JPS58102137A - Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method - Google Patents

Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method

Info

Publication number
JPS58102137A
JPS58102137A JP20115481A JP20115481A JPS58102137A JP S58102137 A JPS58102137 A JP S58102137A JP 20115481 A JP20115481 A JP 20115481A JP 20115481 A JP20115481 A JP 20115481A JP S58102137 A JPS58102137 A JP S58102137A
Authority
JP
Japan
Prior art keywords
tube
molten metal
fine particles
pipe
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20115481A
Other languages
Japanese (ja)
Other versions
JPS6214774B2 (en
Inventor
Akihiro Ono
小野 昭紘
Masao Saeki
佐伯 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20115481A priority Critical patent/JPS58102137A/en
Publication of JPS58102137A publication Critical patent/JPS58102137A/en
Publication of JPS6214774B2 publication Critical patent/JPS6214774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To permit accurate and rapid analysis in a position separated at a large distance by an apparatus wherein the molten metal is brought into the overheated state to generate ultrafine particles utilizing the evaporation action, which particles are fed to the analyzer together with the stream of inert gas. CONSTITUTION:A plasma arc or the like is irradiated to a molten metal 5 by a heater 3 in a fine particle generator 1 to bring it to the overheated state under still higher temperature, thereby to evaporate ultra fine particles. Inert gas is introduced from a gas inlet pipe 7 to produce a gas current rising through a cylindrical pipe 2. When the evaporated ultrafine particles are sent together with the stream of inert gas to an opening of a feed pipe provided as a double pipe outside of a heating source irradiating pipe 4, coarse particles are returned to the surface of the molten metal and only the fine particles are sent to an analyzer 29 via a distributor 14. Then, the fine particles are excited in a high-temperature plasma section 22 formed by a high-frequency generator 21 to emit a light, which is subject to spectrochemical analysis.

Description

【発明の詳細な説明】 本発明は、溶融金属表面にプラズマアータ@0高エネル
ゼー源を照射して過熱状園となして、−融金属の組成を
代表する微粒子を蒸発させ、これを離れた場所に設置し
であるグツtマW/に起源を有する発光分光分析装置に
不活性がス滝で搬送し、溶融金属中の各種成分含有量を
オンツインリアルタイムで分析することを目的とする溶
融金属の直接発光分光分析装置に関するも〇である。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves irradiating the surface of a molten metal with a plasma ater@0 high-energy source to form a superheated field, which evaporates fine particles representative of the composition of the molten metal and leaves them. The molten metal is transported by an inert gas stream to an optical emission spectrometer, which has its origins in Gutsuma W/, which is installed at the site, and the content of various components in the molten metal is analyzed in real time. It is also 〇 regarding a direct emission spectrometer for metals.

金属製造業に於る金属中倉金OIl造工程管理中製品の
品質管理には、囲体試料を用いる発光分光分析が最も多
用されている。しかし、近年、41IK鉄鋼業に見られ
るようにより迅速1製造工1管斑あるいは多段精錬など
新しい精錬ブーセスO操業管理のために1溶銑や溶鋼の
よう1m融状態の金属試料を対象としたオンラインリア
ル−イムの分析法の開発が強く要請されている。とれt
″c#IIIIA金属の直接分析は、溶融金属と対電極
との間に電気的放電を行わせて生じた励起光を分光器で
測定する方法(A、Wittmann : Iro+1
and 5teel Int@r −natioual
 、  52 (1979)P、77〜83 )、ゾヤ
イ〆5−1 77 ) ノ4ルスレーデー光を照射して発した励起光
を直接分光器で測定する方法(不活性ガス下励起:特公
11954−7593、大気化励起: E、F、Run
g*at ml : 8p@etrochimica 
Aeta +l 22(1966)P、1678〜16
80)、あるいは溶融金属をArガスを用いた特殊な噴
Il器によって微粉化して発光分光分析する方法(BI
SRムムntzual R@port : 78(19
66)、65.78(1967)、35(1968) 
)など6株の手法により研究開発が試みられている。
In the metal manufacturing industry, emission spectroscopic analysis using an enclosure sample is most frequently used for quality control of products during process control of metal oil production. However, in recent years, as seen in the 41IK steel industry, online real-time processing has been developed for new smelting operations such as faster 1-manufacturing, 1-tube spotting or multi-stage refining. There is a strong need for the development of analytical methods for -im. Toret
``c#IIIA Direct analysis of metals is a method in which an electric discharge is caused between the molten metal and a counter electrode and the generated excitation light is measured with a spectrometer (A, Wittmann: Iro+1
and 5teel Int@r -national
, 52 (1979) P, 77-83), Zoyai 5-1 77) A method of directly measuring the excitation light emitted by irradiation with Russlede light using a spectrometer (excitation under inert gas: Japanese Patent Publication No. 11954- 7593, atmospheric excitation: E, F, Run
g*at ml: 8p@etrochimica
Aeta +l 22 (1966) P, 1678-16
80), or a method in which molten metal is pulverized using a special jet device using Ar gas and subjected to emission spectroscopic analysis (BI
SRmumuntzual R@port: 78 (19
66), 65.78 (1967), 35 (1968)
), research and development is being attempted using six methods.

