、食料資源の安定確保を目的として魚類や海草類が
最も育成し易い水深io−コoomの海底に人工的な海
洋生物飼育設備いわゆる海洋牧場を造ることが提案され
ており、このような海洋牧場を造る場合、海底まで人工
的に太陽光を導くことが不可欠である。
On the other hand, for the purpose of securing a stable supply of food resources, it has been proposed to build artificial marine life breeding facilities, so-called ocean farms, on the seabed at depths of io-cooom, where fish and seaweeds can most easily grow. When building a seabed, it is essential to artificially guide sunlight to the ocean floor.

このような海底へ太陽光を導く手段として従来、光ファ
イバーを多数本束ねて構成した導光ケーブルが提案され
ているが、1本/本の光ファイバーによる導光量は微々
たるものなので実用性のある海洋牧場設備とするために
は莫大な本数の光ファイバーを必要とし、また海底にお
いて十分な光量を得るためには光吸収損失が極めて小さ
い高透明の光ファイバーを使用せねばならず、このため
非常に高価な設備になるという問題がある。
As a means of guiding sunlight to the ocean floor, a light guide cable made up of a large number of optical fibers has been proposed, but since the amount of light guided by each optical fiber is negligible, it is not practical for marine farms. This equipment requires a huge number of optical fibers, and in order to obtain a sufficient amount of light on the seabed, it is necessary to use highly transparent optical fibers with extremely low light absorption loss, which makes the equipment extremely expensive. There is a problem with becoming.

本発明は上述の問題点を解決し安価な設備で効率良く太
陽光を水深の深い位置まで導くことのできる水中採光装
置を提供するものである。
The present invention solves the above-mentioned problems and provides an underwater daylighting device that can efficiently guide sunlight to a deep position with inexpensive equipment.

本発明の装置は、中空管体の内壁面を先高反射面とする
とともにその両端を透光性カバーで閉鎖し、この中空管
体をその上端を水面上に突出させ、下端を水中の所定位
置に保持して構成される。
In the device of the present invention, the inner wall surface of the hollow tube is made into a reflective surface with a high tip, and both ends thereof are closed with translucent covers. is configured by holding it in place.

上記の装置によれば、水面上に突出する管端から入射し
た太陽光は管内壁で反射を繰り返しつつ下端に至りここ
から出射して海中あるいは海底部などの所定箇所を照射
する。
According to the above device, sunlight that enters from the end of the tube that protrudes above the water surface is repeatedly reflected on the inner wall of the tube, reaches the bottom end, and is emitted from there to illuminate a predetermined location such as the ocean or the seabed.

上記装置によれば光ファイバーと異なり導入された光が
中空管内の気体中を通るためガラスなどの固体中を通る
場合に比べて光の伝送損失は極めて小さく、また光路の
内径を非常に大きくとることができるので反射回数は少
なくて済み、それだけ反射ロスも小さい。
According to the above device, unlike an optical fiber, the introduced light passes through the gas inside the hollow tube, so the transmission loss of the light is extremely small compared to when passing through a solid such as glass, and the inner diameter of the optical path is very large. Since the number of reflections can be reduced, the reflection loss is correspondingly small.

さらに上記のような管体は構造が極めて簡単で単一管路
で非常に広範囲にわたる太陽光照射を行なうことができ
、したがって設備費が安価で済むので水中生物の、育成
施設など実用的で大規模な用途における水中採光装置と
して有用である。
Furthermore, the structure of the above-mentioned pipe is extremely simple, and a single pipe can irradiate a very wide range of sunlight.As a result, equipment costs are low, making it a practical and large-scale facility for growing aquatic organisms. It is useful as an underwater lighting device in large-scale applications.

