JPS58102587A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS58102587A
JPS58102587A JP56201231A JP20123181A JPS58102587A JP S58102587 A JPS58102587 A JP S58102587A JP 56201231 A JP56201231 A JP 56201231A JP 20123181 A JP20123181 A JP 20123181A JP S58102587 A JPS58102587 A JP S58102587A
Authority
JP
Japan
Prior art keywords
layer
active layer
core layer
active
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56201231A
Other languages
Japanese (ja)
Other versions
JPS6318879B2 (en
Inventor
Kiyohide Wakao
若尾 清秀
Nobuyuki Takagi
高木 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56201231A priority Critical patent/JPS58102587A/en
Publication of JPS58102587A publication Critical patent/JPS58102587A/en
Publication of JPS6318879B2 publication Critical patent/JPS6318879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To provide a semiconductor laser characterized by a low oscillation threshold current and high differential quantum efficiency, by providing an optical waveguide in an output region, thereby improving the feedback rate between an active layer and the output region. CONSTITUTION:A positive voltage is applied to a P side electrode 19 and a negative voltage is applied to an N side electrode 20. Carriers are injected only to an active layer 16 by P-N reverse bias of epitaxial layers 10, 11, and 12. Light emission is obtained by recombination. The carriers injected into the active layer 16 are completely confined in the active layer 16 by clad layers 15 and 17, respectively. The laser light generated by the active layer 16 is guided by the clad layers 15 and 17 whose refractive index is low, and combined to the epitaxial layers 10, 11, and 12. The light guided into the active layer 16 is again guided into the core layer 11 by the clad layers 10 and 12, and resonated between cleavage planes. By forming the core layer 11 and the clad layers 10 and 12 at first, the flat waveguide, wherein the interface between the core layer and the clad layers has small uneven parts, is formed.

Description

【発明の詳細な説明】 (1)  fi#1の技術分野 本発明は出力4波路を有する牛導体発光装置に関するO 4)技術の背景 半導体レーザは他のレーザ系に比べて小IJIi暢麓で
、4効亭励作参長寿命−高速厘iI!変調が町嘘となる
利点を有し、光伝送・元情報処瑠のfiI!用シスデシ
ステム:mとして用いられる0 半導体レーザを元情報処場分野の光源として用いる1曾
、その光出力を向上させることがiiまれる0例えばガ
リウム・アルイエりム・ヒ木(GajLj人−ンミ;t
tt會智を材料とする牛導体レーデにおいては、V−ザ
出力の限界を決めるものはV−ザ4南の光学損傷による
破壊であり、この光学損傷は表向一酋によるキャリアの
不十分な反転分布に晶づ〈レーデ4由付近の光吸収が原
因である0従って、レーデの尚出力化のためには、レー
ザ4−付近でキャリアを注入せず、かつ光吸収を11A
することがM効となシ、これよシレーザ祷崩付近に活性
l−を含まない出力専用の導波路を設けて、活性ノーで
発生したレーザ元をこの出力導波路Kd酋させる4造が
レーザ高出力比の一つの有力な#1j!1となる。
Detailed Description of the Invention (1) Technical field of fi#1 The present invention relates to a conductor light emitting device having four output wave paths. , 4-Effect Tei Sakusaku San Long Life - High Speed II! The modulation has the advantage of being a town lie, and the fiI of optical transmission and former information office! For example, gallium alum, hi wood (GajLj people- Nmi;t
In the cow conductor lede made from TT Aichi, what determines the limit of the V-za output is the destruction due to optical damage on the V-za 4 south, and this optical damage is caused by insufficient carrier strength due to the surface. Crystallization occurs in population inversion (due to light absorption near the laser 4) Therefore, in order to increase the output of the laser, carriers should not be injected near the laser 4 and the light absorption should be reduced to 11A.
This is the M effect, so we set up an output-only waveguide that does not contain active l- in the vicinity of the laser beam collapse, and the laser source generated in the active no is absorbed into this output waveguide Kd. One powerful #1j with high output ratio! It becomes 1.