しかし、これらの方法は、これまで実際の製造現場Vc
W&直して実用化されたことはなく、いずれも奥験童内
における小規模な実験が試みられたに過t1にい。
However, these methods have so far been limited to the actual manufacturing site Vc
W& has never been put into practical use, and small-scale experiments within Ougendou have only been attempted for about 1 year.

1jllK製造現場で実用できる溶融金属の直接分析装
置のlK現をはかるKは、先ずその製造現場は鳥−9振
動、大気の汚れなど測定環境が非常に悪い点を考慮しな
ければならない、従って、分光器。
To measure the actual performance of a direct analyzer for molten metals that can be put to practical use at manufacturing sites, we must first take into account the fact that the manufacturing site has a very poor measurement environment, such as vibrations and air pollution. Spectrometer.

各スペクトル線強度の検出器尋から成る精密光学測定器
である分光分析装置は、上記のような悪条件の測定環境
下ではトラブルが起り易く、正常に機能せず、溶融金属
の存在する場所から離して設置する必要がある。溶融金
属と分光分析装置を数10mの距離を離して成分分析を
実施するには、電気的放電やレーデ−照射によって発生
させた励起光を伝送する方式と溶融金属を微粉化して搬
送する2方式が考えられるが、前者は振動や高温による
光伝送のだめの光軸の変動等の問題があり後者の方が適
している。しかし、後者の方式に於いては、搬送途中で
の微粉化試料の管壁等への付着残留が問題となる。この
方式を採用した上述の引用文献の場合は、高流速のムr
ガス流によるスプレー作用を利用して溶融金属を噴霧す
る方法であるために、微粉化された金属め粒子径は10
〜100紬@変以上で粒径が大きいために長距離OII
送は困難であり、又粒度分布の幅が広いために励起発光
右せた際の発光強度の変動が大音〈分析精度が悪い等の
問題がある。
Spectrometers, which are precision optical measuring instruments consisting of detectors for the intensity of each spectral line, are prone to trouble and malfunction under adverse measurement conditions such as those mentioned above. Must be installed separately. In order to perform component analysis by separating the molten metal and the spectrometer several tens of meters apart, there are two methods: one is to transmit excitation light generated by electrical discharge or radar irradiation, and the other is to pulverize the molten metal and transport it. However, the former has problems such as fluctuations in the optical axis due to vibration and high temperature, which hinders optical transmission, so the latter is more suitable. However, in the latter method, there is a problem that the pulverized sample remains attached to the tube wall during transportation. In the case of the above-mentioned cited document that adopts this method, the high flow rate
Since this method uses the spray action of gas flow to atomize molten metal, the particle size of the pulverized metal is 10
~ 100 Tsumugi @ odd or more, long distance OII due to large particle size
It is difficult to transport the particles, and due to the wide particle size distribution, there are problems such as loud fluctuations in emission intensity upon excitation and emission and poor analysis accuracy.

本発明はかかる問題点に鑑み、溶融金属を更に過熱状態
にし、蒸発作用を利用して0.1μ調以下程度の麺機粒
子を発生させる方法、付着残留を防止して効率よ〈長短
−を搬送する方法及び分析装置への導入方法勢な中心に
研究開発を進め、簡単・迅速に高い精度・感1で分析で
き、実用的な新規分析装置を提供するKいたったもので
ある。
In view of these problems, the present invention has developed a method of further superheating molten metal and utilizing evaporation to generate noodle machine particles of about 0.1 μm or less, preventing adhesion and residue, and improving efficiency. We have conducted research and development focusing on transportation methods and methods of introduction into analytical equipment, and have provided a practical new analytical equipment that can be analyzed simply, quickly, and with high precision and sensitivity.

本発明装置の実施例を図面に示す、以下、図面により木
兄vi40詳細について説明する0本発明装置は大別す
ると微粒子発生鋏fi11.微粒子搬送管12、搬送I
ス分配装置14及びプラIq励起源を有する発光分光分
析装置29から構成される。
An embodiment of the device of the present invention is shown in the drawings.Hereinafter, the details of the device of the present invention will be explained with reference to the drawings. Particulate transport pipe 12, transport I
It consists of a gas distribution device 14 and an emission spectrometer 29 having a plasma Iq excitation source.

