JPS5810103B2 - Cryogenic gas supply channel - Google Patents

Cryogenic gas supply channel

Info

Publication number
JPS5810103B2
JPS5810103B2 JP2290078A JP2290078A JPS5810103B2 JP S5810103 B2 JPS5810103 B2 JP S5810103B2 JP 2290078 A JP2290078 A JP 2290078A JP 2290078 A JP2290078 A JP 2290078A JP S5810103 B2 JPS5810103 B2 JP S5810103B2
Authority
JP
Japan
Prior art keywords
liquid
evaporation chamber
gas
joint
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2290078A
Other languages
Japanese (ja)
Other versions
JPS54115412A (en
Inventor
守屋潤一郎
小林敬蔵
沢田裕臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURIO MEDEIKARU KK
Original Assignee
KURIO MEDEIKARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURIO MEDEIKARU KK filed Critical KURIO MEDEIKARU KK
Priority to JP2290078A priority Critical patent/JPS5810103B2/en
Priority to AU39630/78A priority patent/AU3963078A/en
Priority to DE19782839214 priority patent/DE2839214A1/en
Priority to GB7837307A priority patent/GB2005000B/en
Priority to CA311,691A priority patent/CA1085178A/en
Priority to FR7826947A priority patent/FR2403789A1/en
Priority to SE7809969A priority patent/SE7809969L/en
Priority to CH994078A priority patent/CH628726A5/en
Priority to BR7806273A priority patent/BR7806273A/en
Priority to NL7809640A priority patent/NL7809640A/en
Priority to DK425178A priority patent/DK425178A/en
Priority to IT28057/78A priority patent/IT1098920B/en
Publication of JPS54115412A publication Critical patent/JPS54115412A/en
Priority to US06/109,271 priority patent/US4292973A/en
Priority to US06/276,647 priority patent/US4348873A/en
Priority to US06/288,918 priority patent/US4412538A/en
Publication of JPS5810103B2 publication Critical patent/JPS5810103B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

【発明の詳細な説明】 本発明は極低温ガスの供給流路、殊に液化したガスの貯
槽から液状で管路に排出する流体を気化させて極めて低
い温度のガスを供給する流路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow path for supplying extremely low temperature gas, and in particular to a flow path for supplying extremely low temperature gas by vaporizing fluid discharged from a liquefied gas storage tank to a pipe in liquid form. It is.

本出願人は実願昭52−74027号で「冷却治療装置
」の出願を行なった。
The present applicant filed an application for a "cooling treatment device" in Utility Model Application No. 74027/1983.

この考案はリュマチ、捻坐、打身、神経痛等の疾患に対
し患部に一70℃以下というような極めて低温のガスを
噴射し冷却して治療を行なう装置である。
This device is a device that treats diseases such as rheumatism, sprains, bruises, and neuralgia by injecting extremely low-temperature gas (lower than 170 degrees Celsius) onto the affected area to cool it.

研究の結果患部に適用するガスの温度は上記のような低
温、更にはより低い一170℃という温度のものが治療
効果を挙げるということについて次第に分って来た。
As a result of research, it has gradually become clear that the temperature of the gas applied to the affected area is as low as mentioned above, and even lower, at a temperature of -170°C, has a therapeutic effect.

このような低温ガスを患部に適用するには低温ガスを輸
送する管路が長いと、管路が治療する室温によって暖め
られ、管路末端から排出又は噴出するガスの温度が上昇
してしまう。
In order to apply such low-temperature gas to the affected area, if the pipe for transporting the low-temperature gas is long, the pipe will be warmed by the room temperature being treated, and the temperature of the gas discharged or spouted from the end of the pipe will rise.

そのため気体で輸送する管路部分の距離をなるべく短か
くすることを必要とするのである。
Therefore, it is necessary to shorten the distance of the pipe section for transporting gas as much as possible.

一般に大気を冷却したものは大気中の水分も一緒に冷却
氷結されているので、このような冷却した空気を患者の
患部に吹付けた場合に前記氷結した氷が直接患部に当っ
て患部を凍結させ、それによって凍症を起させる。
Generally, when air is cooled, the moisture in the air is also cooled and frozen, so when such cooled air is blown onto the affected area of a patient, the frozen ice directly hits the affected area and freezes the affected area. This causes frostbite.

従って一般の大気はこのような治療には不向きである。The general atmosphere is therefore unsuitable for such treatment.

それで市販のボンベ等の貯蔵せる液化ガスを用いる。Therefore, liquefied gas stored in commercially available cylinders is used.