本発明において管内面一を先高反射面とする具体的手段
としては、アルミを蒸着したプラスチックフィルムなど
の高反射性フィルム材を管内壁面に貼着する方法、管内
壁面に銀、アルミニウムなどの金属薄膜をメッキ、蒸着
等で付着形成する方法、ガラス基板厚みが/ mm以下
というような厚みの薄い鏡を内貼りする方法など種々の
方法をとち・得る0 導光管の内径については採光装置の用途及び照光水深な
どの条件によって異なり一概に規定できないがあまり細
いものでは、反射ロスが多くなるとともに所期の照度を
得るために非常に多数本を必要とするようになり本発明
の有利性が低ドするので一般的には10(3m以上とる
ことが望ましく、海洋牧場のような大規模な設備では管
内径を30am以上にとるのが実用的である。
In the present invention, specific means for making the inner surface of the tube a highly reflective surface include a method of attaching a highly reflective film material such as a plastic film coated with aluminum to the inner wall surface of the tube, and a method of attaching a highly reflective film material such as a plastic film deposited with aluminum to the inner wall surface of the tube, a method of attaching a metal such as silver or aluminum to the inner wall surface of the tube. Various methods can be used, such as forming a thin film by plating, vapor deposition, etc., or attaching a thin mirror to the inside of a glass substrate with a thickness of 1/2 mm or less. This varies depending on the application and conditions such as the depth of illumination water, but it cannot be absolutely specified, but if the tube is too thin, there will be a lot of reflection loss and a very large number of tubes will be required to obtain the desired illuminance, which is an advantage of the present invention. In general, it is desirable to have a pipe diameter of 10 (3 m or more) because the pipe diameter is low, and for large-scale facilities such as marine farms, it is practical to have a pipe inner diameter of 30 am or more.

本発明者の研究によると導光管の長さを同内径(角パイ
プの場合は短辺長さ)で割った値を横軸にとり、人[]
端での太陽放射熱量を100として出口端での太陽放射
熱量(K c al/−・h)の比を縦軸にとって両者
の関係を管内面の反射率をパラメータとして図示すると
第1図のグラフのようになる。
According to the research of the present inventor, the value obtained by dividing the length of the light guide tube by its inner diameter (in the case of a square pipe, the short side length) is taken on the horizontal axis, and the number of people []
The graph in Figure 1 shows the relationship between the two using the reflectance of the inner surface of the tube as a parameter, with the solar radiation heat amount at the end being 100 and the ratio of the solar radiation heat amount (K cal/- h) at the outlet end being the vertical axis. become that way.

同グラフにおいて曲線aは市販のj;m/m厚ガラス鐙
(反射率約7j%)で内貼りした管路での測定結果を示
し、グラフがられかるように短辺!;OCmの角パイプ
状にした場合、管路の長さが10m以」・になると出口
端での太陽光は入口端に比べておよそ20%になる。
In the same graph, curve a shows the measurement results for a pipe line lined with commercially available m/m thick glass stirrup (reflectance of about 7j%), and the short side is so that the graph can be drawn! When the pipe is made into a rectangular pipe shape of OCm, and the length of the pipe is 10 m or more, the amount of sunlight at the outlet end will be approximately 20% of that at the inlet end.

bは、市販のアルミ蒸着フィルム(反射率が約ざ一%)
を内貼りした場合であり一臂路長と管内径との比がノj
で放光割合が約−0%となり上記aよりも太陽光伝送効
率は良くなる。
b is a commercially available aluminum vapor deposited film (reflectance is approximately 1%)
In this case, the ratio of the length of one arm to the inner diameter of the pipe is
In this case, the light emission ratio becomes about -0%, and the solar light transmission efficiency becomes better than in case a above.

