JPS58102130A - Measuring instrument for drag coefficient of riser - Google Patents

Measuring instrument for drag coefficient of riser

Info

Publication number
JPS58102130A
JPS58102130A JP20014881A JP20014881A JPS58102130A JP S58102130 A JPS58102130 A JP S58102130A JP 20014881 A JP20014881 A JP 20014881A JP 20014881 A JP20014881 A JP 20014881A JP S58102130 A JPS58102130 A JP S58102130A
Authority
JP
Japan
Prior art keywords
specimen
test sample
riser
water
drag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20014881A
Other languages
Japanese (ja)
Other versions
JPS6326854B2 (en
Inventor
Toru Abe
亨 阿部
Eiichiro Ideno
出野 栄一郎
Takeshi Fujikawa
猛 藤川
Yoshio Inoue
喜雄 井上
Minoru Takemura
武村 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20014881A priority Critical patent/JPS58102130A/en
Publication of JPS58102130A publication Critical patent/JPS58102130A/en
Publication of JPS6326854B2 publication Critical patent/JPS6326854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Abstract

PURPOSE:To eliminate influences of waves on the water surface, a protection plate against waves and an eddy generating at the end of a test sample by a construction wherein two load cells spaced with a given distance are attached to the portion of the test sample simulated to a riser which is immersed in water. CONSTITUTION:A test sample 19 is attached via a load cell 16 to a piston rod 15 of a hydraulic sylinder 17 set on a carriage. The test sample 19 is provided with a protection plate 20 against waves at its uper part and with two load cells 21, 22 at its intermediate part. With the carriage being stopped or traveled at a constant speed, the cylinder 17 is operated to cause the mounted test sample 19 to vibrate in the direction of arrow. An exciting force exerted on the test sample 19 is detected by the load cell 16 and moments Mx1, Mx2, My1, My2 are detected by the load cells 21, 22, and the detected signals are applied to a data recorder 35 via a dynamic strain gauge 36, thereby to obtain the drag coefficient. In this way, since the drag coefficient is calculated from the sum and difference of those moments, the influence caused by an eddy can be eliminated substantially.

Description

【発明の詳細な説明】 本発明は、リエン)リライザーやマリンライブ−◆のラ
イザーか一嫌端流中で微動した場合にライず−が受ける
鴎体力を無次元化した抗力係数を#l3iI!するik
wに係り、特に水の表自波の影響をまったく受けず、且
つ供試体の軸端部の影響を無視しうるiに小さなものと
し、しかも実測データの検証を嶌能とすることによって
極めて蟲い積度を得ることのできるライす−の抗力係数
測定装置に関するものである。
[Detailed Description of the Invention] [Detailed Description of the Invention] [Detailed Description of the Invention] The present invention is based on the drag coefficient #l3iI! which is the dimensionless force of the seagull body force that the riser receives when the riser of Lien) or Marine Live◆ moves slightly in the flow. Ik to do
In particular, by setting i to a value so small that it is completely unaffected by water's surface waves and negligible from the influence of the shaft end of the specimen, and by verifying the actual measurement data at Shimano, it is extremely easy to use. The present invention relates to a drag coefficient measuring device for a lie which can obtain a high degree of loading.

設置・リエントリ作業では、支緩船から設置・リエンシ
リライず−(以下、Sライザー)を300−以蒙の*&
につるし、Sライザー下端慕に取り付けたスラスタで、
Sライザーを一一□的に位置−御する。 このとき、S
ライず−の挙1mlは、海水−1る躯体力(この場合は
、流体抵抗力〕によつ”(゛スミ8 <支配されるので
、最勉時間で111I度良く位館、−一を行うためには
、この躯体力をklmに見−會でとが会費である。 ま
た、スラスタによりS$1+1ザー下端を目的の位置に
論御する場合、スラス;*tm1kat1!は、Sライ
ザーの一有振動歎および陳m力に応じて遣切に定める会
費があり、流体力の地楡りが麿い場合には、鯛I11糸
、機械系、流体系の達成作用によって位置−御が正常に
働かず、不安定となるaJ艶性がある。
During the installation/reentry work, the installation/reentry (hereinafter referred to as S riser) was carried out from the supporting vessel to the
With the thruster attached to the lower end of the S riser,
Position and control the S riser. At this time, S
1 ml of water rises depends on the physical force (in this case, fluid resistance force) of seawater. In order to do this, it is necessary to calculate this body strength in klm.In addition, when controlling the lower end of the S$1+1 riser to the desired position using a thruster, the thrust;*tm1kat1! There is a fee that is determined in accordance with the vibration and force of the force, and if the flow of fluid force is slow, the position and control will be normal due to the effect of the sea bream I11 thread, mechanical system, and fluid system. It does not work properly and has an unstable aJ luster.