微粒子発生鋏1111は、浴融金属5flCfラズマア
ータ等を照射して、溶融金属を更に高温の過熱状態とし
、金属の組成を代表する微粒子を鐘状に蒸発させる働き
をする部分である。微粒子発生装置1は微粒子発生用円
筒管2.その上部に溶融金属表面に対向して取り付けら
れたプラズマアーク等の加熱1&1lllt3に接続す
る同加熱源照射用管4.黴粒子搬送管開ロ部11.不活
性ガス導入管7を取り付けた鐘へい・円管6及び加熱装
置30対電極lO勢を主体KiI!#成される。微粒子
発生用円筒管2は20〜50−S度の小径の円筒管で、
底部は水平に開口しており、溶融金属表面と通常1〇−
以下の隙間をもって設置される。耐鵡性で熱伝導性にす
ぐれ、絶縁性のよい窒化ホウ素あるいは!グネシア、ア
ルミナ等の耐火物製のものが適している。
The particulate generating scissors 1111 is a part that functions to irradiate the bath molten metal with 5flCf plasma atomizer or the like to bring the molten metal into a superheated state at a higher temperature, and to evaporate the particulates representing the composition of the metal in a bell shape. A particulate generator 1 includes a cylindrical pipe for particulate generation 2. A heating source irradiation tube 4 connected to heating 1&1llt3 such as a plasma arc installed on the upper part facing the molten metal surface. Mold particle transport pipe opening part 11. The main body is the bell pipe/circular tube 6 with the inert gas introduction tube 7 attached, the heating device 30, and the counter electrode lO force! #Be done. The cylindrical tube 2 for generating fine particles is a cylindrical tube with a small diameter of 20 to 50-S degrees.
The bottom is horizontally open, and the molten metal surface is usually 10-
It will be installed with the following clearance. Boron nitride or! Refractory materials such as gnesia and alumina are suitable.

加熱装置ili[3はグラズマアーク、アー!、スノ臂
−り。
Heating device ili [3 is Glazma Arc, ah! , Snow's knees.