Cはガラス基板厚みがJm7m以下の薄板鏡で内貼りし
た場合を示し、この場合は反射率は13以上となり管路
長と管内径との比が30において、放光割合は30%の
高率となる。すなわち、はぼ/m角断面の角パイプを本
発明装置の導光管として用いた場合に管路長をJOmと
しても水面上で受光した太陽光の30%以上を水中に照
射することができ、管路長を20mとすれば45%以上
の高い効率で太陽光を照射することができる。
C shows the case where a thin plate mirror with a glass substrate thickness of Jm7m or less is attached inside.In this case, the reflectance is 13 or more, and when the ratio of pipe length to pipe inner diameter is 30, the emission rate is as high as 30%. becomes. That is, when a square pipe with a square cross section of 1/2 m square is used as the light guide tube of the device of the present invention, even if the pipe length is JOm, more than 30% of the sunlight received on the water surface can be irradiated into the water. If the pipe length is 20 m, sunlight can be irradiated with a high efficiency of 45% or more.

本発明で使用する導光管路の断面形状は、円形以外に楕
円形、正多角形、扁平多角形など任意の形状をとること
ができる。
The cross-sectional shape of the light guide used in the present invention can be any shape other than a circle, such as an ellipse, a regular polygon, or a flat polygon.

また管路は全長にわたり直管とする以外に曲管としても
よい。
In addition to being a straight pipe over the entire length, the pipe may also be a curved pipe.

設置方法としては、上端を水面上に出しF端を水中の所
定位置に配置して一般的には管軸をほぼ鉛直とした姿勢
で固定するかまたは定位置に浮遊させる−0 すなわち、海底、湖底等に強固に立設した剛構造の支持
部材に本発明に係る採光装置を固定するようにしてもよ
いし、あるいは後述の実施例のように装置全体の見かけ
上の比重をl近くになるように調整し、且つ下端側を相
対的に重量大にしてほぼ鉛直の姿勢で浮遊させるように
してもよい。
As for the installation method, the upper end is placed above the water surface and the F end is placed at a predetermined position in the water, and generally it is fixed in a posture with the tube axis almost vertical, or it is floated in a fixed position. The daylighting device according to the present invention may be fixed to a rigid support member firmly erected on the bottom of a lake or the like, or the apparent specific gravity of the entire device may be made to be close to 1, as in the embodiments described below. It is also possible to make the lower end relatively heavier and float it in a substantially vertical position.

後者の場合は、波力による負荷かは七んと加わらないの
で構造を前者に比べて大幅に簡素化でき安価な設備費で
済み、また必要に応じて簡単に移動できるという利点が
ある。
In the latter case, the structure is much simpler than the former, as the wave force does not add much load, and equipment costs are low, and it also has the advantage of being easily movable when necessary.

以F1本発明を図面に示した実施例につき詳細に説明す
る。
The F1 invention will now be described in detail with reference to embodiments shown in the drawings.

第1図は本発明の採光装置の縦断面図であり、内面−を
先高反射面とした直管状の細長い管体/の下端開口を水
圧に十分耐え得るガラスあるいは、プラスチックからな
る透光カバー3Aで水密に閉鎖するとともに上端開口を
表面に低反射処理を施した透光カバー3Bで塞ぎ、この
管体/の上端近くに70−トqを取り付は下端にアンカ
ーjを接続してその上端/Bを水面6上に突出させた状
態で海水7巾にほぼ鉛直の姿勢で浮遊させ、上@閏日か
ら透光カバー3Bを通して採り入れた太陽光ざを管内面
一の繰り返し反射で下方に導き、下端/Aから透光カバ
ー3Aを通して放光させて海底ワを照射するようにして
いる。
FIG. 1 is a longitudinal cross-sectional view of the daylighting device of the present invention, in which the inner surface is a straight, elongated tube with a reflective surface at the tip, and the lower end opening is covered with a transparent cover made of glass or plastic that can sufficiently withstand water pressure. 3A and close the upper end opening with a translucent cover 3B whose surface has been treated with low reflection.To install a 70-tq near the upper end of this pipe body, connect an anchor J to the lower end. With the upper end /B protruding above the water surface 6, it is floated almost vertically in sea water 7 widths, and the sunlight taken in from the top @ leap day through the transparent cover 3B is reflected downward by repeated reflections on the inner surface of the tube. The light is emitted from the lower end/A through the transparent cover 3A to illuminate the seabed.

