JPS58102178A - X ray spectroscopy - Google Patents

X ray spectroscopy

Info

Publication number
JPS58102178A
JPS58102178A JP56201383A JP20138381A JPS58102178A JP S58102178 A JPS58102178 A JP S58102178A JP 56201383 A JP56201383 A JP 56201383A JP 20138381 A JP20138381 A JP 20138381A JP S58102178 A JPS58102178 A JP S58102178A
Authority
JP
Japan
Prior art keywords
photoelectrons
target
kinetic energy
ray
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201383A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagai
一敏 長井
Ikuo Okada
岡田 育夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56201383A priority Critical patent/JPS58102178A/en
Publication of JPS58102178A publication Critical patent/JPS58102178A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure the wavelength and the intensity of X ray in a wide range by measuring the kinetic energy and quantity of photoelectrons released from a target comprising lithium and the like when X ray to be measured irradiates the target. CONSTITUTION:X ray 1 to be measured irradiates a target 2 comprising lithium and the like. Photoelectron 3 released from the target 2 enter a kinetic energy discriminator 4 for photoelectrons. When the X ray 1 contains various frequencies, the kinetic energy of the photoelectrons gives various values. When the photoelectrons 3 are introduced into the discriminator 4 to plot a relationship between the kinetic energy and the quantity of the photoelectrons, a relationship is determined between the wavelength and the intensity of the X ray. Beryllium, boron and carbon are used for the target in addition to lithium.

Description

【発明の詳細な説明】 本発明はX線、特に波長的ココOム以下の軟X線の波長
と強度を簡単に測定できるXII分光法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an XII spectroscopy method that allows easy measurement of the wavelength and intensity of X-rays, particularly soft X-rays with a wavelength of less than 0.0 nm.

従来のXIIM分光法は、■半導体検出器を用いるもの
1■回折結晶又は回折格子を用いるものに大別され、ざ
らに■は■回折結晶又は回折格子を四−ランド円上な移
動させつつ計るもの、[相]回折結晶又は回折格子を移
動させずにX[i!感光フィルムをローランド円に沿っ
て設置するものにわけられる。ところで、これらX!1
分光法のうち、■は半導体検出器の応答速度が遅いため
にtps@c 以下の短いパルス吠に放射されるXIs
の分光が不可能であるほか、波長lOム以上のxIIの
検出・分光ができない欠点がある。また■の■はパルス
X線の分光にきわめて長時間を要する欠点がある・また
更に■の@は測定するxlIの波長が長くなるに従って
回折結晶(又は回折格子)の焦点が伸びるために装置が
大形化する欠点がある。
Conventional XIIM spectroscopy is roughly divided into two types: ■ Those that use a semiconductor detector, and (1) Those that use a diffraction crystal or diffraction grating. X[i!] without moving the [phase] diffraction crystal or diffraction grating. It can be divided into those in which the photosensitive film is placed along the Rowland circle. By the way, these X! 1
In spectroscopy, ■XIs is emitted in a short pulse of less than tps@c due to the slow response speed of the semiconductor detector.
In addition to being unable to perform spectroscopy, it also has the disadvantage of not being able to detect and spectroscopy xII with a wavelength of 10 nm or more. In addition, ■■ has the disadvantage that pulsed X-ray spectroscopy requires an extremely long time.Furthermore, ■■@ has the disadvantage that the focal point of the diffraction crystal (or diffraction grating) lengthens as the wavelength of xlI to be measured becomes longer, so the equipment is There is a drawback of increasing the size.

本発明は上記の事情に鑑み、パルス放射のX線、連続放
射のX@を問わずに測定が可能であり、使用する装置の
小形化を計ることのできるX11分光法を提供するもの
で、リチウム又はベリリウム又はほう素又は炭素よりな
るターゲラFに分光すべきX@を照射し、ターゲットよ
り放出する光電子の運動エネルギーおよび量を測定する
ことによりXiIiIの波長ならびに強度を測定するこ
とを特徴とするものである。
In view of the above-mentioned circumstances, the present invention provides an X11 spectroscopy method that can measure both pulsed radiation X-rays and continuous radiation X@, and allows for miniaturization of the equipment used. It is characterized by measuring the wavelength and intensity of XiIiI by irradiating Targetera F made of lithium, beryllium, boron, or carbon with X@ to be separated and measuring the kinetic energy and amount of photoelectrons emitted from the target. It is something.

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例を示す図であって、この図に
おいてlは分光すべきX5SZは例えば炭素よりなるタ
ーゲット、8はターゲットから放出される光電子、4は
光電子の運動エネルギー弁別器、5は上記の部品をおさ
めた真空容器である。
FIG. 1 is a diagram showing an embodiment of the present invention. In this figure, l indicates a target made of carbon, for example, X5SZ to be subjected to spectroscopy, 8 indicates photoelectrons emitted from the target, and 4 indicates a kinetic energy discriminator for the photoelectrons. , 5 is a vacuum container containing the above-mentioned parts.