以下、出力4波路を有するV−ザで扁出力化を図る4会
に必要となる条件を示す01%出力を傅る友めには上記
の4面破壊を抑制することにmえてil1分瀘子効率の
同よ及び発振閾値の低減が必要となる0これは一出力時
の動作電流を低減して電流注入に起因する黒発生を緩和
し、温藏土昇による伸性1下を抑−する理由による。従
ってよ紀必賛粂件を満足させるためには活性ノーと出力
導政略との元の一曾効半を同上して活性層て発生した元
を効率良〈帰還させることがmsとなる。
The following is a list of the conditions necessary for achieving flat output in a V-za with 4 output waves. For those who meet 01% output, Il1 min. This requires equalization of the cell efficiency and reduction of the oscillation threshold.This reduces the operating current at one output, alleviates the black occurrence caused by current injection, and suppresses the decrease in extensibility due to heating. Depends on the reason. Therefore, in order to satisfy the requirements of the government, it is necessary to efficiently return the element generated in the active layer by equalizing one and a half effects of the active layer and the output guiding strategy.

(3)  従来技術と問題点 本発@O従来技術としてンーデ出カ層向で活性層が露出
していないガリウムeヒ累(GaAs)−アルミニウム
・ガリウム・ヒX(AjGmAs)jK半導体レーザー
を挙げて従来の問題点を説明することにする。第1図は
この半導体レープのレーデ発振方向に対して平行な概略
断面図である〇第1図において、lはn形G暑Am基板
、3はn形AtGaAaクラッドH,aはGaAa活性
層、4はp形AtGaAaクラッド層、6はp十形Ga
A−キ+yグ層、6はA 16.畠G a O12A8
出力領域層1丁はpill電礪、8はn@電極をそれぞ
れ示している。
(3) Conventional technology and problems This invention@O As a conventional technology, a gallium oxide (GaAs)-aluminum gallium oxide (AjGmAs)jK semiconductor laser in which the active layer is not exposed in the direction of the output layer is cited. I will now explain the problems with the conventional method. Fig. 1 is a schematic cross-sectional view of this semiconductor layer parallel to the radar oscillation direction. In Fig. 1, l is an n-type G-type Am substrate, 3 is an n-type AtGaAa cladding H, a is a GaAa active layer, 4 is p-type AtGaAa cladding layer, 6 is p-type Ga
A-key+yg layer, 6 is A 16. Hatake G a O12A8
One output area layer represents a pill cell, and 8 represents an n@electrode.

この↓つな411造を有する半導体レーザでは、出力領
域層6はV〜ザ端向付近の出方il[に形成されている
ため、活性層8はレーザが発振する趨向で露出されては
おらず、ノーf4巾での光学損傷にLる疲Iaを防止す
ることができる◎また動作においては、p@lllEm
7に正、n@電惚惚8負電圧を印加し、活性層8にキャ
リアを注入し、再締付によ〉発光を得る0活性層8に注
入されたキャリア及び活性層畠で発光した元は屓厚方向
に対して一俵するり2ラド層1#44cよ多活性層8内
に閉じ込められる。しかしながら、このレーザでは出路 力懺域に元4JI[*−を有する導12&!−が設けら
れていない沈め、tfi性層性癖8出力領域へ伝搬する
元は出力vAJJR鳩6で拡が9、レーザ4山即ち伸開
向で反射し次元のtIi性層8への帰還率を低下させ。
In the semiconductor laser having this ↓-connected 411 structure, the output region layer 6 is formed in the exit direction il [near the V to the end direction, so the active layer 8 is not exposed in the direction of laser oscillation. , it is possible to prevent fatigue Ia caused by optical damage at no f4 width ◎ Also, in operation, p@lllEm
A positive voltage is applied to 7, and a negative voltage is applied to n@electrification 8, carriers are injected into the active layer 8, and luminescence is obtained by re-tightening. 0 Light is emitted by the carriers injected into the active layer 8 and the active layer. Originally, the layer 1 #44c is confined within the multi-active layer 8 in the thickness direction. However, this laser has a conductor 12&! with an original 4JI[*- in the output force region. - is not provided, the source propagates to the tfi layer propensity 8 output region, the output vAJJR pigeon 6 expands 9, the laser is reflected by the four peaks, that is, the expansion direction, and the feedback rate to the dimension tIi layer 8 is Lower it.