電子ビームあるいはレーザービーム勢O加熱源が適用で
きたが、プラズマアーク加熱の場合が微粒子oH発速度
も速く、加熱温度を高くで亀るので蒸発しKくい成分も
容易に蒸発で自るなと最も適していた。加熱装置3に接
続し九加熱源照射用管4は通常10−程度の小径の円管
を用いたが、これは微粒子発生用円筒管20上部に溶融
金属面に対向して喬直に取り付け、両者間は通常50雪
程[0関隔をもたせた。−直位置に設定する理由は、加
熱及び微粒子の蒸発を効率よ〈実施すること及び蒸穐徽
粒子の搬送管開口部11への導入を効率よ〈行うことK
ある。加熱−装置をfラズマアークとした場合に溶融金
属面に対して傾斜角をもって照射すると%に問題が起る
。蒸発した微粒子はプラズマ炎が金属面で反対方向に反
射される際に1グラズマ炎の流れに乗りて拡散してしま
い搬送管開口部11への取り込みに支障をきたす、蒸発
した微粒子は、加熱源照射用管4の外周に狭い隙間をも
って同心円の2重管として設置した搬送管脚口部11へ
運び込まれる。溶融金属中の成分分析を目的とする本発
明に於いては、微粒子を単に捕集する場合と異なり、蒸
発微粒子の全量を一定流速の搬送ガスと共に常時安定し
て分析鋏に29へ送り込まなければならず、より効率の
棗い微粒子の搬送技術が必要になる6本発明ではIII
金属表面より蒸発して直上方向に立ち昇った微粒子を周
囲への拡散を防ぎ、やはり金属表面上を搬送管開口部1
1へ向って流れる搬送ガスの流れに乗せて迅速に這び去
る方法をとった。プラズマアークを加熱源とした場合、
微粒子はプラズマアークが当って過熱状態となった金属
表面からプラズマ炎を中心に上昇して一部は周囲へ拡散
し、一部は再び金属面へ戻る対渡を起している。一方、
微粒子発生用円筒管2の底部より導入された搬送ガスは
出口が加熱源照射用管4の周囲に2重管として設けられ
た搬送管開口部11きりないので、加熱源照射用管4か
ら照射されるプラズマ炎などを中心とした溶融金属表面
上から搬送管開口部11へ入り込む不活性がスの流れが
形成されている。従って、蒸発して上昇してきた微粒子
は、その搬送が電流に引き込まれて、常時一定の希釈倍
率をもって搬送管開口部11へ送り込まれる。故に図面
に示す如く、加熱源照射用管4の外@に2重管として搬
送管開口部11を設けるのが嵐い、微粒子発生条件、的
えばプラズマアークの場合には電圧、電流及びArある
いはHe @のガス吹込み流量などく左右されるが、加
熱源照射用管4の長さよりもその外周に設けた搬送管開
口部11を多少短くすることKより、スプラッシ、など
Kよる粗大粒子Fill!lIi!!l金属表面に戻り
、微細粒子のみを搬送することができる。
Electron beam or laser beam O heating sources could be applied, but in the case of plasma arc heating, the particle OH generation rate is fast, and the heating temperature is high, so components that are difficult to evaporate are easily evaporated. It was the most suitable. The heating source irradiation tube 4 connected to the heating device 3 is usually a circular tube with a small diameter of about 10 mm, and this is directly installed on the upper part of the cylindrical particle generation tube 20 facing the molten metal surface. The distance between the two was usually about 50 snow [0]. - The reason for setting it in the vertical position is to efficiently perform heating and evaporation of fine particles, and to efficiently introduce vaporized particles into the conveying pipe opening 11.
be. When the heating device is an f-plasma arc, a problem occurs when irradiating the molten metal surface at an oblique angle. When the plasma flame is reflected in the opposite direction from the metal surface, the evaporated particles ride on the flow of the plasma flame and spread, causing trouble in being taken into the conveyor tube opening 11. The irradiation tube 4 is transported to a conveying tube leg opening 11 which is installed as a concentric double tube with a narrow gap around the outer periphery of the irradiation tube 4. In the present invention, which aims at component analysis in molten metal, unlike the case where fine particles are simply collected, the entire amount of evaporated fine particles must be constantly and stably fed to the analysis scissors 29 together with the carrier gas at a constant flow rate. 6 In the present invention, a more efficient transportation technology for fine particles is required.
This prevents fine particles that evaporate from the metal surface and rise directly above from spreading to the surroundings, and also allows the particles to flow directly above the metal surface into the conveyor pipe opening 1.
We adopted a method of quickly creeping away on the flow of carrier gas flowing toward No. 1. When a plasma arc is used as a heating source,
The fine particles rise from the metal surface that has become overheated by the plasma arc, around the plasma flame, some diffuse to the surroundings, and some return to the metal surface. on the other hand,
The carrier gas introduced from the bottom of the cylindrical tube 2 for generating fine particles is irradiated from the heating source irradiation tube 4 because the outlet is not through the carrier tube opening 11 provided as a double tube around the heating source irradiation tube 4. A flow of inert gas is formed that enters the conveying pipe opening 11 from above the molten metal surface centered on the plasma flame generated by the molten metal. Therefore, the fine particles that have evaporated and ascended are drawn into the current and sent into the transport tube opening 11 at a constant dilution ratio. Therefore, as shown in the drawing, it is best to provide the conveyor tube opening 11 as a double tube outside the heating source irradiation tube 4, depending on the particle generation conditions, for example, in the case of plasma arc, voltage, current, Ar or Although it depends on the gas blowing flow rate of He @, it is better to make the transport tube opening 11 provided on the outer periphery of the heating source irradiation tube 4 a little shorter than the length of the heating source irradiation tube 4. ! lIi! ! l It is possible to return to the metal surface and transport only fine particles.

微粒子の蒸発発生速度及び粒径は、蒸発させる雰囲気の
圧力、加熱温度、雰囲気気体の種類等によって影醤され
る。微粒子の粒径はグッズマ励起源を有する発光分光分
析に於いて定量精度に大きな影醤を与えるので特に重要
であり、粒径を極力小さく、かつその粒度分布を整える
ことが必須である0本発明装置で溶鋼を対象に発生させ
た微粒子を電子顕微鏡観察によって駒査したところ、そ
の粒径社発生条件によりて左右されるが大略o、1μm
以下の極めて微細粒子であり、平均粒径がO,OSμm
の場合0.04〜0.06輛の範囲に約70%が入るよ
うに粒度分布の輪も狭く、プラズマ発光分光分析には蝦
適でありた。
The evaporation rate and particle size of fine particles are influenced by the pressure of the evaporating atmosphere, the heating temperature, the type of atmospheric gas, etc. The particle size of the fine particles is particularly important as it has a large effect on the quantitative accuracy in emission spectroscopic analysis using a Goodsma excitation source, and it is essential to keep the particle size as small as possible and to adjust the particle size distribution. When the fine particles generated in molten steel by the device were examined using an electron microscope, the particle size was approximately 1 μm, although it depends on the generation conditions.
The following extremely fine particles with an average particle size of O, OS μm
The particle size distribution was narrow, with about 70% falling within the range of 0.04 to 0.06 particles, making it suitable for plasma emission spectroscopic analysis.