この図において、X1llの照射をうけたターゲラ−は
光電子8を放出する。今ターゲツシにリチウムを遍んで
これに振動数νのX線を照射する場合を考える。リチウ
ムのに軌道の電子は通常jよjeVの結合エネルギーで
リチウム原子核と結合して安定°状態を保っているが、
X線照射を受けるとX@を吸収し、b i’−jj、j
=Bk  (eV)の運動エネルギーを得て光電子とな
って真空中にとび出して来る。XIIが種々の振動数を
含んでいる場合には光電子の運動エネルギーEkもさま
ざまな値をとる。そこで光電子8を運動エネルギー弁別
器番に導いて運動エネルギーと光電子の量の関係をプロ
ットすれば第2図に示すようなXIIの波長と強度の関
係が測定される。これらの測定は空気によるX@の吸収
、光電子の散乱を防止する際し、運動エネルギー弁別器
として写真フィルムタイプのものを用いれば、X4!1
1が短いパルスの場合にも分光が可能である。
In this figure, the targeter irradiated with X1ll emits photoelectrons 8. Let us now consider the case where lithium is spread over the target and irradiated with X-rays of frequency ν. The electrons in the orbit of lithium usually bond with the lithium nucleus with a binding energy of j to jeV and maintain a stable state.
When exposed to X-rays, it absorbs X@, b i'-jj, j
It gains a kinetic energy of =Bk (eV) and becomes a photoelectron and jumps out into the vacuum. When XII includes various frequencies, the kinetic energy Ek of photoelectrons also takes various values. Therefore, by introducing the photoelectrons 8 to a kinetic energy discriminator and plotting the relationship between the kinetic energy and the amount of photoelectrons, the relationship between the wavelength and intensity of XII as shown in FIG. 2 can be measured. In these measurements, when preventing the absorption of X@ by air and the scattering of photoelectrons, if a photographic film type device is used as a kinetic energy discriminator, X4!1
Spectroscopy is also possible when 1 is a short pulse.

この場合X@bib w < j j、 j e V(
DIk件ellt場合、つまり波長がココ3ム以下の場
合には光電子は極端に減衰するのでリチウムを用いた場
合の測定可能波長域はココ3ム以下となる。
In this case, X@bib w < j j, j e V(
In the case of DIk, that is, when the wavelength is less than 100 nm, photoelectrons are extremely attenuated, so when lithium is used, the measurable wavelength range is less than 300 nm.

同様にベリリウムのに軌道電子のベリリウム原子核との
結合エネルギーは/ / /、 j e V%はう素の
に軌道電子のほう素原子核との結合エネルギーは/fQ
JeV、炭素のに軌道電子の炭素原子核との結合エネル
ギーはλta≦eVであり、ベリリウムをターゲットと
して用いた場合はhν〉///、jeVsつ*’)波長
///A以下の軟X@。
Similarly, the binding energy of beryllium's orbital electrons with the beryllium nucleus is / / /, j e V%, and the binding energy of boron's orbital electrons with the boron nucleus is /fQ
JeV, the bonding energy of the orbital electron of carbon with the carbon nucleus is λta≦eV, and when beryllium is used as a target, the soft X @ below the wavelength ///A .

はう素をターゲットとした場合はhν〉/9Q3eV。hν〉/9Q3eV when targeting halogen.

つまり波長/I/ム以下の軟X@、炭素をターゲットと
した場合はhν〉コl仏ぶeV、つまり波長4c3ム以
下の軟X線が分光可能である。
In other words, soft X-rays with a wavelength of /I/m or less, and when carbon is used as a target, hv>col-eV, that is, soft X-rays with a wavelength of 4c3m or less can be spectrally analyzed.

また、Fより原子番号の大なる元素においては、K軌道
のほかにL軌道の電子の放出があって、ある1つのエネ
ルギーのXIMに対して運動エネルギーの異なる光電子
が観測されるために分光は適さない。つまりMgを例に
とると、K軌道の電子は1072teV、L軌道電子は
6&60eVの結合エネルギーで原子核と結合しており
、エネルギbyのxli!照射によつ”(by−toy
xtevとhシー63.6eVの運動エネルギーの光電
子が放出される。また、オージェ効果によってhシーJ
OQ9eVの光電子も放出されるなど、7つのXIIエ
ネルギーに対して三つの情報が出てくるので分光ができ
ない。
In addition, in elements with an atomic number larger than F, electrons in the L orbit are emitted in addition to the K orbit, and photoelectrons with different kinetic energies are observed for one energy of XIM, so spectroscopy is difficult. Not suitable. In other words, taking Mg as an example, the electrons in the K orbital are bound to the atomic nucleus with a binding energy of 1072 teV, and the electrons in the L orbital are bound to the atomic nucleus with a binding energy of 6 and 60 eV, and the energy by xli! by-toy
Photoelectrons with a kinetic energy of xtev and hc of 63.6 eV are emitted. In addition, due to the Auger effect, hCJ
Since photoelectrons of OQ9eV are also emitted, three pieces of information are generated for seven XII energies, so spectroscopy is not possible.