発振−w1喝訛の上昇及び倣分量子効率の低下をもたら
すという開成がある。
There has been a discovery that this results in an increase in oscillation-w1 accent and a decrease in imitation quantum efficiency.

活性層8への元の帰R4Kを向上させるためには出力領
域に元4R4fM@t−有する導波路を形成し、〜71
.て活性層8で発生した元をこの導&略に効率良く一酋
導波させることが必要である〇 (4)発明の目的 本発明の目的は従来の半導体レーザが有している欠点t
−m去し、出力領域に光導波路を設けることKよシg1
!14層と出力領域間の嘩選半を向上させ1発振−値[
訛が低(、かり砿分菫子Rh事が調い半導体レーデを蝿
供するKある。
In order to improve the original return R4K to the active layer 8, a waveguide with the original 4R4fM@t- is formed in the output region, and ~71
.. It is necessary to efficiently guide the source generated in the active layer 8 in this way.
-m and provide an optical waveguide in the output region.
! Improves the separation between the 14th layer and the output area and increases the value of 1 oscillation [
There is a K who has a low accent (Kari Kari, Sumireko Rh) and who offers a semiconductor lede.

(5)発明のa或 本発明は活性ノーと、ul、r8性層より禁制帯幅が大
きく、かつ前記活性層を上下から挾んだクラッド層とか
らなる1I11の多層半導体層を設け、該第1の多層半
導体ノーのレーザが発振する方向の端部にコア層と、該
コア層よシ屈折率が小さく、かつ該コア層を上下から挾
んだクラッド層とからなる元4#!路dA−をMし、か
つ電流を阻止する第3の多層半導体ttst−配置し、
前記活性層と前記コア層とを!iI続してin紀活性層
で発生した光を第2の多層半導体層に結合4波させるも
のである。
(5) Invention a or the present invention provides a 1I11 multilayer semiconductor layer consisting of an active layer and a cladding layer that has a wider forbidden band width than the UL and R8 layers and sandwiching the active layer from above and below. The first multilayer semiconductor layer includes a core layer at the end in the direction in which the laser oscillates, and cladding layers having a smaller refractive index than the core layer and sandwiching the core layer from above and below. a third multilayer semiconductor ttst-arranging the path dA- and blocking current;
The active layer and the core layer! Subsequently, the light generated in the incubation period active layer is coupled to the second multilayer semiconductor layer to form four waves.

