JPS58101498A - Method of producing heat sink board with gel heat transfer medium - Google Patents

Method of producing heat sink board with gel heat transfer medium

Info

Publication number
JPS58101498A
JPS58101498A JP19861281A JP19861281A JPS58101498A JP S58101498 A JPS58101498 A JP S58101498A JP 19861281 A JP19861281 A JP 19861281A JP 19861281 A JP19861281 A JP 19861281A JP S58101498 A JPS58101498 A JP S58101498A
Authority
JP
Japan
Prior art keywords
heat
transfer medium
gel
heat transfer
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19861281A
Other languages
Japanese (ja)
Inventor
幹雄 依田
柴田 易蔵
康信 藤田
川野 栄一
菊地 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19861281A priority Critical patent/JPS58101498A/en
Publication of JPS58101498A publication Critical patent/JPS58101498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はプリント板にf!着される電子部品を冷却する
のに用いるゲル状伝熱媒体を有する放熱板の製造方法V
C@する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an f! Method V for manufacturing a heat sink having a gel-like heat transfer medium used for cooling electronic components attached thereto
C @ do it.

近年、集積回路や大規模集積回路など急激な進歩VC序
ない、プリント板への実装密度ならびに複数枚のプリン
ト板を並設して構成される電子装置の実装置fは年々高
いものとなってきている。実装密度の向上に伴って電子
部品の発生する熱の処理が信頼性向上と相まって大きな
問題となっている。
In recent years, with the rapid progress of integrated circuits and large-scale integrated circuits, the mounting density on printed circuit boards and the actual device f of electronic devices composed of multiple printed boards arranged side by side are becoming higher year by year. ing. As packaging density improves, handling of the heat generated by electronic components becomes a major issue as reliability improves.

従来、このように冥袈e匿の^−電電子鉄圧おいては電
子部品の映潰され九プリント41ilk−複数枚遍設し
、ファン等によりS品に直接風t−当てて冷却する強制
風質方式が採られている。
Conventionally, in electrical and electronic equipment, multiple prints of electronic components were placed all over the place, and air was forced to blow directly onto the S products using a fan or the like to cool them down. The wind quality method is adopted.

−万、電子fi置の配置される3jl境は空g璽から電
気量、電14′g1から現場へと悪くなって米ている。
- 10,000, the 3JL environment where the electronic FI station is located is deteriorating from the empty gage to the electricity amount, and from the electricity 14'g1 to the site.

このような埠い環境において上述の如自債制風冷方式を
採用すると、空気中の1埃が集積回路などの部品のビy
s分に付着し短絡t−惹起することがるる。また、腐食
性ガスなどの存在する環境で使用される場合t/cはピ
ン部分が腐食性ガスVc1って腐食して細り、ついには
消失するという予期しない事故も発生している。
If the above-mentioned air cooling method is adopted in such a dry environment, a single piece of dust in the air can cause damage to parts such as integrated circuits.
It may adhere to the s-minutes and cause a short circuit. Furthermore, when the T/C is used in an environment where corrosive gas exists, an unexpected accident has occurred in which the pin portion of the T/C corrodes due to the corrosive gas Vc1, becomes thinner, and finally disappears.

このような問題tPs決する一方策として、プリント基
板及びi板上に 載された部品へのコーティング剤が研
究され、環境Vc強いコーティング剤も開発されている
。しかし、コーティング編カ厚く固いものであるために
部品交換ができないなど冥用土の欠点を庸しており必ず
しも最良のものではない。
As a way to solve such problems, research has been conducted into coating agents for parts mounted on printed circuit boards and i-boards, and coating agents with strong environmental Vc have also been developed. However, it is not necessarily the best as it suffers from the drawbacks of Meyoudo, such as the thick and hard coating and the inability to replace parts.

以上のように現場又は一般隠気室において使用される電
子装置では、ファンなどによって直接部品表面に風を当
て冷却直接強制風冷方式は信頼性の面から問題視されて
いる。
As described above, in electronic devices used on-site or in general hidden air rooms, the direct forced air cooling method in which air is directly applied to the surface of components using a fan or the like is viewed as problematic in terms of reliability.