微粒子発生用円筒管2の外1i1には2重管構造となる
ように耐火材製の鐘へい用9t6を取り付けである。鐘
へい粗管6は開口した底部が溶融金属5中に&潰し、密
閉状態とし、上部に取り付けた不活性ガス導入w7から
吹き込まれる不活性ガスを微粒子発生用円筒管2i部よ
り同円筒管2内へ送り込み、蒸発して発生した微粒子を
搬送管開口部11へ送り込む働きをする。又、溶融金属
表面上にはスラグが浮遊して存在する場合が多いが、本
纏へい粗管6はスラグ勢の浮遊物を排除する働きも行う
ellへい粗管6は同昇降装鉦8によって上下動ができ
るが、最初#i鐘へい粗管6を溶融金属表面から上昇さ
せておき、導入管7より多量の不活性気体を吹き込んで
スラグを移動させ、あるいは量が多い場合には耐火材で
できた板を溶融金属表面上を移動させる勢の機械的方法
によってスラグを移動させて、その直後に鐘へい粗管6
を湯面下に入るように下降させる。11へい粗管6には
一度排除したスラグ等は再び流れ込むことはなく、加熱
源照射用管4の直下の湯面上にはスラグ勢り浮遊物が無
い状態を保つことができる1本遮へい粗管6を設けない
場合は、その内側にある微粒子発生用円筒管2の底部な
溶湯中和浸漬して蒸発微粒子を管外部に出ないようKし
なければならないが、微粒子発生用円筒管2は本装瀘の
最も重I!な部分であり長期間の耐久性が必要である。
A bell pipe 9t6 made of fireproof material is attached to the outside 1i1 of the cylindrical pipe 2 for generating fine particles so as to have a double pipe structure. The open bottom of the rough pipe 6 is crushed into the molten metal 5 and sealed, and the inert gas blown in from the inert gas introduction w7 attached to the top is passed through the particulate generation cylindrical pipe 2i to the same cylindrical pipe 2. It serves to send the fine particles generated by evaporation into the transport tube opening 11. In addition, in many cases, slag exists floating on the surface of the molten metal, but the main tube tube 6 also functions to remove floating materials such as slag. It can be moved up and down, but first the #i pipe 6 is raised above the surface of the molten metal, and a large amount of inert gas is blown into the inlet pipe 7 to move the slag, or if the amount is large, it is removed by refractory material. The slag is moved by a mechanical method such as moving a plate made of molten metal over the surface of the molten metal, and immediately after that, the slag is transferred to the pipe 6.
lower it so that it is below the surface of the hot water. The slag, etc. that have been removed once will not flow into the rough tube 6, and there is a rough shielding tube that can keep the hot water surface directly below the heating source irradiation tube 4 free of slag and floating objects. If the tube 6 is not provided, the bottom of the cylindrical tube 2 for particle generation inside the tube must be immersed in neutralized molten metal to prevent the evaporated particles from coming out of the tube. The most important I of this book! This is a critical part and requires long-term durability.

従って、円筒管2#′i直接高温の*m喧属中に浸漬せ
ずに、又、溶湯表面から蒸発する微粒子の全量を効率よ
く搬送管開口部KIIIi送し、あるいは円筒管2内へ
の大気の直接的な流入を防止して円筒管2内を常時不活
性雰−気に保持するために微粒子発生用円筒管2の外飼
に過へい粗管6を設けることは実際上非常に]k要であ
る。微粒子発生装置allは図示したように円筒管支持
台9によって保持するなどして耐融金属上Kfflkし
た。
Therefore, without directly immersing the cylindrical pipe 2#'i in the high temperature gas, the entire amount of fine particles evaporated from the surface of the molten metal is efficiently transferred to the transport pipe opening KIIIi, or into the cylindrical pipe 2. In order to prevent the direct inflow of the atmosphere and maintain an inert atmosphere inside the cylindrical tube 2 at all times, it is actually very important to provide a coarse strainer tube 6 outside the cylindrical tube 2 for generating fine particles.] K is essential. The particulate generators all were held on a refractory metal by, for example, being held by a cylindrical tube support 9 as shown in the figure.