一般に、静水流体中に置かれた円柱が振動する場合、虐
常用いられる円柱の流体抵抗の式をall化することに
よって流体力を算出する。 しかし、11211・リエ
ントリ作業を行う海洋条件では、潮流の影響とライザー
の羨杉の影響が入り、この算出式の適用条件範囲外にな
ることが予想され、このままの式を用いて一#系を決定
することは危険Cある。
Generally, when a cylinder placed in a hydrostatic fluid vibrates, the fluid force is calculated by integrating the frequently used expression of the cylinder's fluid resistance. However, in the ocean conditions where 11211 reentry work is carried out, the influence of tidal currents and the influence of the rising cedar on the riser are expected to be outside the range of applicable conditions for this calculation formula. It is dangerous to determine C.

讐のためf毫は、第1w1Jに示すようなライザーをシ
した供試体(1)をp−ドセルC)を介して水II(3
1、a &:Mり下げ、供試体(υを水中で移動させる
こと!14よってp−ドセル12)にかかった車力又は
モーメントを−出し、X−Y方向の二次元平向における
1体力を無次元化した抗力係数を算出している。
For the sake of my enemy, I sent the specimen (1) with a riser as shown in 1st w1J through water II (3
1. A &: M is lowered, the vehicle force or moment applied to the specimen (moving υ in water! 14, therefore p-docel 12) is calculated, and the body force in the two-dimensional plane of the X-Y direction is calculated. The drag coefficient is calculated by making it dimensionless.

1し・謝しこの場合、第1にロードセル12+が水向上
に出ているので、水のmm液による影響を多分に受け・
、また82に、供試体(1)の末端向(4)が平向であ
るので、軸端部において渦流を生じ、これらによる三次
元的な外力の影響が無視できない。 更に、供試体(1
)の水面部分には、木表−の一度の波立ちを防止して表
面波の影響をできるだけ少なくするための波よけ板面が
水平に取り付けであるが、この波よけ板(5)に対する
水の抵抗力も測定談差の要lとなる。 これらの誤差I
!!因のうち第2の点1判いては、供試体の端面4)と
水−(3)の底面(6)と9、練−の距m轡をできるだ
け小さくすることによmft1llQの発生を最小限に
することが可能である岸51こうするためには供試体の
長さによって大型・巨(泳榴が必要で、その深さも高い
精度で一定にせねばならす、縁面(6)を鏡面等の滑ら
かなものとする必要があり、不経済である。
1. Apology In this case, firstly, the load cell 12+ is exposed to water, so it is greatly affected by the mm liquid of water.
, 82, since the end direction (4) of the specimen (1) is flat, vortices are generated at the end of the shaft, and the influence of three-dimensional external forces due to these cannot be ignored. Furthermore, the specimen (1
) is installed horizontally on the water surface in order to prevent the wooden surface from rippling once and to minimize the influence of surface waves. Water resistance is also a key factor in measurement differences. These errors I
! ! Regarding the second point (1), the generation of mft1llQ can be minimized by minimizing the distance between the end face 4) of the specimen and the bottom face (6) and 9 of the water (3). Shore 51 In order to do this, depending on the length of the specimen, a large/huge swimsuit is required, and its depth must be kept constant with high precision. It needs to be smooth, which is uneconomical.

