JPS58100711A - Measuring method for quantity of liquid jetting from jet - Google Patents

Measuring method for quantity of liquid jetting from jet

Info

Publication number
JPS58100711A
JPS58100711A JP19973781A JP19973781A JPS58100711A JP S58100711 A JPS58100711 A JP S58100711A JP 19973781 A JP19973781 A JP 19973781A JP 19973781 A JP19973781 A JP 19973781A JP S58100711 A JPS58100711 A JP S58100711A
Authority
JP
Japan
Prior art keywords
pressure
glue
liquid
gun
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19973781A
Other languages
Japanese (ja)
Other versions
JPS6251404B2 (en
Inventor
Sadao Ueda
定雄 上田
Nobuhiro Minato
湊 宣洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP19973781A priority Critical patent/JPS58100711A/en
Publication of JPS58100711A publication Critical patent/JPS58100711A/en
Publication of JPS6251404B2 publication Critical patent/JPS6251404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure

Landscapes

  • Measuring Volume Flow (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To measure easily the quantity of a fluid jetted from a jet intermittently, by measuring pressure variation in a passage from a liquid source to the jet. CONSTITUTION:A glue 2 is sent out from a glue tank 1 by a compressed air 3. An interval from a pipe 4 in the tank 1 to a glue gun 5 is connected with hoses 9, 10 by using joints 6-8. The joints 6-8 are provided with pressure converter 14 and the output of the converter 14 is given to an electromagnetic oscillograph 16 and a memory scope 17 through an amplifier 15. The quantity of jetted fluid from the gun 5 is proportioned to the product of pressure drop and jetting time or the product of a rate of the pressure drop and the jetting time at each joint 6-8.

Description

【発明の詳細な説明】 本発明は噴出口から噴出する液体tを測定する新規な方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for measuring liquid t spouted from a spout.

近年各種物品を連続的に生産したり、処理したりする場
合液状の接着剤や被覆剤等の液体を間欠的に噴出する作
業を行なうことが多い。たとえば段−−ル紙から函を連
続的に製造する場合は原料たる段−−ル紙がベルトコン
ベアーに載せられて移送され一定位置にて噴出する接着
剤を受けて台片が接着されて函が順次製造される。従っ
て接着剤は一定位置にて一定時間毎に間欠的に噴出され
てその位蓋に送られてきた段−−ル紙台片の接着が行な
われる。
BACKGROUND ART In recent years, when various products are continuously produced or processed, it is often the case that liquids such as liquid adhesives and coating materials are intermittently jetted out. For example, when boxes are manufactured continuously from corrugated paper, the corrugated paper used as the raw material is placed on a belt conveyor and transported, and the base pieces are glued to the box by the adhesive that is ejected at a certain position. are manufactured sequentially. Therefore, the adhesive is intermittently sprayed at a fixed position at fixed time intervals, and the corrugated paper backing piece sent to the lid is bonded to that position.

この場合グルー、ホットメルト接着剤等比較的粘度の高
い液状接着剤がタンク等の容器から夫々の接着剤につい
て一定の圧力、温度で送り出され、通常1〜5m程度の
長さの管を経てガンのノズル等の噴出口から毎回0.1
〜1gの量が0.05〜0.6秒程度の速さで対象とす
る段i−ル紙に噴出、塗布される。この噴出作業は毎分
20〜25回程度の割合に間欠的に行なわれる。
In this case, liquid adhesives with relatively high viscosity, such as glue or hot melt adhesives, are sent out from a container such as a tank at a constant pressure and temperature for each adhesive, and are usually delivered to the gun through a pipe with a length of about 1 to 5 meters. 0.1 every time from the nozzle etc.
An amount of ~1 g is sprayed and applied onto the target corrugated paper at a speed of about 0.05 to 0.6 seconds. This jetting operation is performed intermittently at a rate of about 20 to 25 times per minute.

しかし、この作業中たとえば、グルーが固化したり或は
異物が混入したりして管又はノズルが詰まって噴出量が
減ったり、噴出、塗布が行なわれず、その結果製函不良
を生じることが少くなく、しかもこのようなど(短時間
、ごく微量の液体の間欠的噴出量を簡単にチェックする
ことは困難である。
However, during this process, for example, if the glue solidifies or foreign matter gets mixed in, the pipe or nozzle becomes clogged, resulting in a reduced amount of ejection, or the gushing or coating is not carried out, resulting in poor box manufacturing. Moreover, it is difficult to easily check the amount of intermittent ejection of a very small amount of liquid for a short period of time.