搬送管−口部11から取り込まれた微粒子はガス導入v
7から吹き込まれた不活性がスに乗せられて微粒子搬送
管12を通って搬送がス分配装置14に搬送されるが、
本発明のように微粒子を対象に分析を行う場合KFiこ
れらの内m勢に微粒子を付着残留させないことが最も1
散な問題になる・微粒子発生用円筒管2内及び搬送管開
口部11は*h金金属高熱によって加熱されているので
微粒子は付着しに〈〈あまり問題はないが搬送管12#
1111度が低下して付着残留が起り易くなる。その結
果、搬送ガス中の微粒子11度が蛮動したり、コンタi
ネーシ、ンとなって正確な分析値が得られなくなる。蒸
発微粒子は遅く、静かなf x jil Kよる搬送や
温度の低下によって微粒子間の凝縮や壁面への付着残留
が起り易くなる。又、一度付着した微粒子は付着後短時
間内に搬送ガスを高速で吹き込む仁とにより容易に剥離
することが判明したので、搬送管12はなるべく小径と
して搬送がスの流速を速くする及び図面に示す如く加熱
装置13を取り付けて常時加熱しておく方法などを採用
する必要がある。あるいは搬送管12内面に加工を施す
か、管12を乱線状とするなど、搬送がスを乱流にする
工夫などが有効であり、搬送管12を数10mのように
長尺としても微粒子の残留はほとんど防止できた。
The fine particles taken in from the conveyor pipe-mouth 11 are introduced into the gas v
The inert gas blown from 7 is placed on the gas and transported through the fine particle conveying pipe 12 to the gas distribution device 14.
When analyzing fine particles as in the present invention, the most important thing to do is to prevent fine particles from adhering to these inner surfaces of the KFi.
・Since the inside of the cylindrical pipe 2 for particulate generation and the transport pipe opening 11 are heated by the high heat of the gold metal, particulates tend to adhere to them.
1111 degrees decreases, making it more likely that residual adhesion will occur. As a result, fine particles in the carrier gas may move wildly or
It becomes impossible to obtain accurate analysis values. The evaporated fine particles are slow and quiet, and due to transport by f x jil K and a decrease in temperature, condensation among the fine particles and adhesion to the wall surface tend to occur. In addition, it has been found that fine particles once attached can be easily separated by blowing carrier gas at high speed within a short period of time after attachment, so the diameter of the conveyor tube 12 is as small as possible to increase the flow rate of the conveyor. As shown, it is necessary to adopt a method such as attaching a heating device 13 to keep heating at all times. Alternatively, it is effective to make the transport flow turbulent, such as by processing the inner surface of the transport pipe 12 or making the pipe 12 a turbulent line. Most of the residue could be prevented.

微粒子搬送管12は搬送ガス分配装置114に接続され
る・搬送ガス分配装置114は、搬送管12より搬送が
スと共に送られてきた微粒子を一旦空間部で拡散さ妃更
に均一化をはかる、プラズマ部22へ導入する搬送がス
の最適流量を得るためにある一定部分を系外に排出して
搬送がスの分配を行うあるいは搬送されてくる間に凝集
が進んで特に粗大化し、九粒子を系外に排除して微細粒
子のみをプラズマ部22へ送り込むための分粒などを行
う働きをする部分である0分配装置114は、外周に加
熱装置1113を取り付けた小径の円筒管で微粒子搬送
管12を側壁より挿入して管末端部を上向きに1又黴粒
子導入管15を円筒管の上部より搬送管末端部と相対す
るように一定間隔をもって喬直に取り付け、円筒管底部
に流量調節@17を備え九排出管16を取り付けである
。この3本の管はいずれも10■φ1!度の細管であり
、粗大粒子及び分配された微粒子は余剰の搬送ガスと共
に底部排出管16より糸外に排出され、残りの微粒子は
一定流量の搬送ガスと共に導入管15へ導入される。
The particle transport pipe 12 is connected to a carrier gas distribution device 114.The carrier gas distribution device 114 diffuses the particles sent from the transport pipe 12 along with the gas in the space, and further homogenizes them into plasma. In order to obtain the optimum flow rate of the sulfur introduced into the transport section 22, a certain portion of the sulfur is discharged out of the system and the sulfur is distributed by the transporter, or during the transport, agglomeration progresses and becomes particularly coarse, resulting in 9 particles. The zero distribution device 114, which is a part that functions to perform particle sizing to send only fine particles to the plasma section 22 by excluding them from the system, is a small diameter cylindrical tube with a heating device 1113 attached to the outer periphery and is a fine particle transport pipe. 12 is inserted from the side wall, and the mold particle introduction tube 15 is installed vertically at a fixed interval from the top of the cylindrical tube so as to face the end of the conveying tube, and the flow rate is adjusted at the bottom of the cylindrical tube. 17 and nine discharge pipes 16 are attached. These three tubes are all 10■φ1! Coarse particles and distributed fine particles are discharged from the bottom discharge pipe 16 along with excess carrier gas, and the remaining fine particles are introduced into the introduction pipe 15 together with a constant flow rate of the carrier gas.