(6)  発明の実JIA例 以下、本発明の一実施例を用いて本発明の基本原理t−
説明する@第2図は不実1例の種々の製造工種を示した
発振方向に対して平行な半導体レーザの概略断面図であ
る0 9よに液相エピタ中シャル成長法kJp層形AAGmA
mクツツド層10% p形AtGaAmコア層11%n
 MAt(jaAsり2ラド層1gを)胆次結晶或艮す
る〇ことでコア層11の屈折率は上下に設けられたクラ
ッド層10&び11のそれよりも大きくシ、光導IR慎
傅をもたせる。なお、 AtGaAa系材料の場金材料
記三層構造のよK jW kCn形GaA1層18を連
続的に成長する。これは、次の発光部成員時においてa
n形GaA1層18とrit兼用M液との摘れt良くし
%結晶JJiit兼t−谷易にする友めである(?IS
図(II)。^瑠的な各層厚はクラッド層10及び1m
がll m sコツ層11が0.8嘩m、n形GaAs
7IIl18が0.Jl*mrあるoiigx図inの
6層構造(或いは5HjI411造]の成長l−に体積
1ヒがリン酸(H@PO4)糸:、4m化水素CH@o
@):メチルアルコール(01(、υH)−1:1:@
を有fb#&に用い−C化学エツチングに1って一1s
Q−600μm1深さがjIIi板9に通ずる鑵さ即ち
約2.8〜8.5pmの凹部14t−くσtT>方向に
形成する0このときの凹部1会のwR園形状は開口が大
きく底部が小さい等脚台形を形作る(48図tbt )
 o続いて再度液相エピタキシャル或歳成によ#)l!
11部1番にn形AjGaAaクラッド層151発元部
となるp形At()aAa活性層’4isp形ムtGa
Aaクラッド層17、更に1[億コンタクト用のp形G
aAa層18i成蔑する0ここでg性416の禁制帝−
はエピタキシャル層10゜11#1llL17よりも小
さくする。−型的な各層厚はクラッド/#IIが1.1
1〜g、OI1m%活性層が0.1〜G、l )m、り
2ラド層17が基板表面がほぼ平坦化するまで、p形G
aAs層18が0.11.umである0なお、エピタキ
シャル層16.16を液相成長させる際、n形GaAm
層11上にも凹部14中に形成されるノー厚よ少も薄い
ノー妙1形成される。最後にp形GaAs層18111
Kpill電4xs、基板9側にn[″IIE極goを
形成して元導波路部、即ち凹部14の外側に設けたエピ
タキシャル層toett。
(6) Practical JIA Example of the Invention Hereinafter, the basic principle of the present invention will be explained using an embodiment of the present invention.
Figure 2 is a schematic cross-sectional view of a semiconductor laser parallel to the oscillation direction, showing various manufacturing processes as an example.
m thick layer 10% p-type AtGaAm core layer 11% n
By using MAt (1 g of 2-rad layer) as a dielectric crystal, the refractive index of the core layer 11 is larger than that of the cladding layers 10 and 11 provided above and below, thereby providing optical guidance with IR stability. Note that a K jW kCn type GaAl layer 18 of a three-layer structure made of AtGaAa-based material is continuously grown. This means that a
It is a friend that makes the n-type GaA1 layer 18 and the M liquid that also serves as rit good and makes it easy to crystallize.
Figure (II). ^ The thickness of each layer is 10m and 1m for the cladding layer.
The layer 11 is 0.8mm, n-type GaAs
7IIl18 is 0. Growth of a 6-layer structure (or 5HjI411 construction) with a Jl*mr oiigx figure in which a volume of 1 H is phosphoric acid (H@PO4) yarn:, 4m Hydrogen CH@o
@): Methyl alcohol (01(,υH)-1:1:@
Use fb# & -C chemical etching for 1s
A recess 14 with a depth of Q-600 μm1 leading to the jIIi plate 9, that is, approximately 2.8 to 8.5 pm, is formed in the σtT> direction.The shape of the recess 1 at this time has a large opening and a bottom. Form a small isosceles trapezoid (Figure 48tbt)
o Next, liquid phase epitaxial growth is performed again #) l!
Part 11 No. 1 has a p-type At()aAa active layer '4isp-type MutGa which becomes the n-type AjGaAa cladding layer 151 source part.
Aa cladding layer 17, further p-type G for 100 million contacts
aAa layer 18i despise 0 here g sex 416 forbidden emperor-
is made smaller than the epitaxial layer 10°11#1llL17. - Typical thickness of each layer is 1.1 for cladding/#II
1~g, OI1m% active layer is 0.1~G, l)m, 2 Rad layer 17 is p-type G until the substrate surface is almost flat.
The aAs layer 18 is 0.11. In addition, when growing the epitaxial layer 16.16 in liquid phase, n-type GaAm
A layer 1 is also formed on the layer 11, which is slightly thinner than that formed in the recess 14. Finally, p-type GaAs layer 18111
Kpill electrode 4xs, an epitaxial layer toett formed on the substrate 9 side with an n[''IIE pole go and provided outside the original waveguide section, that is, the recessed section 14.