かくて本発明は一定長さの管を経て噴出ノズルからごく
短時間、ごく微量間欠的に噴出される液体のiを容易に
測定することができる方法を提供することを目的とする
ものである。
Therefore, it is an object of the present invention to provide a method that can easily measure the i of a liquid that is intermittently ejected in a very small amount for a very short period of time from an ejection nozzle through a pipe of a certain length. .

本発明者らの研究、実験によれば、上記の目的は、噴出
口から間欠的に噴出される液体tを、液体源から噴出口
に至る間の通路内の圧力変化を測定することによって間
接的に測定することを特徴とする方法によって達成され
ることが見出されたのである。
According to the research and experiments of the present inventors, the above object can be achieved by indirectly controlling the liquid t that is intermittently ejected from the ejection port by measuring the pressure change in the passage from the liquid source to the ejection port. It has been discovered that this can be achieved by a method characterized by a method of measuring

本発明はグルー、ホットメルト等粘性な液体接着剤の噴
出、塗布のみならず通常の水等粘度の低い液体の噴出に
当っても適用し5るが、ここでは主としてグルーの噴出
の場合を例にとって図面について詳しく説明することと
する。
The present invention is applicable not only to the spouting and coating of viscous liquid adhesives such as glue and hot melt, but also to the spouting of low-viscosity liquids such as ordinary water. I will explain the drawings in detail.

第1図において例えば容量24のグルータンク1から常
温のグルー2が圧縮空気3により約0.2〜0.6tg
7ciの圧力下に送り出される。タンク1内のノ臂イゾ
4からグルーガン5に至る約3mの長さの間3つのジヨ
イント6 、7 、8t−用いて2つのホース9,10
で接続する。−例として3つのジヨイントは夫々長さ1
03、第1のホース9は長さ170C111,第2のホ
ース10は長さ90信を有している。
In FIG. 1, for example, about 0.2 to 0.6 tg of glue 2 at room temperature is transferred from a glue tank 1 with a capacity of 24 by compressed air 3.
Delivered under 7ci pressure. Two hoses 9, 10 are connected using three joints 6, 7, and 8t for a length of about 3 m from the armhole 4 in the tank 1 to the glue gun 5.
Connect with. - For example, three joints each have a length of 1
03, the first hose 9 has a length of 170 cm, and the second hose 10 has a length of 90 cm.

各ジヨイント、ホースを経てグルーガン5に送られたグ
ルー2はここで電磁弁11により制御された圧縮空気1
2の加圧下、グルーノズル13から間欠的に噴出され、
塗布される。
The glue 2 sent to the glue gun 5 via each joint and hose is compressed air 1 controlled by a solenoid valve 11.
2 is intermittently spouted from the glue nozzle 13 under pressure,
applied.

3つのジョイン)6,7.8のいずれか一つには圧力変
換器14を設け、この例ではこれを増幅器15、電磁オ
ツシログラフ16、メモリスコープ17に電気的に接続
する。18は電磁弁11の作動を時間制御するタイマー
を示す。圧力変換器14を取着ける位置即ち圧力を測定
する位置は上記のような3つのジョイン)6,7.8の
中いずれでもよいが、圧力変化の大きさや取り付は位置
を考慮すると中央部に位置するジヨイント7が最も好ま
しい。たとえばタンクに近い位置のジヨイント6では圧
力変化が小さく、また一方グルーガン5に最も近い位置
、即ち製函機の中枢部に最も近いジヨイント8に設ける
とその付近の装置を繁雑にする慣れがあり、やや不適当
である。
A pressure transducer 14 is provided in one of the three joins 6, 7, and 8, and in this example is electrically connected to an amplifier 15, an electromagnetic oscillograph 16, and a memory scope 17. Reference numeral 18 indicates a timer for controlling the operation of the solenoid valve 11 over time. The pressure transducer 14 can be installed at any of the three joints 6, 7, and 8 mentioned above, but considering the size of the pressure change and the position, it is best to install it in the center. The joint located at 7 is most preferred. For example, if the joint 6 is located close to the tank, the pressure change will be small, and if it is installed at the joint 8 closest to the glue gun 5, that is, the center of the box making machine, it will tend to complicate the equipment in that area. This is somewhat inappropriate.