本発明者の研究によると皮膚に刺激を与えず、又は毒性
がなく、且つ又治療室で爆発や火災の危険性がなく、然
も酸素欠乏のおそれのないものとし、更にその上容易に
上記した極低温が乾燥状態で得られる市販で廉価に得ら
れるものとしては液体酸素(沸点常圧−183℃)と液
体窒素(沸点常圧−196℃)の適当割合に混合したも
のが好ましいことが分った。
According to the inventor's research, it should not cause irritation to the skin or be toxic, and there should be no risk of explosion or fire in the treatment room, and there should be no risk of oxygen deficiency. As a commercially available product that can obtain extremely low temperatures in a dry state at a low price, it is preferable to use a mixture of liquid oxygen (boiling point: normal pressure -183°C) and liquid nitrogen (boiling point: normal pressure -196°C) in an appropriate ratio. I understand.

併しかかるガスの混合体を液化して貯槽に収めたものを
上記沸点近い低温ガスで患部に適用するにはなるべく患
部に近い位置で液体を気化させ、気化されたガスの輸送
路を短かくすることが望ましい。
However, in order to apply the above-mentioned low-temperature gas near the boiling point to the affected area by liquefying the gas mixture and storing it in a storage tank, the liquid must be vaporized as close to the affected area as possible, and the transport path for the vaporized gas should be shortened. It is desirable to do so.

併し気体の輸送路が短かくなると、僅かな不注意でも未
だ気化しない液状のまま液化ガスが患部に到達すること
がある。
However, if the gas transport path becomes short, even slight carelessness may cause the liquefied gas to reach the affected area in a liquid state that has not yet evaporated.

これ又危険なことである。本発明は上記の諸点に鑑みな
したもので、液化したガスの貯槽から液状で管路に排出
する流体を管路内で気化させ気化した極低温のガスを供
給する流路において、該流路内には前記液化したガスを
導いて液体から気体に蒸発させる蒸発装置を具えており
、該蒸発装置は該装置内へ流入する液化ガスの液体が所
定量に達すると前記蒸発装置への前記液体の流入を阻止
する弁機構を有した構造になっているものである。
This is also dangerous. The present invention has been made in view of the above-mentioned points, and the present invention has been made in view of the above-mentioned points. The evaporator is equipped with an evaporator that guides the liquefied gas and evaporates it from liquid to gas. The structure includes a valve mechanism that prevents the inflow of water.

上記の弁機構は電磁弁又は逆流防止弁等が用いられて、
操業中に上流即ち貯槽から液体のまま蒸発装置に流れ込
んだ多量の流体が、蒸発装置内で完全に気化せずに液体
のまま装置から下流に流れないようにするだめ蒸発装置
へ過剰の液体の流入を阻止するものである。
The above valve mechanism uses a solenoid valve or a check valve, etc.
To prevent a large amount of fluid flowing into the evaporator as a liquid from upstream, i.e., a storage tank, from the evaporator during operation, from being completely vaporized in the evaporator and flowing downstream from the evaporator as a liquid. This is to prevent the influx.

本発明の供給流路は気体が流れる下流末端は前記した考
案に記載しであるように椀体が取付けられ、この椀体は
横臥したり、又は片膝を付いたままの姿勢の患者の患部
に当てられる。
In the supply channel of the present invention, a bowl body is attached to the downstream end through which the gas flows, as described in the above-mentioned device, and this bowl body is attached to the affected area of the patient who is lying down or on one knee. applied to.

この場合椀体に続く流路は可撓管であることが望ましい
が、常温で可撓性で熱絶縁材であるゴム又はプラスチッ
ク材は上記した低温に於いては可撓性を保つことができ
ない。
In this case, it is desirable that the flow path following the bowl be a flexible tube, but rubber or plastic materials that are flexible at room temperature and are heat insulating materials cannot maintain their flexibility at the above-mentioned low temperatures. .

その上かかる低温に使用する場合管路の細い内径であっ
てもそれを取囲む絶縁層が厚くなるので管の外径は相当
太くなる。
Furthermore, when used at such low temperatures, even if the pipe has a small inner diameter, the surrounding insulating layer becomes thicker, so the outer diameter of the pipe becomes considerably thicker.

このような管路には到底可撓性を望むことができず剛性
でなければならない。
Such a conduit cannot be expected to have any flexibility and must be rigid.

そのため本発明の流路では椀体を直接取付けた流路末端
ととれに続く上流の剛性の流路部分には流路の軸の周り
を旋回し流路に気密に連通する第一継手と前記継手の軸
と直交する面上を旋回し且つ第一継手と気密に連通して
下流に向は流路を形成している第二継手からなる継手組
立体が少くとも一組具えられているものである。
Therefore, in the flow path of the present invention, at the end of the flow path where the bowl body is directly attached, and at the upstream rigid flow path portion following the end, there is a first joint that rotates around the axis of the flow path and communicates airtight with the flow path. At least one joint assembly consisting of a second joint that pivots on a plane perpendicular to the axis of the joint and communicates airtight with the first joint to form a flow path downstream. It is.