本命−は、上記のような測定装置を改良して精度が良く
、シかも経済的な装置を提供することを目的とし、その
要旨とする拠か、ライザーに検した供試体を水中に挿入
し、該供試体に&111を与えて供試体にかかる水の流
体力を実測し、この流体力から抗力係数を算出するライ
ザーの抗カ係数測定輪皺におい工、供試体?水中に没入
した部分に一定閲−をおいて2個のロードtルを蝋り付
けた点にあるライブ−の抗力係数一定装鰍を提供する勢
會である。
The purpose of this project is to improve the above-mentioned measuring device and provide a highly accurate and economical device. , give &111 to the specimen, measure the fluid force of the water applied to the specimen, and calculate the drag coefficient from this fluid force.Measure the drag coefficient of the riser. It is a force that provides a constant load with a live drag coefficient at the point where two rods are brazed with constant inspection on the part immersed in the water.

・噂いて112図以下の添付図−を参照しつつ、本発明
を具体化した実施例について説明す、る0 こご覧第2
mは、本発明の一実施例に係る抗力係数−拳**のmm
図、第3図、第4図は、それぞれWts論−に用いるこ
とのでさる供試体の働−向図版「嬉5図は、同実−例の
測定回路のブロック図、第6図は、流体力の算出式の#
Q吻に用いる供試体の概略−vIi図である。
・An example embodying the present invention will be explained with reference to the attached figures following Figure 112.
m is the drag coefficient-fist** mm according to an embodiment of the present invention
Figures 3 and 4 are diagrams of the working direction of the specimen used in the WTS theory, respectively. # of physical strength calculation formula
It is a schematic-vIi diagram of the specimen used for Q proboscis.

112−において、架台(至)上には、架台のチャンネ
ルall、allに平行の2本のガイドバー(2)、−
が−歇すれている。 このガイドバーt1′a、−によ
って矢印−の方向へ細動自在に支承された取り付はブロ
ック−には、ガイドバー−1(至)と平行のピストンロ
ッド−がw増さiLでいる。 ビスシンロッド−は、先
Im酩近傍にp−ドセル(至)を有し、油圧シリンダO
Bの用動軸であり、油圧シリンダ面は架台6翻一定され
ている。 ガイドバー−1(2)と取り付゛、砂プ四ツ
タ鏝との麿動部には、ローラーペアリリ′ンh等を介在
させ、滑らかな槽動を得ることが望★ルい。
At 112-, on the pedestal (to) are two guide bars (2) parallel to channels all and all of the pedestal, -
- is slowing down. The mounting block supported by the guide bar t1'a so as to be freely movable in the direction of the arrow has a piston rod parallel to the guide bar 1 with a length iL. The screw rod has a p-cell near the tip and a hydraulic cylinder O.
This is the operating axis of B, and the hydraulic cylinder surface is fixed around the base 6. It is desirable to interpose a pair of rollers, etc., in the moving parts between the guide bar 1 (2), the attachment, and the sand plow trowel to obtain smooth tank movement.

j、1jli謙り付はブロック舖には重直軸(至)が−
着されてに港、この自直軸(至)の下端には、ライザー
を換し蛤僧柱状の惧試体備が**に取り付けられている
。 鉤は供試体(至)の上部に取り付けた波よけ板であ
り、供試体a場の中−には2個のロードセル(社)及び
鋤が設けら′れており、崗ロードセルー1−閏のIIW
Aは(Ill)で、下のロードセル働から供試体■の末
端部(至)までの距急は(e2)である。 供試体−の
木端部−は、この部分でのm概の発生を一カ避けるため
球形に加工されている。 −は、供試体υ場を一直軸(
至)に取り付けるための7ランジである。
j, 1jli lower axis is block or vertical axis (to) -
At the port, the riser was changed and a clam column-shaped test specimen was attached to the lower end of this vertical axis. The hook is a wave-shielding plate attached to the top of the specimen, and two load cells and a spade are installed inside the specimen. IIW
A is (Ill), and the distance from the lower load cell to the end (to) of the specimen (2) is (e2). The wood end of the specimen was machined into a spherical shape in order to avoid the occurrence of roughness in this area. - represents the specimen υ field on the straight axis (
This is a 7-lunge for attaching to (to).