この圧力変換器14を取り付けるときに測定位置直前に
ごく狭い例えば211m径のしぼりを入れると圧力変化
の小さい例えばジヨイント6の位置でもこれを拡大して
みることができる。尚上記のようにオツシログラフ16
、メモリスコープ17を設けることなく、例えば下記の
如(して計算された液体量を即時数字で示す機構又は更
に警報を発したり装#を停止させたりする機構を設ける
こともできる。
When installing this pressure transducer 14, if a very narrow aperture with a diameter of 211 m, for example, is inserted just before the measurement position, it is possible to enlarge it even at the position of the joint 6 where the pressure change is small, for example. In addition, as mentioned above, Otsushirograph 16
However, without providing the memory scope 17, it is also possible to provide a mechanism for immediately displaying the calculated liquid volume in numerical form, or a mechanism for issuing an alarm or stopping the device, as described below.

今グルータンク1から常温加圧下で送られたグルー2が
電磁弁11の制御によりグルーガン5のノズル13より
間欠的に噴出するときのグルータンクからノズルに至る
間の圧力の変化を例えば中央のジヨイント7にて測定す
ると、第2図に示す如き波形を得ることができる。
When the glue 2 sent from the glue tank 1 under pressure at room temperature is intermittently spouted from the nozzle 13 of the glue gun 5 under the control of the solenoid valve 11, the change in pressure from the glue tank to the nozzle can be expressed, for example, at the center joint. 7, a waveform as shown in FIG. 2 can be obtained.

第2図(a)はグルヤガン5が正常状態の場合を示し、
グルーガン5の弁が開くと圧力はたとえば0.6#/a
2の初期圧力から急激に増加するがすぐに降下して初期
圧力より少し降下した圧力下の定常状態を保ち、やがて
弁が閉じると圧力が急激に減少してすぐに上昇して弁の
開く前の圧力に戻る。
FIG. 2(a) shows the case where Gulyagan 5 is in a normal state,
When the valve of glue gun 5 opens, the pressure is, for example, 0.6#/a
2.The initial pressure increases rapidly from the initial pressure, but quickly decreases and maintains a steady state at a pressure slightly lower than the initial pressure.When the valve closes, the pressure decreases rapidly and immediately increases before the valve opens. Return to pressure.

ここに初期圧力をPい定常状態時の圧力と初期圧力P、
との差即ち圧力降下をP2とし、圧力降下時の傾斜角即
ち圧力降下率をθ、弁が開いてから閉じるまでの時間即
ち噴出時間IT、この間の噴出液体量をQで示すと、こ
の噴出液体量QはQQCP2 X T  (1)  又
はQoeθXT  (2) の式で表わされる。即ち噴出液体量は夫々圧力降下と噴
出時間の積又は圧力降下率と噴出時間の積に比例するの
であり、比例定数を後記の如き式より定めれば圧力降下
P2と噴出時間T、又は圧力降下率θと噴出時間Tt測
測定ることにより噴出した液体量を、それを直接計量す
ることなく、容易に計算し、測定することができる。
Here, the initial pressure is P, and the pressure at steady state and the initial pressure P,
Let P2 be the difference between the pressure drop and pressure drop, θ be the inclination angle or pressure drop rate at the time of pressure drop, θ be the time from when the valve opens until it closes, that is, the ejection time IT, and the amount of liquid ejected during this time be Q. The liquid amount Q is expressed by the formula QQCP2 XT (1) or QoeθXT (2). In other words, the amount of liquid ejected is proportional to the product of pressure drop and ejection time or the product of pressure drop rate and ejection time, respectively.If the proportionality constant is determined by the formula shown below, then pressure drop P2 and ejection time T, or pressure drop By measuring the rate θ and the ejection time Tt, the amount of ejected liquid can be easily calculated and measured without directly measuring it.