以下図面について本発明流路の実施例を詳記する。Embodiments of the flow path of the present invention will be described in detail below with reference to the drawings.

第1図において1は液化ガスの貯槽で断熱材2を介して
収容された壜3には液化ガスが貯えられ、液化したガス
液体は壜3に挿入されたパイプ4によって貯槽外に排出
される。
In Fig. 1, 1 is a storage tank for liquefied gas, and the liquefied gas is stored in a bottle 3 housed through a heat insulating material 2, and the liquefied gas liquid is discharged out of the storage tank through a pipe 4 inserted into the bottle 3. .

5はパイプに連なる管路6に設けられた開閉器Tは管路
に設けられたろ過器で液化ガス中に含まれる細氷片、塵
芥等を取除くものである。
Reference numeral 5 indicates a switch T provided in a conduit 6 connected to the pipe, and a switch T is a filter provided in the conduit to remove ice chips, dust, etc. contained in the liquefied gas.

本発明の一要点はろ過器7の下流で管路6に設けられた
電磁弁8と弁8の下流で該管路に設けられた蒸発室9か
らなる蒸発装置を具えたことである。
An important feature of the present invention is the provision of an evaporator comprising an electromagnetic valve 8 disposed in the conduit 6 downstream of the filter 7 and an evaporation chamber 9 disposed in the conduit downstream of the valve 8.

該蒸発室には貯槽1から管路6を経て流入する液化ガス
に浮上する検出用浮子10が設けられておる。
A detection float 10 that floats on the liquefied gas flowing from the storage tank 1 through the pipe 6 is provided in the evaporation chamber.

この浮子は蒸発室に流入した液化ガスの量が所定置部っ
て液面が上昇すると、これに伴って蒸発室内で上昇し、
例えば蒸発室の天井、その他に当ると電気信号を発する
ようになっている。
When the amount of liquefied gas that has flowed into the evaporation chamber increases and the liquid level rises, the float rises within the evaporation chamber.
For example, when it hits the ceiling of an evaporation chamber or anything else, it emits an electrical signal.

上記蒸発室は流入した液化ガスが室内に溜り、外気の温
度等で蒸発室の壁面を通し液化ガスが暖められると、液
化ガスは気化し、気化したガスは蒸発室の出口11から
管路を下流に流れる。
In the evaporation chamber, the liquefied gas that has flowed into the evaporation chamber accumulates inside the chamber, and when the liquefied gas is warmed by the outside air temperature through the wall of the evaporation chamber, the liquefied gas is vaporized, and the vaporized gas is passed through the pipe from the outlet 11 of the evaporation chamber. flows downstream.

上記した蒸発装置の作用について述べれば貯槽1から液
状で排出された液化ガスは管路6を通り常時開の電磁弁
8を経て蒸発室9に入る。
Regarding the operation of the above-mentioned evaporator, the liquefied gas discharged from the storage tank 1 passes through the pipe 6 and enters the evaporation chamber 9 via the normally open solenoid valve 8.

液化ガスは前記のように外気温度によって蒸発室内で気
化し蒸発室出口11から下流へ、例えば前記椀体のある
管路端に向けて流れる。
As described above, the liquefied gas is vaporized in the evaporation chamber depending on the outside air temperature and flows downstream from the evaporation chamber outlet 11, for example, toward the end of the pipe where the bowl is located.

管路端で気化ガスを続いて要求している間は液化ガスは
順調に蒸発室に流入し、該室内で気化して下流に排出さ
れる。
During the continuous demand for vaporized gas at the pipe end, the liquefied gas smoothly flows into the evaporation chamber, where it is vaporized and discharged downstream.

併し何等かの原因で液体が蒸発室に過剰に流入してしま
うことがある。
However, for some reason, an excessive amount of liquid may flow into the evaporation chamber.

この場合は蒸発室に続いて流入しだ液体は蒸発室内に溜
る。
In this case, the liquid that continues to flow into the evaporation chamber accumulates in the evaporation chamber.

蒸発室内に液体が溜ると浮子9は液面上昇につれて浮上
し、例えば蒸発室天井、その他に当って電気信号を発生
し、これによって電磁弁8を閉じて貯槽1からの液化ガ
スの蒸発室への流入を阻止する。
When liquid accumulates in the evaporation chamber, the float 9 rises as the liquid level rises, hits the ceiling of the evaporation chamber, etc., and generates an electrical signal, which closes the solenoid valve 8 and directs the liquefied gas from the storage tank 1 to the evaporation chamber. prevent the influx of

この場合、電磁弁を閉めないでおくと液体のまま腕体か
ら液化ガスが噴出して甚だしい障害を生ずる。
In this case, if the solenoid valve is not closed, liquefied gas will spew out from the arms while still being liquid, causing serious damage.