さらに詳細には、管体lは第一図に示すように、内面2
をアルミ蒸珊プラスチックフィルムの貼着等で先高反射
面とした一例として肉厚が3m1mで外径JjCmの鉄
パイプ製の内管10とこの内管10の外側に同心的に配
置した一例として肉厚Sm/mで内径1100Cの鉄パ
イプ製の外管//との二重管構造となっている。
More specifically, the tube l has an inner surface 2 as shown in FIG.
As an example, an inner tube 10 made of iron pipe with a wall thickness of 3 m 1 m and an outer diameter JjCm is arranged concentrically on the outside of this inner tube 10. It has a double tube structure with an outer tube made of iron pipe with a wall thickness of Sm/m and an inner diameter of 1100C.

そして内管10の外周面と外’I//の内周面とび)間
には一定幅の空@/2が形成してあ。てこの空隙l−2
に砂、砕石、粉鉄なと比重が大きく且つ、比較的安価で
量調整の容易な粒状あるいは塊状の充填物13が充填し
である。
A gap @/2 of a constant width is formed between the outer circumferential surface of the inner tube 10 and the inner circumferential surface of the outer tube 10. Lever gap l-2
It is filled with a granular or lump-like filler 13, such as sand, crushed stone, or powdered iron, which has a large specific gravity, is relatively inexpensive, and is easy to adjust in quantity.

つまり上記充填物/3の重量で管体lに働く水の浮力を
相殺して管体l全体の見がけ上の比重を1前後に調整す
るとともに、上端近くにフロートゲを取り付けることに
より相対的に下端側の重数を大として鉛直姿勢の安定を
図り、アンカーSで流失を防いでいる。
In other words, the weight of the filler /3 cancels out the buoyant force of water acting on the tube l, adjusting the apparent specific gravity of the entire tube l to around 1, and by attaching a float barb near the upper end, the relative The weight on the lower end side is increased to stabilize the vertical posture, and the anchor S prevents it from being washed away.

外管l/の材質としては、水圧に十分耐え且つ侵蝕し難
いものであれば特に制限は無く、例えばガラス繊維強化
プラスチック(FRP) 、金属、ガラス繊維強化コン
クリ−) (CRc)などで構成する。
There are no particular restrictions on the material of the outer tube l/ as long as it can withstand water pressure sufficiently and is resistant to corrosion; for example, it may be made of glass fiber reinforced plastic (FRP), metal, glass fiber reinforced concrete (CRc), etc. .

また内管IOについても同様の材料で構成することがで
きる。
Further, the inner pipe IO can also be constructed of the same material.

F端の透光カバー3A外面には、海中生物の付着等によ
る汚染を防ぐためにワイパー’/4/が取り付けてあり
海上からの遠隔操作で定期的に透光カバー面の清掃が行
なえるようになっている。
A wiper'/4/ is installed on the outer surface of the translucent cover 3A at the F end to prevent contamination due to adhesion of marine organisms, etc., so that the surface of the translucent cover can be periodically cleaned by remote control from the sea. It has become.

第3図に管体lの他の構造例を示す。FIG. 3 shows another example of the structure of the tubular body l.

本例は内管10を角断面パイプとしたもので内管10の
内周壁に厚みの薄い例えば厚みQ、7 m/mのガラス
鏡/jを貼着して先高反射面−を形成する。
In this example, the inner tube 10 is a square cross-section pipe, and a thin glass mirror /j with a thickness of Q, for example, 7 m/m is attached to the inner circumferential wall of the inner tube 10 to form a high-tipped reflective surface. .

例えば内管10を厚さ3m/mの鉄板で一辺が70cm
の略正方形断面に構成し、外管l/として肉厚jm/m
で内径10ocmの鉄製円管を用い両者間の空隙に次填
物/3として粉鉄を充填する。
For example, the inner tube 10 is made of an iron plate with a thickness of 3 m/m and has a side of 70 cm.
It is constructed with a substantially square cross section, and the wall thickness is jm/m as the outer tube l/.
Then, using a circular iron tube with an inner diameter of 10 ocm, the gap between the two was filled with powdered iron as the next filler/3.