微粒子導入管15はfラズマ励起発光分光分析装に29
に接続される。導入された微粒子は図示する如く導入管
15.プラズマがス供給管18゜冷却ガス供給19から
成る3重管のプラズマトーチ20に運び込まれ、高周波
発生装置1[21によって形成される高温のプラズマ部
22に達して励起発光される。実施例では、プラズマが
スにはムrを1〜151/wa 、冷却ガスにはムrを
10〜1517m。
The particle introduction tube 15 is connected to the f-lasma excitation emission spectrometer 29.
connected to. The introduced fine particles are transferred to the introduction pipe 15 as shown in the figure. The plasma is carried into a triple tube plasma torch 20 consisting of a gas supply pipe 18 and a cooling gas supply 19, and reaches a high temperature plasma section 22 formed by the high frequency generator 1 [21] where it is excited and emitted. In the example, the mu r for the plasma is 1 to 151/wa, and the mu r for the cooling gas is 10 to 1,517 m.

微粒子搬送ガスにはムrを0.5〜147mで流して実
施した。励起された微粒子の発光スペクトルは集光レン
ズ23によって集められ、スリ、ト1反射鏡259回析
格子26からなる分光器24によって分光され、光電子
増巾管から成る検出@27゜成分含有率算出装#t28
によって咎々のスペクトル線強度が測定され、分析試料
中の合成分含有率を迅速に求められる。微粒子を励起発
光させる分析装置129には高周波誘導結合型発光分光
分析装置が最も適しているが、そのほかの各種アーク放
電、グロー放電勢のプラズマ励起発光分光分析装置ある
いは原子吸光分析装置などを使用できる。
The experiment was carried out by flowing the particle carrier gas at a flow rate of 0.5 to 147 m. The emission spectrum of the excited fine particles is collected by a condensing lens 23, separated by a spectroscope 24 consisting of a mirror 259 and a diffraction grating 26, and detected by a photomultiplier tube @27° component content calculation. Fitting #t28
The spectral line intensity of the sample is measured by this method, and the content of synthetic components in the analysis sample can be quickly determined. Although a high frequency inductively coupled emission spectrometer is most suitable for the analysis device 129 that excites fine particles to emit light, other types of arc discharge or glow discharge type plasma excitation emission spectrometer or atomic absorption spectrometer can be used. .

以上説明したように本発明によれば、溶融金属試料中の
含有成分をサンプリング勢の操作を行わすに1迅速かつ
精度よく直接分析することができ、金属の精錬プロセス
等の操業管11に極めて効果が大きい。
As explained above, according to the present invention, the components contained in a molten metal sample can be directly analyzed quickly and accurately in a sampling operation, and it is extremely useful for operating pipes 11 in metal refining processes, etc. Great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例装置の説明図である。 l:微粒子発生装置、 2:微粒子発生用円筒管、 3:加熱装置、     5:溶融金属、6:遮へい粗
管、    7:不活性がス導入管、10:加熱装置3
0対極、 12:微粒子搬送管、 14:搬送ガス分配装置、 15:微粒子導入管、  20:プラズマトーチ、24
:分光器、 29:グツズ1励起源を有する発光分光分析装置。
The drawing is an explanatory diagram of an embodiment of the device of the present invention. 1: Particulate generator, 2: Cylindrical pipe for particulate generation, 3: Heating device, 5: Molten metal, 6: Shielding tube, 7: Inert gas introduction pipe, 10: Heating device 3
0 counter electrode, 12: Particulate transport pipe, 14: Carrier gas distribution device, 15: Particulate introduction pipe, 20: Plasma torch, 24
: Spectrometer, 29: Emission spectrometer with Gutsuzu 1 excitation source.

Claims (1)