又下流へ気化ガスが充分流れないと蒸発室の内圧は気化
ガスの圧力によって上昇する。
Furthermore, if the vaporized gas does not flow downstream sufficiently, the internal pressure of the evaporation chamber increases due to the pressure of the vaporized gas.

この上昇した圧力が蒸発室に流入して来る液化ガスを貯
槽に戻す働きをするが、更に圧力が上昇すると加圧され
た気体が貯槽に流入し、これによって貯槽の圧力は急激
に上昇して貯槽内の液化ガスを大量に噴出させる結果に
なる。
This increased pressure works to return the liquefied gas flowing into the evaporation chamber to the storage tank, but as the pressure increases further, pressurized gas flows into the storage tank, which causes the pressure in the storage tank to rise rapidly. This results in a large amount of liquefied gas in the storage tank being spewed out.

併し本発明の蒸発装置は蒸発室の液面の上昇だけを検出
し、所定液面になれば浮子の発する信号によって電磁弁
を閉じるので、上流へは液化ガスが逆流せず貯槽にある
液化ガスを噴出するのを未然に阻止する効果がある。
However, the evaporator of the present invention only detects the rise in the liquid level in the evaporation chamber, and when the liquid level reaches a predetermined level, the solenoid valve is closed by the signal generated by the float, so the liquefied gas does not flow back upstream and the liquefied gas in the storage tank is removed. It has the effect of preventing gas from blowing out.

尚浮子が発する信号により電磁弁が作動する回路及び機
構は適業技術者ならば発明力なしで作成しうるので、そ
の詳細は省略する。
The circuit and mechanism for operating the solenoid valve in response to the signal emitted by the float can be created by any skilled engineer without any inventiveness, so the details thereof will be omitted.

尚上記実施例に代って蒸発室内における気体と液体によ
る導体からの吸熱性の差にもとずき通電状態の電気抵抗
が変る抵抗素子を常時は気体にふれるように配し、前記
のように蒸発室の液面が上昇すると液体に接するように
しておく。
In place of the above embodiment, a resistance element whose electrical resistance in the energized state changes based on the difference in heat absorption from the conductor between the gas and the liquid in the evaporation chamber is arranged so as to be in contact with the gas at all times, as described above. When the liquid level in the evaporation chamber rises, it touches the liquid.

このようにすると抵抗素子が気体雰囲気から液体にふれ
るようになると、抵抗変化で信号を発し、この信号によ
って電磁弁を止めることができる。
In this way, when the resistance element comes into contact with liquid from the gas atmosphere, a signal is generated due to a change in resistance, and this signal can stop the electromagnetic valve.

かかる構成にすると液に浮ぶ浮子を正しく作動させるた
め蒸発室自体を正しく水平に置かなくともよい。
With this configuration, the evaporation chamber itself does not have to be placed correctly horizontally in order to properly operate the float floating on the liquid.

第2図は他の蒸発装置の略図で、管路6中に蒸発室12
が設けられている。
FIG. 2 is a schematic diagram of another evaporator, in which there is an evaporation chamber 12 in the line 6.
is provided.

この蒸発室の上流には逆流防止弁13が設けられ、管路
を通る液体は弁13を経て流入路14により蒸発室内に
流込む。
A backflow prevention valve 13 is provided upstream of the evaporation chamber, and the liquid passing through the pipe passes through the valve 13 and flows into the evaporation chamber through an inflow path 14.

蒸発室で蒸発した気体は流出口15から流出路16を経
て管路6の延長部分6aに流れる。
The gas evaporated in the evaporation chamber flows from the outlet 15 to the extension 6a of the pipe 6 via the outlet 16.

前記流出口15の直下区域は格子等のような囲い17が
あって囲い内に浮子18が置かれている。
Directly below the outlet 15 is an enclosure 17 such as a grid, within which a float 18 is placed.

前記流入路の流入口19は流出口15より下方に開口し
ている。
The inlet 19 of the inflow path opens below the outlet 15.

前記浮子は蒸発室12に流入した液体に浮き、液面が上
昇するとそれに伴って浮上して流出口15を塞ぐように
なっている。
The float floats on the liquid flowing into the evaporation chamber 12, and when the liquid level rises, it floats up and blocks the outlet 15.

20は蒸発室と管路下流を結ぶバイパス路21に設けた
常時閉の圧力弁である。
20 is a normally closed pressure valve provided in a bypass path 21 connecting the evaporation chamber and the downstream side of the pipe.