又−及び(至)は、供試体の変位及び加速度を検出する
ためのポテンショメータ略よりなる!位置及びJ]g?
IM度針である。
Also, - and (to) are abbreviations for potentiometers for detecting displacement and acceleration of the specimen! Position and J]g?
It is an IM degree needle.

供試体a−のwjP細は第3図及び第4図に示す−りで
あり、1択及び下段のロードセル同及び@の閾・1蒙ま
れた筒体−と下膜ロード七ルーの下部に取を討ける11
体(至)、該筒体(2)の先端に返書る半球状の本動部
−1上段ロードセル幼と取り付は用の7ランジーとの閾
に設ける筒体(2)とより成り、全体としてライザーを
模した形状となっている。 第3図に示したのは、ロー
ドセル動、(至)と筒体(至)、鞠、−の外径か◆しい
小舗の供試体で、第4図にボしたのは、供試体a湯の外
径がロードセルよりも大きい、大掴のライザーに模した
ものである。
The wjP details of specimen a- are as shown in Figures 3 and 4, and the 1-choice and lower-stage load cells are the same, the threshold of @1, the cylindrical body covered with 1- and the lower part of the lower membrane load 7 11 to defeat
The main body (2) has a hemispherical shape attached to the tip of the cylindrical body (2), and the upper stage load cell is attached to the cylindrical body (2) provided at the threshold of the 7 lunge. It has a shape that resembles a riser. Figure 3 shows a small specimen with a small outer diameter of the load cell movement (to), cylinder (to), ball, -, and the one shown in Figure 4 is specimen a. The outside diameter of the hot water is larger than the load cell, imitating a large riser.

従ってロードセル−1(2)は、それぞれ円板状危リフ
ト(至)、(転)を設けた円柱体橢、儲の中へ仕mまれ
でいる。 上記スリット[有]、(2)は、ロードセル
の感度を上けるために、円柱体が容易にたわみつるよう
にするものである。
Therefore, the load cell 1 (2) is housed in a cylindrical body provided with a disc-shaped lift (end) and a (turn), respectively. The slit (2) allows the cylindrical body to easily bend in order to increase the sensitivity of the load cell.

続いてこの装置を使った測定手触について親御する。 
糖2図に示した装置と油圧シリンダ(2)の−一及び各
ロードセルや毅位計−1加達度lt@からの信号を賞&
yて抗力係数をil′mする演算ユニット(十図享)等
は、全て水槽に沿って走行する台本に秦せられて水種上
を移動する。 供試体(2)は、波よけ&(2)から丁
が水中に没入される。 滴定のモードとしては、台車を
走行させない場合(んち潮流がない場合を一定したモー
ド)と、台車を走行させた場合(I4Jち−―Ia流中
にライザーがあることを一定したモード)とがあり、a
Sのモードは史暢ライV−の伽動方崗を台車の走行方向
と同一とした場合と、台車の走行方向に直角となした場
合(即ち潮流と崗−の、又は−概に直角の方向に加脂す
る場合)とに分けられる。 こうして台車を停止させた
状膝又は一定速度で走行させつつ、油圧シリンダtl力
を作動させて、取り付はブロック(ロ)及び供試体ll
場を矢印0の方向へ楓々の伽−及び振l1lIJ111
波数で一1IIJさせ各データを採取する。
Next, parents are taught how to measure using this device.
2. Receive the signals from the device and hydraulic cylinder (2) shown in Figure 2, each load cell, and the progress indicator -1.
The arithmetic unit (Juzu Kyou) that calculates the drag coefficient il'm by y is all moved on the water surface by a script that runs along the water tank. The specimen (2) is immersed in water from the wave shield & (2). There are two titration modes: when the trolley is not running (a constant mode when there is no current) and when the trolley is running (a constant mode when there is a riser in the I4J-Ia flow). There is, a
The S mode is the case where the direction of movement of the Shuchin Lai V- is the same as the running direction of the bogie, and the case where it is made perpendicular to the running direction of the bogie (i.e., when the direction of movement of the tidal current is the same as the running direction of the bogie (i.e., when the direction of movement is at right angles to the tidal current, or approximately at right angles). (When adding fat in the direction) In this way, while the trolley is stopped or running at a constant speed, the hydraulic cylinder tl force is activated, and the mounting is carried out on the block (b) and the specimen ll.
Move the field in the direction of arrow 0 and move Kaede no Gaya.
The wave number is 11IIJ and each data is collected.