上記のような二重管構造の採光装置を水深の深い場所に
設置するときは第5図(イ)〜(ロ)に示すような手順
で作業すると能率が良い。
When installing the above-mentioned double-tube structure lighting device in a deep water location, it is efficient to work according to the procedure shown in FIGS. 5(a) to 5(b).

すなわち、長さ2m程度の比較的短尺の内管10および
外管//を組み合せた二・重管ユニットltの内外壁間
空隙に充填物13を充填して上端が僅かに水面6上に出
る程度まで沈める。次に他の内管10及び外’fill
を載せ上下管同志をフランジ部/7で接続し、上部の管
ユニッ)/ざの内外壁間空隙に砂等の充填物13を充填
して浮力を相殺するように重量を調整し下部の管ユニッ
トltを完全に水中に沈めて以下順次管ユニットを連結
していき深い水中にまで採光できるようにする。
That is, the space between the inner and outer walls of a double/double pipe unit lt, which is a combination of a relatively short inner pipe 10 and an outer pipe // having a length of about 2 m, is filled with the filler 13 so that the upper end slightly protrudes above the water surface 6. Submerge to a certain extent. Next, fill in the other inner tube 10 and the outer tube.
The upper and lower tubes are connected at the flange part /7, and the gap between the inner and outer walls of the upper tube unit is filled with filler 13 such as sand to adjust the weight to offset the buoyancy. The unit lt is completely submerged in water, and the pipe units are successively connected thereafter, so that light can be brought in even deep underwater.

第6図に本発明の他の実施例を示す。FIG. 6 shows another embodiment of the invention.

本例は前述例のように二重壁間に充填した充填物/3で
管体/の見かけ比重を調整するかわりに、管体lの下端
近くに重錘19を、例えば管体/の下端に7ランジ部−
〇を設けてこの上に環状の重錘/りを載せるなどの方法
により取り付は上端近くにフロートゲを取り付けて全体
の見かけ比重を/近くに調整すると同時に安定性を良く
している。
In this example, instead of adjusting the apparent specific gravity of the tube body / with the filler /3 filled between the double walls as in the previous example, a weight 19 is placed near the lower end of the tube body /, for example, at the lower end of the tube body /. 7 lunge part-
For installation, a ring-shaped weight is placed on top of the circle, and a float barb is attached near the top to adjust the overall apparent specific gravity to close to 1, while also improving stability.

第7図に本発明のさらに他の実施例を示す。FIG. 7 shows still another embodiment of the present invention.

本例は前述のようにして内面を先高反射面とした導光管
体lの多数を相互に間隔をおいて鉛直姿勢で支持枠体J
/に取り付けてこの枠体の側端に固着したフロート2コ
で全体を浮遊させ管体lのド一端近くに流失防止用のア
ンカーjを接続したもの       ゝで、水中ある
いは海底の非常に広い範囲を太陽光照射する場合に適し
た構造である。
In this example, as described above, a large number of light guide tubes L each having an inner surface with a high reflective surface are placed in a supporting frame J in a vertical position at intervals from each other.
The whole body is suspended by two floats fixed to the side ends of the frame body, and an anchor J is connected near one end of the pipe body L to prevent it from being washed away. This structure is suitable for irradiating sunlight.

また各導光管体/の上端上には凸レンズ、ポイントフォ
ーカス7レネルレンズ、リニアフォーカスフレネルレン
ズ、パラボラミラー等の集光光学系−3が配置してあっ
て集光した光を各導光管体l内に導くようにしている。
In addition, a condensing optical system 3 such as a convex lens, a point focus 7-Resnel lens, a linear focus Fresnel lens, and a parabolic mirror is arranged on the upper end of each light guide tube, and the condensed light is transferred to each light guide tube. I'm trying to lead it inside.