第二具体例の作用を述べるに貯槽1から排出された液化
ガスは管路6がら逆流防止弁13を経て蒸発室に流込む
To describe the operation of the second specific example, the liquefied gas discharged from the storage tank 1 flows into the evaporation chamber through the conduit 6 and the non-return valve 13.

流入路の流入口19は下方に開口しているので蒸発室に
液体が溜ると入口19は液中に漬り、蒸発室内で気化し
たガスが流入路に充たないようにしている。
Since the inlet 19 of the inflow channel opens downward, when liquid accumulates in the evaporation chamber, the inlet 19 is immersed in the liquid to prevent gas vaporized in the evaporation chamber from filling the inflow channel.

蒸発室で気化したガスは流出口15から流出路16を経
て下流に流れる。
The gas vaporized in the evaporation chamber flows downstream from the outlet 15 through the outlet path 16.

この場合側等かの原因で液体の流入が過剰になると流入
路から送られる液体が蒸発室に溜り液面が上昇するので
、それに伴って浮子18が上昇して流出口を塞ぎ、流出
路16には流体が流れぬようにする。
In this case, if the inflow of liquid becomes excessive due to the side or the like, the liquid sent from the inflow path will accumulate in the evaporation chamber and the liquid level will rise, so the float 18 will rise accordingly and block the outflow port, causing the outflow path 16 to rise. Prevent fluid from flowing into the

蒸発室における気化したガスはそのため加圧された加圧
力によって液面が押圧され、液体は流入口19から流入
路14へ逆流し始める。
The vaporized gas in the evaporation chamber is therefore pressed against the liquid level by the increased pressure, and the liquid begins to flow back from the inlet 19 to the inlet channel 14 .

併しこの際逆流防止弁13によって上流へ液体が逆流す
るのが阻止される。
However, at this time, the backflow prevention valve 13 prevents the liquid from flowing back upstream.

一方蒸発室内の気圧は次第に上昇するので、所定圧力に
なると弁20が作動してガスの一部をバイパス路21に
流して下流に放出する。
On the other hand, the pressure inside the evaporation chamber gradually increases, so when the pressure reaches a predetermined value, the valve 20 is activated and a portion of the gas flows into the bypass passage 21 and is discharged downstream.

これによりガス圧が降って液面が低下して旧の定常状態
に戻る。
This causes the gas pressure to drop and the liquid level to drop, returning to the old steady state.

上記のように気化したガスは一170℃というような極
めて低温であり、ガス輸送の管路も前述のように剛性の
管が用いられている。
The gas vaporized as described above is at an extremely low temperature of -170° C., and as described above, rigid pipes are used for the gas transportation pipes.

剛性の管路の末端に腕体24を取付けて、腕体を静止し
ている患者の患部に近付けるために第3〜5図の機構が
用いられる。
The mechanism of FIGS. 3-5 is used to attach the arm 24 to the distal end of a rigid conduit and bring the arm close to the affected area of a stationary patient.

第3図において25.26は中心合せして取付けられる
中空継手で、両継手が対面する側で継手25の段部21
には、滑り良い弾力性材料のテフロンのようなリング状
バッキング28が設けられ、このバッキングを介して両
継手が対接される。
In Fig. 3, 25 and 26 are hollow joints that are installed with their centers aligned, and the stepped portion 21 of the joint 25 is located on the side where both joints face each other.
is provided with a ring-shaped backing 28 made of a slippery elastic material such as Teflon, and both joints are brought into contact with each other through this backing.

又継手25の前記と反対側の段部29には前記と同じよ
うはリング状バッキング30が取付けられ、バッキング
30上に座金31、コイルばね32を配する。
Also, a ring-shaped backing 30 is attached to the stepped portion 29 on the opposite side of the joint 25 in the same manner as described above, and a washer 31 and a coil spring 32 are arranged on the backing 30.

ここで内壁の一部が線切された林状円筒のユニオン33
を鉢の内底をばね32に圧接しつつ継手26の外壁に設
けた線切部に螺着させて両継手が結合される。
Here, a forest-like cylindrical union 33 with a part of the inner wall cut out
The two joints are joined by pressing the inner bottom of the pot against the spring 32 and screwing it into the line cut portion provided on the outer wall of the joint 26.

このようにすると継手25は継手26と同軸にして継手
26に対して旋回することができる。
In this way, the joint 25 can be made coaxial with the joint 26 and can be pivoted relative to the joint 26.

更に第5図について他の継手を説明するに中空の継手3
5の上部の段部には前記と同様なリング状バッキング3
6が設けられ、継手35の中空軸と同軸可能に中空とな
っている球31が継手35に重ねられる。
Further, to explain other joints with reference to FIG. 5, hollow joint 3
5 has a ring-shaped backing 3 similar to the above.
6 is provided, and a hollow ball 31 that is coaxial with the hollow shaft of the joint 35 is stacked on the joint 35.