lBをレーザ発振方向に対してJTI厘に骨間すると発
光装置が完成する(第3図−I)。
The light emitting device is completed by moving IB between the bones in a JTI direction with respect to the laser oscillation direction (Fig. 3-I).

動作はp側電極19に正、n肯電憔SO<負電圧t’印
印加、エピタキシャル層10#11.11のp−n逆バ
イヤスにぶって活性層16にのみキャリアを注入し、再
請曾により発光を得る0活性層16に注入されたキャリ
アはM厚方向に対して一績するクラッド層1a*1?の
それぞれにょ)活性層16内に完全に閉じ込められる。
The operation is to apply a positive, n-positive voltage SO<negative voltage t' to the p-side electrode 19, inject carriers only into the active layer 16 through the p-n reverse bias of the epitaxial layer 10#11.11, and repeat the operation. The carriers injected into the active layer 16 emit light due to the cladding layer 1a*1 which moves in the M thickness direction. ) are completely confined within the active layer 16.

十分な注入電流によりて情夫に利得が打ち勝った時、活
性層16からレーデ元が生じる。この元は屈折率の低^
クラッド層11及び17によりて導かれ、出方領域に形
成されたエピタキシャル層lO,11,liIへ結付さ
れる。この時クラッド層1o及び1sはコア層11より
も屈折率が低いため、活性層16内に4波された元は合
びクラッド層1G及びisによってコア肩11内に4波
され、崎開向関で共振するO 本発明では出方領域に光導8.機#4を有する半導体層
が形成されているので、tfi性層から発生したレーデ
元が出力領域で拡がることがなく、従ってttfi性層
と出力領域間での元の帰R率が向上でき。
When the gain is overcome by sufficient injection current, a radar source is generated from the active layer 16. This source has a low refractive index ^
It is guided by cladding layers 11 and 17 and is coupled to epitaxial layers lO, 11, liI formed in the exit region. At this time, since the cladding layers 1o and 1s have a lower refractive index than the core layer 11, four waves are formed in the active layer 16, but four waves are formed in the core shoulder 11 by the cladding layers 1G and is. In the present invention, the light guide 8. Since the semiconductor layer having the mechanism #4 is formed, the Rade element generated from the TFI layer does not spread in the output region, and therefore the original return ratio between the TFI layer and the output region can be improved.

発振−値域はの低下及び微分童子効率の上昇が可−とな
る。
It is possible to reduce the oscillation range and increase the differential doji efficiency.

なお、不実1m例の中で紹介した半導体レーザの鯛道力
法は、出方領域での元尋訳路、即ちコア層11及びクラ
ッド410 e l jlを最?77に形成するため、
平らでかつコア層とクラッド層界面での凹凸が小さい導
波路ができ、九を導波するときの伝iII!損失を小さ
くできるという利点がある。
In addition, the Taido method of semiconductor lasers introduced in the 1m example shows that the original path in the output region, that is, the core layer 11 and the cladding 410 e l jl, is the best. To form 77,
A waveguide that is flat and has small irregularities at the interface between the core layer and the cladding layer is created, and the waveguide when guiding the waveform III! This has the advantage of reducing losses.