各検出−からの情報の流れは、#Is図に示す愈りで、
供試体U湯の藏位は、油圧シリンダに取り付けられたポ
テンショメータ(2)によって1定され、直流増幅m@
を経てデータレコーダーに送られる。 又供試体a−の
加速度も、加速度計(至)により測定され、1ILrI
L増−一かりデータレコーダ(至)に送出商れる。 供
試体にかびる1ilIIR力は、ピストンロッド−の中
間に設けたロードセル−によって検出され、動★#(2
)に送られ、上下段のロードセル(社)、−によって検
出された供試体にかb・る流体力による水平二方向(X
、Y方向)のモーメン)Mxよ、 My 1. MXz
、 MFIの信号も動金計(至)に送られ、それぞれデ
ータレコーダーへ入力きれる。 データレコーダーに記
憶された各データは、ビジグラフ面及びシンクロスコー
プ−によって敏察することができる。 この#使用する
フィルタ(至)は、崗ロードセルからの七−メンF側号
が位相のずれがない状―で出力されねばならないことか
ら、同位相でフィルターをかけるデュアルディ“フード
フィルターを洗用する。 −は実時間で周波数の分析等
を行うリアルタイムアナライザである。
The flow of information from each detection is as shown in the #Is diagram,
The position of the sample U hot water is fixed by a potentiometer (2) attached to a hydraulic cylinder, and the DC amplification m@
and then sent to the data recorder. The acceleration of specimen a- was also measured by an accelerometer (to), and 1ILrI
L increase - Sends to the data recorder (to). The 1ilIIR force applied to the specimen is detected by a load cell installed in the middle of the piston rod, and the
) and detected by the upper and lower load cells (-), the specimen is moved in two horizontal directions (
, Y direction) moment) Mx, My 1. MXz
, MFI signals are also sent to the movement meter (to) and can be input to the data recorder. Each data stored in the data recorder can be viewed with a visual graph and a synchronoscope. The filter to be used for this # is a dual-di "hood filter that filters in the same phase because the 7-men F side signal from the load cell must be output with no phase shift. - is a real-time analyzer that performs frequency analysis etc. in real time.

デュアルディケードフィルター(至)を通って侮られた
各ロードセルでのモーメント42 、次のltt算式瞑
華人8れ、抗力+ik数の演算が行われる。 即ち、−
6図にがしたように水による)h−Y二次元乎園咋での
振力をWとすると、各ロードセル(2)、(2)Qlj
に作用するモーメント地、−2は次のα)、(社)式で
表わされる。
The moment 42 at each load cell that has passed through the dual decade filter (to) is calculated using the following LTT formula: drag + ik number. That is, −
As shown in Figure 6, if the vibration force in the two-dimensional space (due to water) is W, then each load cell (2), (2) Qlj
The moment force acting on -2 is expressed by the following α) formula.

M −L w (h +lz)”   ・・−・・(I
)−2 町=1..X      、−(7) (I)→億)より 従って を得る。
M −L w (h +lz)” ・・・・(I
)-2 town=1. .. From X, -(7) (I) → billion), we therefore obtain.

ご朴に(転)式を代入して ’   −2(V鴫−鴛f−/I、” −−−−−ηこ
しでMl及びM2が実測され10が既知であるからWが
求められる。
By substituting the (conversion) formula into '-2(V雫-雛f-/I,''------η), Ml and M2 are actually measured and 10 is known, so W can be found.