バッキング36と反対側に他のリング状バッキング38
を球の周りに配し、両側が夫々内向と外向のフランジを
有する止め環39をバッキングの周に配し、コイル41
を環39の外周に外向フランジ40に載せて配した後に
林状円筒のユニオン42を球37の側から挿入してユニ
オン内壁のねじと継手35の外壁のねじとを螺着して継
手35と球37とは結合される。
On the opposite side of the backing 36 is another ring-shaped backing 38.
around the ball, a retaining ring 39 having inward and outward flanges on both sides, respectively, is disposed around the backing, and the coil 41
is disposed on the outer periphery of the ring 39 on the outward flange 40, and then the forest-shaped cylindrical union 42 is inserted from the ball 37 side and the screws on the inner wall of the union and the screws on the outer wall of the joint 35 are screwed together to form the joint 35. The ball 37 is connected.

核球37には中空軸延長方向に中空円筒43が突出し、
該円筒に腕体24に一体となった噴射管44が装着され
る。
A hollow cylinder 43 protrudes from the nuclear sphere 37 in the direction of extension of the hollow shaft.
An injection pipe 44 integrated with the arm body 24 is attached to the cylinder.

この機構では球37と円筒43の一体化物は継手35と
共に球継手となり継手の軸の周りを回転するのみならず
、円筒43と環39との接触する限度において球の中心
に対して円錐運動することができる。
In this mechanism, the integrated ball 37 and cylinder 43 together with the joint 35 form a ball joint and not only rotate around the axis of the joint, but also move conically with respect to the center of the sphere to the extent that the cylinder 43 and ring 39 contact each other. be able to.

哨4図は上記継手を端部機構に取付けたものの略図で管
路6aの末端に架台50が管6aに対して気密で然も管
軸の周りを旋回しうるように取付けである。
Figure 4 is a schematic diagram of the above-mentioned joint attached to the end mechanism, in which a pedestal 50 is attached to the end of the pipe 6a so as to be airtight with respect to the pipe 6a and to be able to rotate around the pipe axis.

又架台50に対し架台51を前記第3図の継手25,2
6の関係に取付けると管路6aと直交して架台51から
突出する剛性の管52は管6aに対して三次元の位置を
とることができる。
In addition, the pedestal 51 is connected to the pedestal 50 by connecting the pedestal 51 to the joints 25 and 2 shown in FIG.
6, the rigid tube 52 protruding from the frame 51 perpendicular to the conduit 6a can assume a three-dimensional position relative to the tube 6a.

管52の末端に取付けた架台53と架台54を前記架台
51.52の如き関係に配設すると、架台54から気密
に突出した剛性の管55は管6aに対し被治療者の患部
に近付けるようになる。
When the pedestal 53 and the pedestal 54 attached to the end of the tube 52 are arranged in the same relationship as the pedestals 51 and 52, the rigid tube 55 that protrudes airtight from the pedestal 54 is moved closer to the affected area of the patient with respect to the tube 6a. become.

更に管55の端に前記第5図で示す機構を取付けると、
腕体は横臥している患者の脚又は膝の周囲を廻り乍ら前
記低温ガスを噴付けることができる。
Furthermore, when the mechanism shown in FIG. 5 is attached to the end of the tube 55,
The arms can spray the cold gas while going around the legs or knees of the patient who is lying down.

本発明は上記の如く液化ガス貯槽よりの液化ガスを治療
をすべき末端に近い位置で蒸発装置によって気化させ、
これを剛性の管を用いて末端の需用区域に凡ゆる立体的
方向からも気化したガスを供給することができるもので
あって、蒸発装置から需用地までのガス輸送距離を短か
くしている。
As described above, the present invention vaporizes the liquefied gas from the liquefied gas storage tank using the evaporator at a position near the end to be treated,
Using a rigid pipe, vaporized gas can be supplied to the end demand area from any three-dimensional direction, thereby shortening the gas transport distance from the evaporator to the demand area.

蒸発装置に過剰に液化ガスが流込んだ時は速かに蒸発室
では流入する液体の量を検出し、その量が所定量に達す
ると蒸発室の上流の弁機構を閉じて下流の需要地に気化
しないままの液化ガスが流出しないようにする。
When excessive liquefied gas flows into the evaporator, the evaporation chamber quickly detects the amount of liquid flowing in, and when the amount reaches a predetermined amount, the valve mechanism upstream of the evaporation chamber is closed and the evaporation chamber is closed to the downstream demand point. Prevent liquefied gas from escaping without being vaporized.