そして集光光学系23は図外の太陽追尾機構により時間
に応じて太陽光を最も効率良く集光できる角度に角度変
化駆動される。
The condensing optical system 23 is driven to change its angle according to time by a sun tracking mechanism (not shown) to an angle that can most efficiently condense sunlight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図の装置の管体横断面図、第3図は管体の他の構造例
を示す横断面図、第4図は導光管の反射相別の性能比較
を示すグラフ、第5図(イ)(ロ)は本発明装置の組み
立て手順の例を示す断面図。 第6図は本発明のさらに別の実施例を示す縦断面図、第
7図は多数の導光管を設置する場合の実施例を示す側面
図である。 /・・・・・・・・導光管体  コ・・・・・・・・元
高反射面、?A、3B・・・・・・・・透光カバー44
・・・・・・・・フロート!・・・・・・・・アンカー
  t・・・・・・・・水面!・・・・・・・・太陽光
  io・・・・・・・・内管l/・・・・・・・・外
管  13・・・・・・・・見かけ比重調整用充填物 第2図 り1 第3図 第4因 0   10   20  30  40   501
トi (イ) 第6因 (
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of the tube body of the device shown in FIG. 1, FIG. FIG. 4 is a graph showing a comparison of the performance of light guide tubes according to their reflection phases, and FIGS. FIG. 6 is a longitudinal sectional view showing still another embodiment of the present invention, and FIG. 7 is a side view showing an embodiment in which a large number of light guide tubes are installed. /・・・・・・・・・Light guiding tube body ・・・・・・・High reflective surface, ? A, 3B...Translucent cover 44
········float! ...Anchor t...Water surface! ......Sunlight io...Inner tube l/...Outer tube 13...Filling for apparent specific gravity adjustment 2nd Chart 1 Figure 3 Cause 4 0 10 20 30 40 501
(i) The sixth cause (

Claims (1)

【特許請求の範囲】 ■) 中空管体の内壁面を元高反射面とするとともにそ
の両端を透光性カバーで閉鎖し、この中空管体をその上
端を水面上に突出させ下端を水中の所定位置に保持して
構成した水中採光装置。 2)中空管体全体の見かけ上の比重を/近くに調整偏1
1 するとともに下端附の重量を相対的に大きくしてほぼ鉛
直の姿勢で水中に浮遊するようになした特許請求の範囲
第1項記載の水中採光装置。 3) 中空管体の側壁を中空の二重壁としてこの中空部
に砂等の重量大な物質を充填して全体の見かけ上の比重
を調整するようにした特許請求の範囲第1項または第2
項記載の水中採光装置。
[Claims] ■) The inner wall surface of the hollow tube is made into a highly reflective surface, and both ends thereof are closed with transparent covers, and the upper end of the hollow tube protrudes above the water surface and the lower end is closed. An underwater daylighting device that is configured to be held in a predetermined position underwater. 2) Adjust the apparent specific gravity of the entire hollow tube body to/nearly 1
1. The underwater lighting device according to claim 1, wherein the weight at the lower end is relatively increased so that the device floats in the water in a substantially vertical position. 3) Claim 1 or 3, wherein the side wall of the hollow tube body is a hollow double wall, and the hollow portion is filled with a heavy substance such as sand to adjust the overall apparent specific gravity. Second
Underwater daylighting device as described in section.
JP56203180A 1981-12-16 1981-12-16 Underwater natural lighting device Pending JPS58102904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56203180A JPS58102904A (en) 1981-12-16 1981-12-16 Underwater natural lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56203180A JPS58102904A (en) 1981-12-16 1981-12-16 Underwater natural lighting device

Publications (1)

Publication Number Publication Date
JPS58102904A true JPS58102904A (en) 1983-06-18

