JPH1198728A - Permanent magnet dynamo-electric machine - Google Patents
Permanent magnet dynamo-electric machineInfo
- Publication number
- JPH1198728A JPH1198728A JP9267727A JP26772797A JPH1198728A JP H1198728 A JPH1198728 A JP H1198728A JP 9267727 A JP9267727 A JP 9267727A JP 26772797 A JP26772797 A JP 26772797A JP H1198728 A JPH1198728 A JP H1198728A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- stator
- electric machine
- rotor
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、永久磁石回転電機
に係り、特に、永久磁石回転電機を小形・軽量化、その
回転を高効率化する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet rotating electric machine, and more particularly to a technique for reducing the size and weight of a permanent magnet rotating electric machine and increasing the efficiency of its rotation.
【0002】[0002]
【従来の技術】一般に、回転電機は高速で使用すること
により、電動機自身を小型軽量とすることが可能であ
る。特に、高速回転電機として例えばハイブリッド電気
自動車のタービン発電機、分子ポンプに直結される駆動
モータ等は数万回転から十数万回転に至るまで使用され
る。このような用途に使用される回転電機としては、永
久磁石回転電機が回転子側に損失の発生が無いため、最
もよく対応可能である。これらの従来例として、昭和6
0年電気学会全国大会(S.9−3「超高速発電機とそ
の応用」)(開示例1)には、永久磁石発電機の遠心力
に対する機械的強度を高めるために、高性能の稀土類コ
バルト磁石を分割された磁性体の中に収める永久磁石回
転子の構成について開示されている。一方、実開昭60
−14642号公報(開示例2)には、高速に適した形
式とするために、永久磁石回転子の外周を非磁性の永久
磁石保持部材で巻回する回転子について開示されてい
る。2. Description of the Related Art Generally, when a rotating electric machine is used at a high speed, the electric motor itself can be reduced in size and weight. In particular, as a high-speed rotating electric machine, for example, a turbine generator of a hybrid electric vehicle, a drive motor directly connected to a molecular pump, and the like are used from tens of thousands to hundreds of thousands of rotations. As a rotating electric machine used for such an application, a permanent magnet rotating electric machine is most applicable because there is no loss on the rotor side. As a conventional example of these, Showa 6
The 0th Annual Conference of the Institute of Electrical Engineers of Japan (S.9-3 "Ultra-high-speed generator and its application") (Disclosure Example 1) includes a high-performance rare earth in order to increase the mechanical strength of a permanent magnet generator against centrifugal force. A configuration of a permanent magnet rotor that accommodates a cobalt-like magnet in a divided magnetic body is disclosed. Meanwhile, Shokai 60
Japanese Patent Application Publication No. 14642 (Disclosure Example 2) discloses a rotor in which the outer periphery of a permanent magnet rotor is wound by a non-magnetic permanent magnet holding member in order to make the type suitable for high speed.
【0003】[0003]
【発明が解決しようとする課題】ところで、開示例1
は、高性能の稀土類コバルト磁石を使用しているため
に、小形化が可能である半面、分割された磁性体の中に
永久磁石を収める構造であるため、高速までの回転がで
きない点で問題がある。一方、開示例2は、永久磁石回
転子の外周を非磁性の永久磁石保持部材で巻回する構造
としているために、ある程度高速までの回転が可能であ
るが、さらに高い高速回転までの考慮がされていない
点、及び、開示例2に高性能の稀土類磁石を使用した
際、これらの磁石は導電性が高く、特に高速回転で運転
する場合には渦電流が発生するため、回転効率が低下す
る、という問題が発生する。DISCLOSURE OF THE INVENTION Incidentally, disclosed example 1
Is a high-performance rare-earth cobalt magnet, which can be downsized.On the other hand, because it has a structure in which a permanent magnet is housed in a divided magnetic body, rotation at high speeds is not possible. There's a problem. On the other hand, in the disclosed example 2, since the outer periphery of the permanent magnet rotor is wound by a non-magnetic permanent magnet holding member, rotation up to a certain high speed is possible. However, when high performance rare earth magnets are used in the disclosure example 2, these magnets have high conductivity, and eddy current is generated particularly when the magnet is operated at high speed, so that the rotation efficiency is low. The problem of lowering occurs.