尚第2図(a)において弁が開いて一旦上ってから下降
して初期圧力以下となり、定常状態を経、弁が閉じるま
での間で初期圧力以下のときの波の線と初期圧力の縁と
の間に囲まれた領域、即ちノAツチの付された領域の面
積を積分により計算するととによっても噴出液体量を間
接的に容易に測定することができる。
In Figure 2 (a), the wave line and the initial pressure when the valve opens, rises once, then falls below the initial pressure, passes through a steady state, and is below the initial pressure until the valve closes. The amount of ejected liquid can also be easily measured indirectly by calculating the area of the area surrounded by the edge, that is, the area marked with an "A" by integration.

第2図(b)はグルーガン5のノズルの穴が詰まった状
態で作動させたときの圧力変化を示す波形であり、図よ
り明らかなように弁が開いて圧力がすぐに上昇し、下降
しても初期圧力に戻って、第2図(、)のように圧力降
下を示すことがない。そして升を閉じると圧力は急激に
減少してすぐに上昇して初期圧力に戻る。
Figure 2(b) shows a waveform showing the pressure change when the glue gun 5 is operated with the nozzle hole clogged.As is clear from the figure, the valve opens and the pressure immediately rises and then falls. However, the pressure returns to the initial pressure and does not show a pressure drop as shown in Figure 2 (,). Then, when the cell is closed, the pressure decreases rapidly, then immediately rises and returns to the initial pressure.

即ちグルーガンのノズル即ち噴出口が詰まることなく正
常に作動していると噴出時間中に圧力降下が生じるが、
噴出口が詰まって正常に作動していないと圧力降下が生
じない。この相違が波形となって又は噴出量が数字とな
って表われて噴出口の閉塞乃至半閉塞を知ることができ
る。その場合直ちに警報を発し、機械を停止するなど所
要の操作をとるようにすることができる。
In other words, if the nozzle or spout of the glue gun is operating normally without clogging, a pressure drop will occur during the spouting time.
If the nozzle is clogged and not working properly, no pressure drop will occur. This difference is expressed as a waveform or the ejection amount as a number, and it is possible to know whether the ejection port is blocked or partially blocked. In that case, it is possible to immediately issue an alarm and take necessary actions such as stopping the machine.

第2図(a)(b)の波形はダイアフラムを有するガン
を用いてグルーを噴出するとき中央部で測定した場合で
あるが、この波形は用いるガンによって液体によって、
或は演11定する位置によって、又測定位置にしぼりを
入れるか否かによって異なる。例えばタンクに近い位置
での測定では圧力変化は小さく、しぼりを入れてもやや
小さい。ガンに近い位置での場合はよりはげしい変化を
示す。
The waveforms in Figures 2(a) and (b) were measured at the center when spraying glue using a gun with a diaphragm.
Or, it differs depending on the position to be determined and whether or not a restriction is placed at the measurement position. For example, when measuring near the tank, the pressure change is small, and even when squeezed, the pressure change is small. If the location is close to the cancer, the changes are more severe.

次に第2図の場合と異なるガンを用いて正常な状態でホ
ットメルトを噴出するとぎ中央部の位置で測定した場合
にえられた波形を第3図に示す。
Next, FIG. 3 shows the waveform obtained when hot melt was ejected under normal conditions using a gun different from that shown in FIG. 2 and measured at the central position.

初期圧力P、は20 kl汐2、温度は約180 ’C
である。
The initial pressure P is 20 kl 2 and the temperature is about 180'C.
It is.

この場合は弁を開いても圧力の急激な上昇、下降はなく
、直ちに下降する。この場合もグルーの場合と同様に圧
力降下P2又は圧力降下率θを測定し、又はハツチ部の
面積を計算することによってホットメルトの噴出量を直
接計量することなく、間接的に測定することができる。
In this case, even when the valve is opened, the pressure does not rise or fall rapidly, but drops immediately. In this case, as in the case of glue, the amount of hot melt ejected can be measured indirectly by measuring the pressure drop P2 or pressure drop rate θ or by calculating the area of the hatch. can.

ノズルが詰っているときはグルーの場合と同様に何ら圧
力降下を示さない。                
          [ガンが正常に作瞼しているとき
と、そのノズルが詰まっているときとで圧力変化波形が
異なり、弁の開閉時及び定常状態での圧力値に差がある
When the nozzle is clogged, there is no pressure drop as with glue.
[The pressure change waveform is different when the gun is normally inflating the eyelids and when the nozzle is clogged, and there are differences in the pressure values when the valve is opened and closed and in a steady state.]