一方供試体の11の一分に作用する全抵抗力FはF =
 wDJl −:k Cdpv2DJ1−−−−−− 
(V)で表わされる。 ここにDは供試体の外径、襲・
はtr1116. 6FI式ニbイテddpiilNI
J、V ハ%、flAaiq、/IfI11”は骨式に
よって得られるから上式よ111λ抹1(1v) 力係数Cdが演算される− また(2)式に実温された”ze’%及び既知の10を
代入することによって、計算上のムが求められるか、こ
の値と実際の1gとを比較することによつ丁夷個された
Ml、M怠の妥当性を検証することがIfi詭であり、
この検証を行うことで温室データ6m−性がIIIA曙
的に増大し、測定精度を向上させることができる。
On the other hand, the total resistance force F acting on one part of the specimen is F =
wDJl −:k Cdpv2DJ1−−−−−
(V). Here, D is the outer diameter of the specimen,
is tr1116. 6FI type Nibite ddpiilNI
Since J, V Ha%, flAaiq, /IfI11'' can be obtained by the bone equation, the force coefficient Cd is calculated from the above equation. By substituting the known value of 10, the calculated value of M can be found, or by comparing this value with the actual value of 1g, the validity of the calculated values of Ml and M can be verified. It is a sophistry,
By performing this verification, the greenhouse data 6m-characteristics can be significantly increased and the measurement accuracy can be improved.

更に、奥側されたMl及びMlは、それヂれ流体力によ
るモーメン) Mlと一端部(至)に発生する渦直によ
って生じるモーメントM′との和であるが、一式におい
ては、・−1と町の差が間層となることから、外乱であ
る三次元的な一流力による一端部の影響「ははとんど消
去され、検出一度がより一層’14fflllする。
Furthermore, Ml and Ml moved to the back are the sum of Ml (moment due to fluid force) and moment M' caused by the vortex straightness generated at one end (end), but in the set, -1 Since the difference between the city and the town becomes an interlayer, the influence of the three-dimensional current force that is the disturbance on one end is almost eliminated, and the detection becomes even more difficult.

1.凋記実−餉では、モーメントを求めるロード七ノ″
l#/′M用い−たが、そのかわりに供試体に性用する
ス植≦1=−h力を侵出する四−ドセルを用いても間様
効**iしる。 また供試体の形状は、円柱のみで卒、
1角柱、その他仕意の麺状のものe遍択できる。 更に
上記実施例では水槽内で供試体を移動させたが、供試体
を固定して水の方t−流動させてもよい。
1. Rikiji - In the moment, the road is seeking a moment.''
1#/'M was used, but a similar effect was also found by using a four-docel cell that exudes a force of 1=-h applied to the specimen instead. In addition, the shape of the specimen is only cylindrical.
You can choose from 1 square prism and other noodle-shaped items. Further, in the above embodiments, the specimen was moved within the water tank, but the specimen may be fixed and the water allowed to flow.

本発明は以上述べた如く、供試体の水中に没つした部分
に一定間隔をあけて2個のロードセルを取り付けたもの
であるから、木表−における三次元的な外乱、飼えば波
浪の影響や皺よけ叡の動勢をロードセルが検出しないこ
と、及び2個のロードセルに作用するモーメントの差か
計算1関−となるため供試体の軸*Sにおける一流の影
響かはとんど消去されることにより構出精度が飛−的に
同トすると共に、精度の高い特殊な水槽が不賛であるか
ら馳錆釣であり、又波よけ叡を便って水−低Fによる1
11度の低下を除くことができる。
As described above, in the present invention, two load cells are attached at a certain interval to the submerged part of the specimen, so that three-dimensional disturbances on the wooden surface and the influence of waves can be avoided. Since the load cell does not detect the movement of the wrinkle guard and the difference in the moment acting on the two load cells, the influence of the first force on the axis *S of the specimen is almost eliminated. By doing so, the composition accuracy is dramatically the same, and since a special aquarium with high precision is not recommended, it is a slow fishing, and also by taking advantage of the wave prevention method, the water-low F 1.
A drop of 11 degrees can be eliminated.