直接風冷方式における上述の問題点t−解決するのに間
接冷却方式がある。間接冷却方式はプリント板をアルミ
材などで構成され九箱体内に収納し、この箱体にファン
などに1って風を当て冷却するものである。しかし、こ
の間接冷却方式は一般に箱体内に熱伝導率の悪い空気が
存在しているために冷却効率の悪いものとなっている。
In order to solve the above-mentioned problems in the direct air cooling system, there is an indirect cooling system. In the indirect cooling method, the printed board is housed in a box made of aluminum or the like, and the box is cooled by blowing air through the box using a fan or the like. However, this indirect cooling method generally has poor cooling efficiency because air with poor thermal conductivity exists inside the box.

また、他の解決方式としてファンを使わないで放熱させ
るノア/レス自冷方式がある。この自冷方式は部品実f
it!F度を下げ1部品表面から自然対流によって放熱
させるものであるが、しかし1部品の放熱面積にFi@
リ−するり、特に消費電力の大きい部品では放熱會充分
に成し得ないのが実状でるり、自冷方式は本質的に部品
が自然対tltKおける空気抵抗となり対流を如げてい
ること、又自然刈流による空気の流れが各部品面を一様
に流れないなどが冷却効率の悪い理由である。ま九、自
冷方式ではファンを1eつていないので、部品に対して
直接強い風が邑ることはないが、部品が大気に対して[
接触れているので1周囲環境からの1埃の蓄積などはさ
けられないものとなる。
Another solution is the Noah/less self-cooling method, which dissipates heat without using a fan. This self-cooling method
It! This method lowers the F degree and dissipates heat from the surface of each component by natural convection, but the heat dissipation area of one component is
The reality is that it is not possible to achieve sufficient heat dissipation, especially for components with large power consumption, and in the self-cooling system, the components essentially become air resistance against the natural temperature, which reduces convection. Another reason for the poor cooling efficiency is that the air flow due to the natural mowing flow does not flow uniformly over the surfaces of each component. Also, since the self-cooling system does not have a fan, strong winds do not blow directly against the parts, but the parts are exposed to the atmosphere.
Since they are in contact with each other, accumulation of dust from the surrounding environment is unavoidable.

このような点を解決する几め1本出顧人は先に、電子部
品を装着したプリント板の片dIBるるいは両面に配置
される放熱板のプリント板対向面に熱伝導率が良く弾力
性のめる平板状のゲル状伝熱媒体を粘着させておき、こ
のゲル状伝熱媒体が少なくとも電子部品の発熱部と密着
するように構成し、部品の発生熱をゲル状伝熱媒体を介
して効率よく放熱板に伝え放熱させるようにした冷却装
置を逼塞している。
A method to solve this problem: The seller first decided to use a heat sink with good thermal conductivity and elasticity on the opposite side of the printed board, which is placed on one side of the printed board on which electronic components are mounted, or on both sides of the printed board. A gel-like heat transfer medium in the form of a sticky flat plate is adhered, and the gel-like heat transfer medium is configured to be in close contact with at least the heat generating part of the electronic component, so that the heat generated by the component is transferred through the gel-like heat transfer medium. The cooling device, which is designed to efficiently transfer heat to the heat sink and dissipate it, is blocked.

この冷却装置を第1〜3図を用いて説明する。This cooling device will be explained using FIGS. 1 to 3.

第1図〜$3図において、 lr!プリント基板で、−
面に電子部品2が装着され、他面にはピン部分が突出し
ている。1ariプリント基板の豊栓部である。プリン
)fjlはその両面に放熱板3&。
In Figures 1 to 3, lr! On the printed circuit board, -
An electronic component 2 is mounted on one side, and a pin portion protrudes from the other side. This is the rich part of the 1ari printed circuit board. Pudding) fjl has heat sinks 3 & on both sides.