この差の要因について考察すれば、粘性の液体を送る場
合管の両端には圧力差が必要であり、初めの圧をPA、
測定位置での圧力をPRとすると、その差p、 −pB
はハーゲンボアズイユの式によって次のように表わされ
る。ここにlは測定位置までの距離、rは管の半径、η
は粘度ζQは単位時間に流れる液体の容量である。
Considering the cause of this difference, when sending viscous liquid, a pressure difference is required between both ends of the pipe, and the initial pressure is PA,
If the pressure at the measurement position is PR, then the difference p, -pB
is expressed by Hagen-Boiseuille's formula as follows. Here, l is the distance to the measurement position, r is the radius of the tube, and η
is the viscosity ζQ is the volume of liquid flowing per unit time.

8ηBO P−P−−(3) AB−πr4 即ち圧力差は単位時間に流れる液体のfQ、従って塗布
量に正比例するので、これを測って液体tt測測定、ガ
ンの作動が正常か異常かを知ることができる。上記の式
(3)は前記式(1)の基をなす。
8ηBO PP--(3) AB-πr4 In other words, the pressure difference is directly proportional to the fQ of the liquid flowing per unit time, and therefore to the applied amount, so this can be measured to measure the liquid tt and determine whether the gun operation is normal or abnormal. You can know. The above formula (3) forms the basis of the above formula (1).

ついで1禰閉時のグルー管の圧力変化が大きいのは弁の
開閉が急激に行なわれるためであり、これはノズル穴の
つまり状態、グルーの粘度、圧縮空気、その他の要因で
変化する。ノズルがつまっているときは正常なときとく
らべて弁の開閉の動きは緩漫であり、圧力変化は、J\
さくなる。
Next, the pressure change in the glue tube when one tube is closed is large because the valve is opened and closed rapidly, and this changes depending on the clogging state of the nozzle hole, the viscosity of the glue, compressed air, and other factors. When the nozzle is clogged, the opening and closing movement of the valve is slower than when it is normal, and the pressure change is
It gets colder.

かくて定常状態或は弁開閉時の圧力の差でグルーガンが
正常に作動しているか詰まっているか、又は半詰まりに
なっているかを予想することができる。
In this way, it is possible to predict whether the glue gun is operating normally, clogged, or partially clogged based on the pressure difference in the steady state or when the valve is opened and closed.

而して測定時のタンク圧(初期圧力)と下降して定常状
態になったときの圧力との比率即ち圧力変化率は各種要
因によって異なり、前記のように測定位置によって、し
ぼりの有無によっても異なるがガンを作動する時間、た
とえば0.6秒のとぎ、0.05秒のとき、又噴出量に
よって、ノズルの大きさによって、初期圧力によって、
液体の粘度や温度などによっても影響されるので、これ
らの要因の影響を考慮の上圧力変化を測定することが必
要であろう。
Therefore, the ratio of the tank pressure (initial pressure) at the time of measurement to the pressure when it drops to a steady state, that is, the rate of pressure change, varies depending on various factors, and as mentioned above, it also depends on the measurement position and the presence or absence of a throttle. The time to operate the gun varies, for example, 0.6 seconds, 0.05 seconds, depending on the amount of ejection, the size of the nozzle, and the initial pressure.
Since it is also affected by the viscosity and temperature of the liquid, it is necessary to measure pressure changes while taking into account the effects of these factors.

かくて本発明によれば、噴出口より間欠的にごく短時間
、ごく微量噴出する特に粘性の液体の量を、直接計量す
ることなく、液体源から噴出口°に至る間の好ましくは
その中間位置でその通路内の圧力変化を測定することに
よって、間接的に容易に測定して、噴出が正常であるか
、又は噴出口が閉塞又は半閉塞状態になっているかを容
易に検知して所要の措置を速かにとることができるので
ある。
Thus, according to the present invention, the amount of a particularly viscous liquid that is intermittently spouted in very small amounts from the spout for a very short period of time can be measured without directly measuring the amount, preferably in the middle between the liquid source and the spout. By measuring the pressure change in its passage at the location, it is easy to measure indirectly and easily detect whether the jet is normal or if the jet is in a blocked or semi-blocked state. Measures can be taken quickly.