この侍史に気化したガスの圧力によって貯槽から蒸発室
へ送込まれた液体を強制的に貯槽に圧送して押戻すこと
が阻止され貯槽の貯液が無駄に噴出するのが避けられる
The pressure of the vaporized gas prevents the liquid sent from the storage tank to the evaporation chamber from being forced back into the storage tank, thereby preventing the liquid stored in the storage tank from spewing out wastefully.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略説明図、第2図は蒸発装置の他の
機構の解説立面図、第3図と第5図は継手機構の縦断面
図、第4図は需用端における筒機構の斜視図である。 1:貯槽、4:パイプ、5:開閉器、6:管路、7:ろ
過器、8:電磁弁、9.12:蒸発室、10.18:検
出用浮子、13:逆流防止弁。
Fig. 1 is a schematic explanatory diagram of the present invention, Fig. 2 is an explanatory elevational view of other mechanisms of the evaporator, Figs. It is a perspective view of a cylinder mechanism. 1: storage tank, 4: pipe, 5: switch, 6: pipeline, 7: filter, 8: solenoid valve, 9.12: evaporation chamber, 10.18: detection float, 13: backflow prevention valve.

Claims (1)

【特許請求の範囲】 1 液化したガスの貯槽から液状で管路に排出する流体
を管路内で気化させ、気化した極低温のガスを供給する
流路において、前記流路内には前記液化したガスを導い
て液体から気体に蒸発させる蒸発装置を具えており、該
蒸発装置は装置内へ流入する液化ガスの液体が所定量に
達すると前記蒸発装置への前記液体の流入を阻止する弁
機構を有していることを特徴とした極低温ガスの供給流
路。 2 前記蒸発装置は前記液体を受入れ且つ壁面よりの熱
伝導により受入れた前記液体を蒸発させる蒸発室と、該
蒸発室より上流に設けた電磁弁よりなり、前記蒸発室に
は蒸発室内に流入した前記液体の液面が所定高さに達し
たことを検知して前記電磁弁を作動させる検知子を具え
てなる上記1に記載した極低温ガスの供給流路。 3 前記蒸発装置は前記液体を受入れ且つ壁面よりの熱
伝導により受入れた前記液体を蒸発させる蒸発室と、該
蒸発室への流入路に設けた逆流防止弁よりなり、前記蒸
発室には気体流出口の直下区域で室内に受入れた液体の
液面に浮び液面上昇時に気体流出口を塞ぐ浮子弁が設け
られ且つ前記流入路は前記流出口より下方に開口されて
なる上記1に記載した極低温ガスの供給流路。 4 前記蒸発装置より下流で前記供給流路には流路の軸
の周りを旋回し且つ流路に気密に連通する第一継手と、
該第−継手の軸と直交する面上を旋回し且つ前記第一継
手と気密に連通して下流に向は流路を形成している第二
継手からなる継手組立体を少くとも一組具えていること
を特徴としたL記1に記載した極低温ガスの供給流路。 5 前記供給流路の末端は腕体の底に連通する噴射管に
開口しており、前記噴射管は前記第一継手に気密に連通
しうるよう継手の流路軸に対して球形自在に接続されて
なる上記4に記載した極低温ガスの供給流路。
[Scope of Claims] 1. In a flow path for supplying the vaporized cryogenic gas by vaporizing a fluid to be discharged from a liquefied gas storage tank to a pipe in the pipe, the liquefied gas is The evaporator is equipped with an evaporator that guides the liquefied gas to evaporate from liquid to gas, and the evaporator includes a valve that prevents the liquid from flowing into the evaporator when the liquid of the liquefied gas flowing into the device reaches a predetermined amount. A cryogenic gas supply channel characterized by having a mechanism. 2. The evaporator includes an evaporation chamber that receives the liquid and evaporates the received liquid by heat conduction from a wall surface, and a solenoid valve provided upstream of the evaporation chamber, and the evaporation chamber includes a solenoid valve that is provided upstream of the evaporation chamber. 2. The cryogenic gas supply channel described in 1 above, comprising a detector that detects that the liquid level of the liquid has reached a predetermined height and operates the electromagnetic valve. 3. The evaporation device includes an evaporation chamber that receives the liquid and evaporates the received liquid by heat conduction from a wall surface, and a check valve provided in an inflow path to the evaporation chamber, and a gas flow into the evaporation chamber. The pole according to item 1 above, wherein a float valve is provided which floats on the level of the liquid received into the room in an area immediately below the outlet and closes the gas outlet when the liquid level rises, and the inlet passage is opened below the outlet. Low temperature gas supply channel. 4. Downstream from the evaporator, the supply flow path includes a first joint that rotates around the axis of the flow path and communicates with the flow path in an airtight manner;
At least one joint assembly comprising a second joint pivoting on a plane perpendicular to the axis of the second joint and communicating airtightly with the first joint to form a flow path downstream. The cryogenic gas supply channel described in L.1, characterized in that: 5 The end of the supply flow path opens to an injection pipe communicating with the bottom of the arm body, and the injection pipe is spherically freely connected to the flow path axis of the joint so as to communicate with the first joint in an airtight manner. 4. The cryogenic gas supply channel as described in 4 above.
JP2290078A 1977-09-25 1978-02-28 Cryogenic gas supply channel Expired JPS5810103B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2290078A JPS5810103B2 (en) 1978-02-28 1978-02-28 Cryogenic gas supply channel
AU39630/78A AU3963078A (en) 1977-09-25 1978-09-07 Apparatus for refrigeration treatment
DE19782839214 DE2839214A1 (en) 1977-09-25 1978-09-08 DEVICE FOR - PARTICULAR MEDICAL - COLD TREATMENT
GB7837307A GB2005000B (en) 1977-09-25 1978-09-19 Apparatus for refrigeration treatment
CA311,691A CA1085178A (en) 1977-09-25 1978-09-20 Apparatus for refrigeration treatment
FR7826947A FR2403789A1 (en) 1977-09-25 1978-09-20 DEVICE FOR REFRIGERATION TREATMENT
CH994078A CH628726A5 (en) 1977-09-25 1978-09-22 DEVICE FOR MEDICAL TREATMENT BY REFRIGERATION.
SE7809969A SE7809969L (en) 1977-09-25 1978-09-22 APPLIANCE FOR COLD TREATMENT
BR7806273A BR7806273A (en) 1977-09-25 1978-09-22 REFRIGERATION TREATMENT APPLIANCE
NL7809640A NL7809640A (en) 1977-09-25 1978-09-22 DEVICE FOR REFRIGERATION TREATMENT.
DK425178A DK425178A (en) 1977-09-25 1978-09-25 COOLING TREATMENT APPLIANCE
IT28057/78A IT1098920B (en) 1977-09-25 1978-09-25 REFRIGERATION TREATMENT APPARATUS
US06/109,271 US4292973A (en) 1977-09-25 1980-01-03 Apparatus for refrigeration treatment
US06/276,647 US4348873A (en) 1977-09-25 1981-06-23 Apparatus for refrigeration treatment
US06/288,918 US4412538A (en) 1977-09-25 1981-07-31 Apparatus for refrigeration treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290078A JPS5810103B2 (en) 1978-02-28 1978-02-28 Cryogenic gas supply channel