【特許請求の範囲】 底部はIlk金属表面近傍に開口し、上部にはゾツJe
!アーク、アー!、スl臂−り、電子ビーム。 レーデ−ビー五等のいずれかの加熱装置に接続する加I
IkIllII射管及び*m金属表面に対向し、岡照射
管より%蝦く、かつその外周K11間をもりて同心円状
に開口部を設けえ微粒子搬送管を取り付けえ密閉状微粒
子発生用円筒管、同円筒管の外部側lIK龜勧付け、底
部は溶融金属中に浸漬し、上部には不wi*tス導入管
を取り付けえ鐘へい用管、及び−一金属中に浸漬した!
ラズマアーI等の加#h装置の対電極i−ら構成される
微粒子発生数置。 上記微粒子搬送管の末端部9発光装置への微粒子導入管
及び余剰搬送fヌの排出管を取り付けた小番状容−から
成る搬送lス分配am、同微粒子導入管の末端、高周波
誘導結合型プラズマ等のfラズ−rll起源を有する発
光装置1分光−及び検出器等から成る発光分光分析装置
を主体に構成することを41黴とする溶融金属の直接発
光分光分析装置。
[Claims] The bottom part is open near the Ilk metal surface, and the top part is
! Arc, ah! , slender, electron beam. A power supply connected to any heating device such as a radar
IkIllII irradiation tube and *m A closed cylindrical tube for generating fine particles, facing the metal surface, having an opening concentrically spaced from the outer periphery K11 of the tube, and attaching a fine particle transport tube thereto; The outer side of the cylindrical tube was immersed in the molten metal, the bottom part was immersed in the molten metal, and the upper part was fitted with a stainless steel inlet tube, and the bottom part was immersed in the metal.
A particulate generation number composed of a counter electrode i of a device such as Lasmear I. The distal end of the particle conveying tube 9 A conveyance distribution am consisting of a small number-shaped container equipped with a particle introduction tube to the light-emitting device and a discharge tube for excess conveyance f, the end of the particle introduction tube, high-frequency inductive coupling type. A direct emission spectroscopic analyzer for molten metals, which mainly consists of an optical emission spectroscopic analyzer consisting of a light-emitting device having an f-raz-rll origin such as plasma, a detector, etc.
JP20115481A 1981-12-14 1981-12-14 Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method Granted JPS58102137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20115481A JPS58102137A (en) 1981-12-14 1981-12-14 Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20115481A JPS58102137A (en) 1981-12-14 1981-12-14 Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method

Publications (2)

Publication Number Publication Date
JPS58102137A true JPS58102137A (en) 1983-06-17
JPS6214774B2 JPS6214774B2 (en) 1987-04-03

Family

ID=16436274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20115481A Granted JPS58102137A (en) 1981-12-14 1981-12-14 Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method

Country Status (1)

Country Link
JP (1) JPS58102137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215483A2 (en) * 1985-09-20 1987-03-25 Nippon Steel Corporation Method of spectroscopically determining the composition of molten iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931678A (en) * 1972-07-27 1974-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931678A (en) * 1972-07-27 1974-03-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215483A2 (en) * 1985-09-20 1987-03-25 Nippon Steel Corporation Method of spectroscopically determining the composition of molten iron
US4730925A (en) * 1985-09-20 1988-03-15 Nippon Steel Corporation Method of spectroscopically determining the composition of molten iron

Also Published As

Publication number Publication date
JPS6214774B2 (en) 1987-04-03

Similar Documents

Publication Publication Date Title
JP3618377B2 (en) Elemental analysis by optical emission spectrometry in a laser-generated plasma in the presence of argon.
Darke et al. Review of solid sample introduction for plasma spectrometry and a comparison of results for laser ablation, electrothermal vaporization, and slurry nebulization
US3521959A (en) Method for direct spectrographic analysis of molten metals
Guo et al. Time-resolved particle image velocimetry and 3D simulations of single particles in the new conical ICP torch
Palásti et al. Laser-induced breakdown spectroscopy signal enhancement effect for argon caused by the presence of gold nanoparticles
JPS6146773B2 (en)
JPS58102137A (en) Direct spectrochemical analyzer for molten metal with fine particle evaporation and carrying method
WO1992002282A1 (en) Method and apparatus for analytical sample preparation
JPS59210349A (en) Analytical method and apparatus of molten metal by plasma emission spectrochemical analysis method for long-distance carriage of fine particle
JPS61178645A (en) Apparatus for measuring density of particle
JPS5890150A (en) Emission spectrochemical analyzing method for plasma arc directly molten small size group sample and device thereof
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
Prell et al. Analytical performance and transport studies using spark sampling followed by ICP excitation with a sequential spectrometer
JPS59157541A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
Chinnov et al. Spatial-temporal diagnostics of the system of a plasma stream interacting with a surface of heat resistant material
JPS5890152A (en) Direct emission spectrochemical analyzing method for small size metal sample and device thereof
JPS59157539A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPS5890151A (en) Direct emission spectrochemical analyzer for large size metal material
JPS59157542A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPS58102136A (en) Direct spectrochemical analytical method and apparatus for small-sized metal sample through fine particle generation and solution collection
JPS6220496B2 (en)
JPS59157540A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPH0148978B2 (en)
JPH0215816B2 (en)
JPS60162943A (en) Method and device for recovering evaporating fine particles and analyzing molten metal