従って、本発明は誠に有効な噴出液体量の測定法を提供
するものである。
Therefore, the present invention provides a truly effective method for measuring the amount of ejected liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例を示す説明図
、第2図は本発明方法によりグルー噴出の際の圧力変化
を示す波形を表わすグラフで(1)は正常な状態、(b
)はノズルが詰まっている状態のときの波形であり、第
3図は本発明方法をホットメルト接着剤噴出の際の圧力
変化を示す波形を表わすグラフである。 1・・・グルータンク、2・・・グルー、5・・・グル
ーガフ、6,7.8・・・ジョイン)、9*10・・・
ジヨイント、14・・・圧力変換器。 出如人代理人   猪 股    清 馬2図 (a)(b) 馬3図
Fig. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and Fig. 2 is a graph showing a waveform showing pressure changes during glue ejection by the method of the present invention, (1) is a normal state, (b)
) is the waveform when the nozzle is clogged, and FIG. 3 is a graph showing the waveform showing the pressure change when the hot melt adhesive is ejected using the method of the present invention. 1...Glue tank, 2...Glue, 5...Glue gaff, 6,7.8...Join), 9*10...
Joint, 14...pressure transducer. Dejojin representative Inomata Kiyoma 2nd figure (a) (b) Horse 3rd figure

Claims (1)

【特許請求の範囲】[Claims] 噴出口から間欠的に噴出する液体のt’t、液体源から
噴出口に至る間の通路内の圧力変化を測定することによ
って、測定することを特徴とする、噴出口から噴出する
液体量の測定方法。
The amount of liquid ejected from the ejection port is measured by measuring the t't of the liquid ejected intermittently from the ejection port, and the pressure change in the passage from the liquid source to the ejection port. Measuring method.
JP19973781A 1981-12-11 1981-12-11 Measuring method for quantity of liquid jetting from jet Granted JPS58100711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19973781A JPS58100711A (en) 1981-12-11 1981-12-11 Measuring method for quantity of liquid jetting from jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19973781A JPS58100711A (en) 1981-12-11 1981-12-11 Measuring method for quantity of liquid jetting from jet

Publications (2)

Publication Number Publication Date
JPS58100711A true JPS58100711A (en) 1983-06-15
JPS6251404B2 JPS6251404B2 (en) 1987-10-29

Family

ID=16412785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19973781A Granted JPS58100711A (en) 1981-12-11 1981-12-11 Measuring method for quantity of liquid jetting from jet

Country Status (1)

Country Link
JP (1) JPS58100711A (en)

Also Published As

Publication number Publication date
JPS6251404B2 (en) 1987-10-29

Similar Documents

Publication Publication Date Title
CA1199703A (en) Method and device for calibrating a regulated flow spraying apparatus
US7665348B2 (en) System and method for determining atomization characteristics of spray liquids
US9393586B2 (en) Dispenser and method of dispensing and controlling with a flow meter
CA2611810C (en) Liquid adhesive dispensing system
AU644930B2 (en) Method and apparatus for metering flow of a two-component dispensing system
US6423366B2 (en) Strip coating method
US9847265B2 (en) Flow metering for dispense monitoring and control
JPH05172607A (en) Method for measuring mass flow rate of liquid flow
CN109195714A (en) System and method for monitoring liquid adhesive stream
CN108061350A (en) A kind of automatic spraying system
NZ266453A (en) Dispensing system; fluid dosing arrangement with a flowmeter, and on-off electric valve and an evaluation circuit to control the valve
US4735225A (en) Method and apparatus for drawing and regulating the output and pressure of a liquid additive
JPH026143A (en) Ink composition controller and control method for drop marking device
US4556815A (en) Piezoelectric device for detecting stoppage of a nozzle
US6579563B1 (en) Fluid dispenser with fluid weight monitor
US4738541A (en) Apparatus for mixing fluids
GB1103744A (en) Process and device for marking the surface of materials
WO1995005997A1 (en) System for detecting blockage in a spray gun
JPS58100711A (en) Measuring method for quantity of liquid jetting from jet
SU747407A3 (en) Device for indication of icing intensity
US5203504A (en) Preparing mixed liquids
GB2216817A (en) Preparing mixed liquids
US5823430A (en) Automatic fertilizing apparatus
CN207763185U (en) A kind of automatic spraying system
CN209240290U (en) A kind of glue class Chinese medicine auxiliary material addition instrument