Family

ID=16469779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56203180A Pending JPS58102904A (en) 1981-12-16 1981-12-16 Underwater natural lighting device

Country Status (1)

Country Link
JP (1) JPS58102904A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012922A (en) * 1983-07-03 1985-01-23 三木 勝 Artificial fish bank
JPS61124333A (en) * 1984-11-22 1986-06-12 清水建設株式会社 Ocean fishery production field apparatus
JPH0316863U (en) * 1989-06-28 1991-02-20
JP2007063822A (en) * 2005-08-30 2007-03-15 Toyo Constr Co Ltd Environment-friendly pier
USRE40227E1 (en) 1985-11-21 2008-04-08 3M Innovative Properties Company Totally internally reflecting thin, flexible film
GB2462865A (en) * 2008-09-15 2010-02-24 Plymouth Marine Lab Marine based carbon sequestration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116939A (en) * 1974-08-01 1976-02-10 Sanenerugii Kk
JPS5215339A (en) * 1975-07-26 1977-02-04 Yuji Nakajima Method to introduce sunshine at places where the sun does not shine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116939A (en) * 1974-08-01 1976-02-10 Sanenerugii Kk
JPS5215339A (en) * 1975-07-26 1977-02-04 Yuji Nakajima Method to introduce sunshine at places where the sun does not shine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012922A (en) * 1983-07-03 1985-01-23 三木 勝 Artificial fish bank
JPS61124333A (en) * 1984-11-22 1986-06-12 清水建設株式会社 Ocean fishery production field apparatus
JPH054048B2 (en) * 1984-11-22 1993-01-19 Shimizu Construction Co Ltd
USRE40227E1 (en) 1985-11-21 2008-04-08 3M Innovative Properties Company Totally internally reflecting thin, flexible film
JPH0316863U (en) * 1989-06-28 1991-02-20
JP2007063822A (en) * 2005-08-30 2007-03-15 Toyo Constr Co Ltd Environment-friendly pier
JP4645903B2 (en) * 2005-08-30 2011-03-09 東洋建設株式会社 Environmentally friendly pier
GB2462865A (en) * 2008-09-15 2010-02-24 Plymouth Marine Lab Marine based carbon sequestration device
GB2462865B (en) * 2008-09-15 2010-08-11 Plymouth Marine Lab Improvements in or relating to carbon sequestration

Similar Documents

Publication Publication Date Title
US7642450B2 (en) Collector for solar radiation
US20170040926A1 (en) Floating solar panel array with one-axis tracking system
KR100888927B1 (en) Submersible offshore marine aquaculture apparatus
US20100212719A1 (en) System and methods of utilizing solar energy
KR870001672B1 (en) Chrolella culture device
JPS58102904A (en) Underwater natural lighting device
JP7347420B2 (en) Marine living resource production method and marine living resource production device
CN111264217A (en) Underwater sunlight compensation device for submerged plant restoration and using method thereof
KR101381980B1 (en) Floating type sunlight generation for water resources surroundings
US9845929B2 (en) Sun tracking light distributor system
KR101602174B1 (en) Buoy Apparatus
JP2000254695A (en) Modifying method of bottom mud and system therefor
CN212034985U (en) Underwater sunlight compensation device for submerged plant recovery
CN110063159B (en) Underwater light supplementing system for recovering submerged vegetation
KR910009341B1 (en) Apparatus for cultivating aquatic living things in seat water
CN112544281A (en) Solar energy collecting device and equipment composed of same
JP2007063822A (en) Environment-friendly pier
CN218810854U (en) Submerged vegetation bed
AU2004243336B2 (en) Collector for solar radiation
JPH054048B2 (en)
RU2787247C1 (en) Plankton farm
JP2001336479A (en) Method and equipment for pumping up deep water as well as ocean greening method using them
KR900000070Y1 (en) Solar ray collecting devices
Carmouze et al. Physical and chemical characteristics of the waters
CN1847741A (en) Solar energy collecting and transmitting method and system