3bが配置されている。放熱板3m、3bri発熱の大
きい部品の近傍の熱を放熱板全面に効率よく伝導させて
均一化するために熱伝導率のよいアルミ板や鋼板などに
よって形成されている。放熱板3m、3bは複数個の締
付ねじ8によってサボー)41,4bに固定される。サ
ポート45L、4bにはプリント基板1を案内し固定す
るための溝部51.5bが設けられている。サボー)4
jL。
3b is placed. The 3 m and 3 bri heat sinks are made of aluminum or steel plates with good thermal conductivity in order to efficiently conduct and even out the heat in the vicinity of components that generate a large amount of heat over the entire surface of the heat sink. The heat sinks 3m and 3b are fixed to the sabots 41 and 4b by a plurality of tightening screws 8. Grooves 51.5b for guiding and fixing the printed circuit board 1 are provided in the supports 45L, 4b. Sabo) 4
jL.

4bが放熱板3m、3bと段差がついているのは第1図
に示すプリント基板二二ツ)PUを電子装置筺体に挿入
する際のガイド溝として利用するためでるる、61,6
bは放熱板3m、3bのプリント基11対向面に平板状
に形成し粘着され九ゲル状伝熱媒体で、熱伝導率に優れ
、電子部品2に押付けた時に部品2tいためないよう可
撓性を有する。ゲル状伝熱媒体6m、5bとして11列
えばシリコンゲルが用いられる。ゲル状伝熱媒体(la
4b has a step with the heat dissipation plate 3m, 3b is for use as a guide groove when inserting the printed circuit board 22) into the electronic device housing shown in Figure 1, 61, 6.
Heat dissipation plate 3m, 3m, is formed into a flat plate on the surface of 3b facing the printed circuit board 11 and is adhesively made of gel-like heat transfer medium, which has excellent thermal conductivity and is flexible so as not to damage the component 2t when pressed against the electronic component 2. has. Silicon gel is used as the gel heat transfer medium 6m, 5b in 11 rows. Gel-like heat transfer medium (LA
.

6bはプリント基板lに装着された電子部品2の熱19
J:J卓良く放熱板3m、3bに伝えるためのもので、
113図に示すように常に電子部品2に9!f着するよ
うな厚さに構成される。9はフロントパネルでプリント
基板1と一体に結合されている。
6b is the heat 19 of the electronic component 2 mounted on the printed circuit board l
J: This is for transmitting information to the heat sinks 3m and 3b of the J desk.
113 As shown in figure 9! The thickness is such that it will adhere to the surface. Reference numeral 9 denotes a front panel which is integrally connected to the printed circuit board 1.

このような構成にすると、電子部品2から発生した熱は
ゲル状伝熱媒体@h、5bを介して放熱板31,3bK
伝見らレル、放熱[3&、3bO面積は電子部品2t−
プリント基板1に装着する際に間隔を必要とする関係上
から部品表面積の総和より数倍大きなものとなる。し九
がって、放熱を良好に行うことができる。その上、放熱
板3m。
With this configuration, the heat generated from the electronic component 2 is transferred to the heat sinks 31, 3bK via the gel-like heat transfer medium @h, 5b.
Denmi Rarel, heat dissipation [3&, 3bO area is electronic parts 2t-
Due to the spacing required when mounting on the printed circuit board 1, the surface area of the parts is several times larger than the total surface area of the parts. Therefore, heat dissipation can be performed well. In addition, there is a 3m heat sink.

3bは熱伝導率が良いもので形成されている丸めに局部
的に発熱の大きい部品が存在しても全[fFKわたって
温度分布が均一化される。このため1発熱の大きい部品
について考えると、等価的に放熱面積が非常に大きくな
っ九ことになり、極めて放熱効果を良くできる。また、
電子部品2が直接大気に露出することがないので、悪環
境でも部品に塵埃が蓄積することもなく、また、腐食性
ガスによりビン部分が腐食されることもなくなる。
3b is made of a material with good thermal conductivity, so even if there are parts that generate a large amount of heat locally, the temperature distribution is made uniform over the entire [fFK]. Therefore, when considering a component that generates a large amount of heat, the equivalent heat radiation area becomes very large, and the heat radiation effect can be extremely improved. Also,
Since the electronic component 2 is not directly exposed to the atmosphere, dust will not accumulate on the component even in a bad environment, and the bottle portion will not be corroded by corrosive gas.

このような冷却装置1*用化するKは放熱板にゲル状伝
熱媒体を粘着するのを簡単に行えることが要求される。
K for use in such a cooling device 1* is required to be able to easily adhere the gel heat transfer medium to the heat sink.