Publications (2)

Publication Number Publication Date
JPS54115412A JPS54115412A (en) 1979-09-08
JPS5810103B2 true JPS5810103B2 (en) 1983-02-24

Family

ID=12095513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290078A Expired JPS5810103B2 (en) 1977-09-25 1978-02-28 Cryogenic gas supply channel

Country Status (1)

Country Link
JP (1) JPS5810103B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881300A (en) * 1981-11-09 1983-05-16 Daido Sanso Kk Transportation method of extremely high purity gas
KR101939329B1 (en) * 2017-08-30 2019-01-16 한국항공우주연구원 Cryogenic gas generator

Also Published As

Publication number Publication date
JPS54115412A (en) 1979-09-08

Similar Documents

Publication Publication Date Title
US4292973A (en) Apparatus for refrigeration treatment
US3696813A (en) Cryosurgical instrument
KR100271192B1 (en) Method for starting low temperature pump device and low temperature pump device
US7555916B2 (en) Liquefying and storing a gas
US6755823B2 (en) Medical device with enhanced cooling power
US5090209A (en) Enthalpy control for co2 refrigeration system
JPS63500565A (en) localized cooling system
US3384123A (en) Freeze protector
CN207979766U (en) A kind of Cryoablation system
JPS5810103B2 (en) Cryogenic gas supply channel
CN106829202A (en) The method of constant low temperature storage system and removal Dewar fog
US4831846A (en) Low temperature cryoprobe
KR820000187B1 (en) Cooling device for treatment
CN206704912U (en) Constant low temperature storage system
KR830000331B1 (en) Cooling treatment device with non-return valve
CN209373457U (en) A kind of environmental experiment temperature and humidity control device
CN2346397Y (en) Portable deep cooling therapeutic instrument
JP3528937B2 (en) Liquid refrigerant supply / discharge method and apparatus
JPH0217297A (en) Method and device for closing conduit by freezing
JPH0964425A (en) Cryostat for superconducting magnet
KR960031128A (en) Mold Cooling System
JPS5810573Y2 (en) Low-temperature gas injection device for local cooling to treat “pain” such as rheumatism
SK8215Y1 (en) Device for cryo-therapy
JPS6029908Y2 (en) Food freezing equipment that uses liquefied gas as a cold source
SK8529Y1 (en) Method of dispensing liquid nitrogen into cryogenic device and apparatus for carry out this method