1、に実−されたデータの検証が11j能であるので澱
肩の4s鎖性が着るしく向上する。 更にまた、軸:体
の木端部を球形に炒成した場合に番ま、一端部における
#&流の発生が一層少なくなり、測定精度が向上すると
共に、各ロードセルからの(Iせ出力回路にデュアルデ
ィケードフィルターを毅各すれば、各1−ドセルからの
出力の位相か合致し、位相差による娯差が解消される。
1. Since the verification of the data carried out in 1.1 is effective, the 4S chain property of the stagnant shoulder improves considerably. Furthermore, when the wood end of the shaft body is fired into a spherical shape, the occurrence of #& flow at one end is further reduced, improving measurement accuracy, and reducing the output circuit from each load cell. If a dual-decade filter is applied to each of the two, the phases of the outputs from each one-door cell will match, and the difference due to the phase difference will be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の測定装置の−I!LI図、第24よ、
本発−の一層m例に係る抗力係数測定装置の斜視−1$
1311!!2.114図は、それぞれ同案−例に用い
ることのでさる供試体の個断面図、港5図4よ、−夷ぬ
例の測定−鮎のブロック図、第611、流体力の算出式
のlI!−に用いる供試体の概略軸−間部ある。 J14100m明) 19・・・供試体、   21,22・・・ロードセル
23 ・・・末@fl、、   39−・・デュフルデ
4’r−ト°フィルタ〇 特許出願人    工業技りIIk院長  111−?
、 −第3図 114図 I511
FIG. 1 shows -I! of a conventional measuring device. LI diagram, number 24,
A perspective view of the drag coefficient measuring device according to the present invention - 1 dollar
1311! ! 2. Figure 114 is the same proposal - Individual cross-sectional view of the specimen used in the example, Port 5 Figure 4, - Measurement of the unprecedented example - Block diagram of sweetfish, No. 611, Calculation formula for fluid force. lI! - Approximately the axis-to-center area of the specimen used. J14100m light) 19...Specimen, 21,22...Load cell 23...end@fl,, 39-...Dufulde 4'r-to °filter〇Patent applicant Industrial Technology IIk Director 111-?
, -Figure 3 114 Figure I511

Claims (1)

【特許請求の範囲】 l、 ライザーに横した供試体を水中に挿入し、該供試
体に振動を与えて供試体にかかる水の流体力を実−し、
このm体力から抗力係数を算出するライザーの抗力偽敵
一定装置において、供試−一の水中に没入した部分に一
定−−をおいて2個のロードセルを取り付けたことを特
徴とするライザーの抗力係数測定装置。 2、供試体の車端錫が球形に形成されている特許請求の
m間第1積に紀噴したライブ−の抗力係歇鰯定装置。 3.2@の・−ドセル;・らの信号を妬塩する一路にデ
ュアルディケード71#ターが設けられている特許請求
の範11JI11mに記載したライブ−の抗力線歇一定
装置・
[Claims] l. Inserting a specimen lying on a riser into water, applying vibration to the specimen to realize the fluid force of water acting on the specimen;
In the riser drag false enemy constant device that calculates the drag coefficient from this m physical strength, the riser drag is characterized by attaching two load cells at a constant value to the submerged part of the test sample. Coefficient measuring device. 2. A live drag-retaining intermittent sardine determination device in which the test specimen has a spherical shape. 3.2 A live drag line constant device according to claim 11JI11m, in which a dual decade 71# tar is provided in one path that receives the signal of @.
JP20014881A 1981-12-14 1981-12-14 Measuring instrument for drag coefficient of riser Granted JPS58102130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20014881A JPS58102130A (en) 1981-12-14 1981-12-14 Measuring instrument for drag coefficient of riser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20014881A JPS58102130A (en) 1981-12-14 1981-12-14 Measuring instrument for drag coefficient of riser

Publications (2)

Publication Number Publication Date
JPS58102130A true JPS58102130A (en) 1983-06-17
JPS6326854B2 JPS6326854B2 (en) 1988-05-31

Family

ID=16419582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20014881A Granted JPS58102130A (en) 1981-12-14 1981-12-14 Measuring instrument for drag coefficient of riser

Country Status (1)