本@明の目的はこのような冷却装置に用いる放熱板の製
作’ftm単に行えるようにゲル状伝熱媒体を有する放
熱板の製造方法を提供することにある。
The purpose of this invention is to provide a method for manufacturing a heat sink having a gel-like heat transfer medium so that the heat sink used in such a cooling device can be easily manufactured.

本@明の特徴とするところは放熱板と対向する盤材のゲ
ル状伝熱媒体と接するlに屈曲可能なシートを装−する
ようにし九ことにるる。
The main feature of this book is that a bendable sheet is attached to the plate facing the heat sink, which is in contact with the gel-like heat transfer medium.

次に本発明に・よる放熱板の製造方法について第4図か
ら第6図管用いてIl!明する。尚以下の説明は放熱板
3m、伝熱媒体6aについて行なう。図においてaar
i上述故熱板、6mはゲル状伝熱媒体で調えばシリコン
ゲルが用いられる。シリコンゲルは注入時液状で加熱硬
化(四えば120Cで3時間)の後はゲル状となる。1
01.10bd伝熱媒体6aを成雛する為の製材で非金
属で作られている。11はα1■程度の折返し可能なシ
ートで、屈曲可能で、加熱時の熱に耐え得る!イラーシ
ート、テフロンシート、ビニールシートなどが用いられ
る。
Next, a method of manufacturing a heat sink according to the present invention is shown in FIGS. 4 to 6 using a tube. I will clarify. Note that the following description will be made regarding the heat sink 3m and the heat transfer medium 6a. In the figure aar
i For the above-mentioned heating plate, silicone gel is used for the 6m heat transfer medium. Silicone gel is in a liquid state when injected, and becomes a gel after being heated and cured (for example, at 120 C for 3 hours). 1
01.10bd It is made of non-metallic lumber for growing the heat transfer medium 6a. 11 is a foldable sheet of approximately α1■, which is bendable and can withstand the heat during heating! Color sheets, Teflon sheets, vinyl sheets, etc. are used.

不発fIAは仁のような構成となっており、その作業は
まず、第4図に示すような配置で並べ、これを第5図に
示すように組立て、(図示してないが組立後の締付はネ
ジ締めあるいはパネカt−もつクリップなどで行なう)
そしてシリコンゲルなどの樹脂を注入、7JIII熱後
、ml(1,10bt外し第6図の状態とする。この際
鑞材10bとシート11の剥離は極めて簡単にできる。
The unexploded fIA has a cylindrical structure, and the work involved first arranging it as shown in Figure 4, assembling it as shown in Figure 5, and then tightening it as shown in Figure 5. Attachment is done with screws or Paneka T-motsu clips, etc.)
Then, a resin such as silicone gel is injected, and after heating for 7JIII, ml (1.10bt) is removed to form the state shown in FIG. 6. At this time, the solder material 10b and the sheet 11 can be separated very easily.

そしてこの後にシート1lt−第6図に示すように折返
しながら剥離する訳でるるか1、この剥離も簡単に行な
うことができる。尚このシート11のないと、製材10
bt−外す際、これがtt y剛体に近い丸めと、ゲル
状伝熱媒体6aがgtabと放熱板SaKはり同面積で
接している九めにこの剥離は不可能でないまでも至−〇
作業である。
After this, the sheet 1lt is peeled off while being folded back as shown in FIG. 6, and this peeling can also be easily performed. In addition, without this sheet 11, the lumber 10
When removing bt, this is a very difficult task, if not impossible, since it is rounded almost like a rigid body, and the gel-like heat transfer medium 6a is in contact with gtab and the heat sink SaK beam with the same area. .