第s図は本発明の応用例を表わすレーザ発振力向に平行
な概略断面図であシ、第8図Kti51.IjlIシ友
部分と同部分は同記号で指示しである◎本応用Nが第S
図実施例と相違する点は活性層16と出力光導波路を傅
成するコア層11との接続部において活性層16の層厚
を嶽続部に近づくに従って薄くしたことである(図面の
破−の円印の部分)0こO応用例によれば、活性層16
の層厚が接続部付近で薄くなるので、この部分での光強
度分布が広がシ軸ずれKよる活性層16から光導波路へ
の元の一合効半の低下を緩和できるという効果がある〇 (7)  発明の効果 本発明に1れば、出方領域に元4技路を設けることにL
り、活性層と出力領域間の帰還率を向上させ、5A@r
imiiig流が低く、かつ倣分童子効卓が高い半導体
レーザが得られる。
FIG. s is a schematic cross-sectional view parallel to the laser oscillation force direction showing an application example of the present invention, and FIG. 8 Kti51. The same parts as the IjlI side part are indicated by the same symbol ◎This application N is the Sth
The difference from the embodiment shown in the figure is that the layer thickness of the active layer 16 at the connection part between the active layer 16 and the core layer 11 forming the output optical waveguide is made thinner as it approaches the connection part. According to the application example, the active layer 16
Since the layer thickness becomes thinner near the connection part, the light intensity distribution in this part expands and has the effect of mitigating the decrease in the original total effect from the active layer 16 to the optical waveguide due to the axis shift K. 〇(7) Effects of the Invention One advantage of the present invention is that it is possible to provide the original four technique paths in the exit area.
This improves the feedback rate between the active layer and the output region, resulting in 5A@r
A semiconductor laser having a low imiiiig flow and a high imitation block efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

Ji11図は従来の半導体レーザにおけるレーザ発揚方
向に対して平行な概略断面図、第S図は本実mho檀々
の#l造工根を示した発振力向に対して平行な牛導俸V
−デの概略断面図、48図は本応用例の半導体V−デに
おけるV−ザ発振方向に対して平行な概略断面図である
0 1.4.Ige目11!11.17   クラッド層8
.16     活性層 6            出力領域層7 e 19 
         p @@@8efAOn#電憔 11       コア層 芽 ! 田 茅 2 ロ 1、、L、−、−・ トδ ■− ra) (b)
Figure Ji11 is a schematic cross-sectional view parallel to the laser firing direction in a conventional semiconductor laser, and Figure S is a cross-sectional view parallel to the direction of oscillation force, showing the #1 erected root of Honjitsu mhodan.
Figure 48 is a schematic cross-sectional view of the semiconductor V-de of this application example parallel to the oscillation direction of the V-laser. Ige eye 11!11.17 Cladding layer 8
.. 16 Active layer 6 Output area layer 7 e 19
p @@@8efAOn#Electric 11 Core layer bud! rice field 2 ro1,,L,-,-・toδ■-ra) (b)

Claims (1)