以上説明したように、本発明は光電子の運動エネルギー
および量を測定することによってX@の分光を行うもの
であるから、パルス放射のX@。
As explained above, since the present invention performs spectroscopy of X@ by measuring the kinetic energy and amount of photoelectrons, X@ of pulsed radiation.

連続放射のX線を問わずに軟Xll1IS超軟X線領域
の分光を行うことができ、かつ使用する装置の小杉化を
計ることができる等の利点がある。
It has advantages such as being able to perform spectroscopy in the soft XllIS ultra-soft X-ray region regardless of continuous radiation X-rays, and allowing the use of Kosugi equipment.

【図面の簡単な説明】[Brief explanation of drawings]

図は同実施例においてX@を分光した結果を示す図であ
ってXiIの波長と強度との関係を示す図である。 l・・・・・・X@、2・・・・・・ターゲット、訃・
・・・・光電子、4・・・・・・運動エネルギー弁別器
、ト・・・・・真空容器。
The figure is a diagram showing the result of spectroscopy of X@ in the same example, and is a diagram showing the relationship between the wavelength and intensity of XiI. l...X@, 2...Target, deceased...
...Photoelectron, 4...Kinetic energy discriminator, G...Vacuum container.

Claims (1)

【特許請求の範囲】[Claims] リチウム(Li)又はベリリウム(Be)又ははう素(
B)又は炭素(C)よりなるターゲットに分光すべきX
iIを照射し、ターゲットより放出する光電子の運動エ
ネルギーおよび量を測定することによりXIsの波長な
らびに強度を測定することを特徴とするX@分光法。
Lithium (Li) or beryllium (Be) or boron (
B) or X to be dispersed into a target made of carbon (C)
An X@ spectroscopy method characterized by measuring the wavelength and intensity of XIs by irradiating iI and measuring the kinetic energy and amount of photoelectrons emitted from a target.
JP56201383A 1981-12-14 1981-12-14 X ray spectroscopy Pending JPS58102178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201383A JPS58102178A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201383A JPS58102178A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Publications (1)

Publication Number Publication Date
JPS58102178A true JPS58102178A (en) 1983-06-17

Family

ID=16440167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201383A Pending JPS58102178A (en) 1981-12-14 1981-12-14 X ray spectroscopy

Country Status (1)

Country Link
JP (1) JPS58102178A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483893A (en) * 1977-11-29 1979-07-04 Anvar Microanalysis method that use xxrays radiation

Similar Documents

Publication Publication Date Title
Halmshaw Industrial radiology: theory and practice
Allen Jr Photodisintegration of the Deuteron by 95-Mev Bremsstrahlung
Lanzl et al. Z dependence and angular distribution of bremsstrahlung from 17-MeV electrons
Krumrey et al. Complete characterization of a Si (Li) detector in the photon energy range 0.9–5 keV
Kandarakis et al. X-ray luminescence of ZnSCdS: Au, Cu phosphor using X-ray beams for medical applications
Martin et al. The (n, γ) and (n, 2 n) Reactions in Iodine
Zhang et al. X‐ray spectral measurements for tungsten‐anode from 20 to 49 kVp on a digital breast tomosynthesis system
Kandarakis et al. Experimental determination of detector gain, zero frequency detective quantum efficiency, and spectral compatibility of phosphor screens: comparison of CsI: Na and Gd2O2S: Tb for medical imaging applications
Liebert et al. X-Ray Production by Protons of 2.5-12-MeV Energy
Arora et al. Measurement of K-shell fluorescence yields in elements 28⩽ Z⩽ 53
JPS58102178A (en) X ray spectroscopy
Ghisellini et al. The blazar PKS 0528+ 134: new results from BeppoSAX observations
Nydahl et al. Photopion reactions in complex nuclei
Fukamachi et al. Compton profile measurements by use of solid state detector
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
Levy et al. The Radiations from 2.7-Day Au 198
Goss et al. Variable radio emission from the extragalactic supernova 1970g in M101
Burke et al. Absorption analysis of x-ray spectra produced by beryllium window tubes operated at 20 to 50 kVp
JP2009054562A (en) X-ray generator
JPS58102179A (en) X ray spectroscopy
Kandarakis et al. Theoretical evaluation of granular scintillators quantum gain incorporating the effect of K-fluorescence emission into the energy range from 25 to 100 keV
JPS6233545B2 (en)
Dolbnya et al. Measurements of the absolute spectral sensitivity of X-ray semiconductor detectors in the photon energy range of 1.5–15 keV using “white” SR beam of the VEPP-3 storage ring
Halmshaw Thulium 170 for industrial radiography
JPS6253800B2 (en)