Country Link
JP (1) JPS58102130A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532801A (en) * 1984-05-17 1985-08-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for determining small magnitude fluid-dynamic drag resistance differentials between different structural configurations of a model
CN102313636A (en) * 2011-08-02 2012-01-11 上海交通大学 Vortex-induced vibration simulation test device for deep sea riser model with movable top end under action of step flow
CN104697740A (en) * 2015-03-25 2015-06-10 浙江海洋学院 Water tank based accurate force measurement method
CN105241623A (en) * 2015-09-18 2016-01-13 天津大学 Local flow velocity increase inclination angle step incoming flow marine riser vortex-induced vibration testing device
CN106768765A (en) * 2017-01-19 2017-05-31 中国石油大学(华东) A kind of experimental provision for studying riser systems solid liquid interation characteristic
CN113848058A (en) * 2021-08-03 2021-12-28 石家庄铁道大学 Railway hydraulic active control vibration reduction support test system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532801A (en) * 1984-05-17 1985-08-06 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for determining small magnitude fluid-dynamic drag resistance differentials between different structural configurations of a model
CN102313636A (en) * 2011-08-02 2012-01-11 上海交通大学 Vortex-induced vibration simulation test device for deep sea riser model with movable top end under action of step flow
CN104697740A (en) * 2015-03-25 2015-06-10 浙江海洋学院 Water tank based accurate force measurement method
CN105241623A (en) * 2015-09-18 2016-01-13 天津大学 Local flow velocity increase inclination angle step incoming flow marine riser vortex-induced vibration testing device
CN106768765A (en) * 2017-01-19 2017-05-31 中国石油大学(华东) A kind of experimental provision for studying riser systems solid liquid interation characteristic
CN113848058A (en) * 2021-08-03 2021-12-28 石家庄铁道大学 Railway hydraulic active control vibration reduction support test system
CN113848058B (en) * 2021-08-03 2023-05-23 石家庄铁道大学 Railway hydraulic active control vibration reduction support test system

Also Published As

Publication number Publication date
JPS6326854B2 (en) 1988-05-31

Similar Documents

Publication Publication Date Title
CN108254032A (en) River ultrasonic wave time difference method method of calculating flux
CN109374726A (en) Rust of Rebar in Concrete dynamic nondestructive monitoring sensor and system based on magnetic field
CN105486487A (en) Wave detection system
JPS58102130A (en) Measuring instrument for drag coefficient of riser
BRPI0600797B1 (en) WAVES AND TIDES MONITORING AND RECORD SYSTEM
CN207147454U (en) Mud detection bar
Smith Measurement of turbulence in ocean boundary layers
West et al. Turbulence measurements in the Great Ouse estuary
Arntsen Disturbances, lift and drag forces due to the translation of a horizontal circular cylinder in stratified water
RU2747854C2 (en) Method for measuring seawater density from mobile hydrophysical equipment carrier
RU2631017C2 (en) Method of measuring vertical profile of sea water density and device for its implementation
CN113552027A (en) Rapid test method for sailing suspended load sediment
Kacimov Discussion of “design of Minimum seepage-loss Nonpolygonal canal sections” by Prabhata K. Swamee and Deepak Kashyap
Patterson et al. INSTRUMENTATION OF A WEC DEVICE FOR CONTROLS TESTING.
SU357844A1 (en) The method for determining the coordinates of the center of gravity of a uniform body
Chakrabarti et al. Dynamic pressures around a vertical cylinder in waves
Patil et al. Investigation on corrosion of steel and deterioration of concrete structures under marine conditions
RU2136020C1 (en) Method for detection and tracking of electrical conducting extended underwater object from board the underwater search mount
Grekov et al. IST-1 and IST-1M current-velocity meters under the sea and river conditions
Adee et al. Experimental studies of the behavior of spar type stable platforms in waves
SU1545078A1 (en) Apparatus for ledelling ship-launching rail tracks
Tilicki et al. Re-analysis of Partially Ventilated Transom Flow Elevations for Deadrise Hulls
JPH01300067A (en) Method for measuring flow quantity in pumped storage power station
Yolhamid et al. Sound Velocity Profile (SYP) at Strait of Malacca for Maritime Warfare Usage
SU800635A1 (en) Hydrodynamic level