【0004】本発明の課題は、従来例の問題点に鑑み、
小形・軽量化を可能とすると共に、回転効率の高い永久
磁石回転電機を提供することにある。[0004] The object of the present invention is to solve the problems of the prior art.
An object of the present invention is to provide a permanent magnet rotating electric machine that can be reduced in size and weight and has high rotation efficiency.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に、固定子鉄心のスリットの周方向幅をhs、永久磁石
保持部材の厚さをhbとしたとき、hs<hbとし、永
久磁石表面の磁束分布の落ち込みを低減する。また、永
久磁石の厚さをhm、永久磁石保持部材の厚さをhbと
したとき、hm<hbとし、高い高速回転を可能とす
る。また、回転子鉄心は、永久磁石間に設けられたブリ
ッジと永久磁石の外周に設けられたブリッジから構成す
る。ここで、永久磁石として残留磁束密度が0.8テス
ラ以上の特性を有する。In order to solve the above problems, when the circumferential width of the slit of the stator core is hs and the thickness of the permanent magnet holding member is hb, hs <hb, and the surface of the permanent magnet is Of the magnetic flux distribution of the semiconductor device is reduced. When the thickness of the permanent magnet is hm and the thickness of the permanent magnet holding member is hb, hm <hb, and high-speed rotation is enabled. Further, the rotor core is composed of a bridge provided between the permanent magnets and a bridge provided on the outer periphery of the permanent magnet. Here, the permanent magnet has a characteristic that the residual magnetic flux density is 0.8 Tesla or more.
【0006】[0006]
【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態を示す永
久磁石回転電機である。図1において、永久磁石回転電
機1は固定子2と回転子3とから構成される。固定子2
は、固定子鉄心4と固定子巻線5(u1,v1,w1〜
u4,v4,w4は3相用巻線)からなる。ここでは、
固定子構造は一般に広く使用されている分布巻固定子構
造で示す。例えば、固定子鉄心4は固定子歯部41と固
定子歯部41を通る磁束の磁気回路を形成する固定子ヨ
ーク部42とからなり、固定子巻線5は固定子鉄心4の
空隙面に近い部分のスリット部44から固定子スロット
部43に収納される構成をとる。また、回転子3は、高
透磁率磁性材料である、例えば珪素鋼板よりなる回転子
鉄心8と、その外周に円弧状に配置された永久磁石6と
その永久磁石6を支持するガラス繊維もしくはカーボン
繊維を用いた非磁性の永久磁石保持部材7とシャフト9
とからなる。ここでは、永久磁石回転子3は4極の構成
であり、かつ、本実施形態の対象とする永久磁石6は高
性能永久磁石である稀土類磁石例えばサマリウムコバル
ト、あるいはネオジウム・鉄・ボロンからなる永久磁石
であり、比較的高い導電性例えば固有抵抗として200
μΩ・cm位の導電性を有するものである。これらの永
久磁石の磁気的なエネルギ積は20〜50M・G・O
e、残留磁束密度8000〜12000G(0.8〜
1.2テスラ)と高く、一般に回転電機に広く使用され
ているフェライト磁石に対して一桁以上性能の高い永久
磁石である。図1では、固定子鉄心4のスロット43の
数は24であり、永久磁石回転子の極数4に対して毎極
毎相当りのスロット数が2(スロット数24/極数4=
6,6/3相=2)の例を示した。これが1(スロット
数12/極数4=3,3/3相=1),3(スロット数
36/極数4=9,9/3相=3),4(スロット数4
8/極数4=12,12/3相=4)と変化しても同じ
である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a permanent magnet rotating electric machine showing one embodiment of the present invention. In FIG. 1, a permanent magnet rotating electric machine 1 includes a stator 2 and a rotor 3. Stator 2
Are the stator core 4 and the stator windings 5 (u1, v1, w1 to
u4, v4, and w4 are three-phase windings). here,
The stator structure is generally referred to as a widely used distributed winding stator structure. For example, the stator core 4 includes a stator tooth portion 41 and a stator yoke portion 42 that forms a magnetic circuit of a magnetic flux passing through the stator tooth portion 41, and the stator winding 5 is disposed on a gap surface of the stator core 4. It is configured to be housed in the stator slot portion 43 from the slit portion 44 in the near portion. The rotor 3 is made of a high magnetic permeability magnetic material, for example, a rotor iron core 8 made of, for example, a silicon steel plate, a permanent magnet 6 arranged in an arc shape on the outer periphery thereof, and a glass fiber or carbon supporting the permanent magnet 6. Non-magnetic permanent magnet holding member 7 using fiber and shaft 9
Consists of Here, the permanent magnet rotor 3 has a four-pole configuration, and the permanent magnet 6 to be used in the present embodiment is made of a rare earth magnet such as samarium cobalt or neodymium / iron / boron which is a high-performance permanent magnet. A permanent magnet having a relatively high conductivity, for example, 200
It has conductivity of the order of μΩ · cm. The magnetic energy product of these permanent magnets is 20-50 M · G · O
e, residual magnetic flux density 8000 to 12000G (0.8 to
1.2 Tesla), which is a permanent magnet having a performance higher than that of ferrite magnets, which are generally widely used in rotating electric machines, by one digit or more. In FIG. 1, the number of slots 43 of the stator core 4 is 24, and the number of slots corresponding to each pole is 2 (4 slots / 4 poles = 4 poles).