以上のように本発明によれば、シート11を櫨10bに
装着するだけで剥離作業が大−に改善される。その結果
、pル状伝熱媒体を有する放熱仮管簡単に製作できる。
As described above, according to the present invention, the peeling operation is greatly improved simply by attaching the sheet 11 to the oak tree 10b. As a result, it is possible to easily manufacture a heat dissipation temporary tube having a pulverulent heat transfer medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1第3図は本発明による放熱板を適用する冷却装
置の一列を示すもので、81図は斜視図、第2図は第1
図A−人′断面図、第3図は第2図におけるBs拡大図
、第41A−第6図は本発明の一実廁列を示す構成図で
める。 1・・・プリント基板、2・・・電子部品、3・・・放
熱板、第10 v、4 口 第62
Fig. 1 Fig. 3 shows a row of cooling devices to which the heat sink according to the present invention is applied, Fig. 81 is a perspective view, and Fig. 2 is a first
FIG. 3 is an enlarged view of Bs in FIG. 2, and FIG. 41A-FIG. 6 is a block diagram showing one actual row of the present invention. 1... Printed circuit board, 2... Electronic component, 3... Heat sink, 10th V, 4 Port 62nd

Claims (1)

【特許請求の範囲】[Claims] 1、 伝熱媒体としてのゲル状樹脂管放熱板と一体のも
のとして成型する際に、放熱板と対向する鑞材のゲル状
伝熱媒体と接する面に屈曲可能なシートt−装看するよ
うにし九ことt−%黴とするゲル状伝熱媒体を有する放
熱板の製造方法。
1. When molding the gel-like resin tube as a heat-transfer medium as an integral part with the heat-radiating plate, a bendable sheet T-mounted on the surface of the solder material facing the heat-radiating plate that is in contact with the gel-like heat-transfer medium. A method for manufacturing a heat sink having a gel-like heat transfer medium made of t-% mold.
JP19861281A 1981-12-11 1981-12-11 Method of producing heat sink board with gel heat transfer medium Pending JPS58101498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19861281A JPS58101498A (en) 1981-12-11 1981-12-11 Method of producing heat sink board with gel heat transfer medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19861281A JPS58101498A (en) 1981-12-11 1981-12-11 Method of producing heat sink board with gel heat transfer medium

Publications (1)

Publication Number Publication Date
JPS58101498A true JPS58101498A (en) 1983-06-16

Family

ID=16394079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19861281A Pending JPS58101498A (en) 1981-12-11 1981-12-11 Method of producing heat sink board with gel heat transfer medium

Country Status (1)

Country Link
JP (1) JPS58101498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852646A (en) * 1987-06-16 1989-08-01 Raychem Corporation Thermally conductive gel materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183165A (en) * 1975-01-20 1976-07-21 Hitachi Ltd Denshibuhinno reikyakuhoshiki

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183165A (en) * 1975-01-20 1976-07-21 Hitachi Ltd Denshibuhinno reikyakuhoshiki

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852646A (en) * 1987-06-16 1989-08-01 Raychem Corporation Thermally conductive gel materials

Similar Documents

Publication Publication Date Title
US6496367B2 (en) Apparatus for liquid cooling of specific computer components
US5812374A (en) Electrical circuit cooling device
US6530419B1 (en) Cooling system for electronic packages
US5852548A (en) Enhanced heat transfer in printed circuit boards and electronic components thereof
US7518871B2 (en) Liquid-based cooling system for cooling a multi-component electronics system
US20040070944A1 (en) Circuit card module including mezzanine card heat sink and related methods
JPH10215094A (en) Device for eliminating heat from pc card array
JPH02305498A (en) Cold plate assembly
JPS62260346A (en) Heat exchanger
TWI707628B (en) Heat dissipation device
JPH10256763A (en) Radiation box
US5550326A (en) Heat dissipator for electronic components
JPS58101498A (en) Method of producing heat sink board with gel heat transfer medium
JP2001111279A (en) Device for cooling electronic component
JPS60220954A (en) Cooling device for integrated circuit element
JPS58188188A (en) Printed circuit board heat sink structure
JPH07120865B2 (en) Printed board cooling structure
JPS58101497A (en) Cooler for electronic part
JPS58101447A (en) Cooler for electronic part
JPS5895896A (en) Cooler for electronic part
JPS5821900A (en) Cooler for electronic part
JPH012397A (en) Cooling structure of electronic circuit package
JPS5821899A (en) Cooler for electronic part
JPH09115279A (en) Magnetic disk device and electronic device mounting the same
US11997782B2 (en) Thermally conductive label for circuit