【特許請求の範囲】 (1)活性層と、該活性層より屈折率が小さく。 かつ系割帝輪が大きく、かつ前記活性層を上下から挾ん
だクラッド層とからなる第1の多層半導体層を設け、#
jillの多層中導体1−のレーザが発揚する方向の4
mlにコア層と、該コア層よシ屈折享が小さく、かつ威
コア層を上下から挾んだクラッド層とからなる元導波路
機IIIを有し、かつ電流を阻止する。illの多層半
導体層を配置し、前記活性層と前記コア層とを接続して
前記活性層で発生し7t:ltυ1044手導体層に結
付4彼させるととt4Igとする半導体発覚装置。 (3)活性層と、威活性層よシ頻制帝幅が大きくかつ1
11紀活at−を上下から挾んだクラッド層とからなる
縞lの多−半導体層を設け、該#Ilの多層中4体4の
レーデが発振する方向の4部にコア層と、威コア層1り
屈折率が小さく、かつ該コア層を上下から挾んだクラッ
ド層とからなる九導波路嶺傅を有し亀かつ[流を阻止す
る@Sの多層半導体層を配置し、#記活性層と前記コア
層を接続し。 前記活性ノー(D層厚を前記コア層と前記活性層の緩続
sK近づくにつれて薄<L、1Itl紀活性層で発覚し
た光t−gsoφ虐牛導体層に結付導波させることt特
徴とする特許請求の*1ljll積紀域の半導体fif
、装置O
[Scope of Claims] (1) An active layer, and a refractive index smaller than that of the active layer. and a first multilayer semiconductor layer having a large system division ring and comprising cladding layers sandwiching the active layer from above and below, #
4 in the direction in which the laser of Jill's multilayer medium conductor 1-
It has an original waveguide device III consisting of a core layer and cladding layers that have a smaller refraction than the core layer and sandwich the core layer from above and below, and block current. A semiconductor discovery device in which a multilayer semiconductor layer of ill is arranged, the active layer and the core layer are connected, and t4Ig is generated in the active layer and connected to a conductor layer. (3) The active layer and the power active layer have a large frequency range and 1
A striped multi-semiconductor layer consisting of a cladding layer sandwiching the 11th-age active at- from above and below is provided, and a core layer and an optical layer are formed in four parts of the #Il multilayer in the direction in which the radar of four bodies 4 oscillates. The core layer 1 has a small refractive index, and has nine waveguide ridges consisting of cladding layers sandwiching the core layer from above and below. connecting the active layer and the core layer; The active layer thickness is thinner as the core layer and the active layer sK approaches, and the light discovered in the 1st Itl period active layer is coupled to the t-gsoφ bull conductor layer and guided. *1 ljll semiconductor fif of the patent claim
, device O
JP56201231A 1981-12-14 1981-12-14 Semiconductor light emitting device Granted JPS58102587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201231A JPS58102587A (en) 1981-12-14 1981-12-14 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201231A JPS58102587A (en) 1981-12-14 1981-12-14 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS58102587A true JPS58102587A (en) 1983-06-18
JPS6318879B2 JPS6318879B2 (en) 1988-04-20

Family

ID=16437504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201231A Granted JPS58102587A (en) 1981-12-14 1981-12-14 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS58102587A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134594A (en) * 1975-05-16 1976-11-22 Mitsubishi Electric Corp Semiconductor leser device
JPS568890A (en) * 1979-06-27 1981-01-29 Nec Corp Semiconductor laser and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134594A (en) * 1975-05-16 1976-11-22 Mitsubishi Electric Corp Semiconductor leser device
JPS568890A (en) * 1979-06-27 1981-01-29 Nec Corp Semiconductor laser and manufacture thereof

Also Published As

Publication number Publication date
JPS6318879B2 (en) 1988-04-20

Similar Documents

Publication Publication Date Title
JPH0277185A (en) Grating coupled type surface emitting laser element and modulation thereof
JPS6343908B2 (en)
CA1091794A (en) Diode laser with ring reflector
JP2778985B2 (en) Super luminescent diode
JPS6237907B2 (en)
JPH05167197A (en) Optical semiconductor device
JPH0518473B2 (en)
JPS58102587A (en) Semiconductor light emitting device
JPS58114479A (en) Semiconductor light emitting device
TWI740538B (en) Semiconductor optics
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
CN210040876U (en) Vertical external cavity surface emitting semiconductor laser
JPH0426558B2 (en)
JP2846668B2 (en) Broad area laser
Hong et al. High‐efficiency, low‐threshold, Zn‐diffused narrow stripe GaAs/GaAlAs double heterostructure lasers grown by metalorganic chemical vapor deposition
JPS6018988A (en) Semiconductor laser
Scifres et al. Branching waveguide coupler in a GaAs/GaAlAs injection laser
RU2548034C2 (en) Injection laser with modulated emission
JPS621277B2 (en)
JPS5923585A (en) Semiconductor laser element
JPS6379390A (en) Semiconductor laser device
JPS6386581A (en) Light emitting diode
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPS62165389A (en) Semiconductor laser
JPS593872B2 (en) Method for manufacturing semiconductor light emitting device