6, 6/3 phase = 2). This is 1 (slot number 12 / pole number 4 = 3, 3/3 phase = 1), 3 (slot number 36 / pole number 4 = 9, 9/3 phase = 3), 4 (slot number 4
This is the same even if it changes to 8 / the number of poles 4 = 12, 12/3 phase = 4).
【0007】図2に、本実施形態の永久磁石回転電機の
断面図を示す。回転電機1の固定子2はハウジング10
とこのハウジング10の内周面に固定された固定子鉄心
4と、この固定子鉄心4に巻回された多相の固定子巻線
5とで構成される。回転子3は、回転子鉄心8と、永久
磁石6と、その回転子鉄心8の外周に配置された永久磁
石6を固定する非導電性を有する非磁性の永久磁石保持
部材7とシャフト9とから成る。シャフト9は、ベアリ
ング12、エンドブラケット11によって固定子2に回
転自在に保持される。ここで、図示しないが、必要によ
っては回転子3の永久磁石6の位置を検出する磁極位置
検出器や回転子3の位置を検出するエンコーダをシャフ
ト9に同軸上に設け、制御装置を介して運転制御する構
成をとる。FIG. 2 is a sectional view of the permanent magnet rotating electric machine according to the present embodiment. The stator 2 of the rotating electric machine 1 includes a housing 10
And a stator core 4 fixed to the inner peripheral surface of the housing 10, and a multi-phase stator winding 5 wound around the stator core 4. The rotor 3 includes a rotor core 8, a permanent magnet 6, a non-magnetic non-magnetic permanent magnet holding member 7 for fixing the permanent magnet 6 disposed on the outer periphery of the rotor core 8, and a shaft 9. Consists of The shaft 9 is rotatably held on the stator 2 by bearings 12 and end brackets 11. Here, although not shown, a magnetic pole position detector for detecting the position of the permanent magnet 6 of the rotor 3 and an encoder for detecting the position of the rotor 3 are provided coaxially on the shaft 9 as necessary, and are provided via a control device. A configuration for operation control is adopted.
【0008】図1において、hbは非磁性の永久磁石保
持部材7の半径方向の厚さ、hsはスリット部44の周
方向の長さ、hm永久磁石6の半径方向の長さを示す。
本実施形態では、永久磁石6の外周に設けられた非磁性
の永久磁石保持部材7の半径方向の厚さhbをスリット
部44の周方向の長さhsよりも大きくしたことを特徴
とする。さらには、永久磁石6の半径方向の長さhmよ
りも非磁性の永久磁石保持部材7の半径方向の長さhb
を大きくしたことを特徴とする。In FIG. 1, hb indicates the thickness of the non-magnetic permanent magnet holding member 7 in the radial direction, hs indicates the circumferential length of the slit portion 44, and the hm permanent magnet 6 in the radial direction.
The present embodiment is characterized in that the thickness hb in the radial direction of the non-magnetic permanent magnet holding member 7 provided on the outer periphery of the permanent magnet 6 is larger than the length hs of the slit portion 44 in the circumferential direction. Furthermore, the radial length hb of the non-magnetic permanent magnet holding member 7 is larger than the radial length hm of the permanent magnet 6.
Is increased.
【0009】高速の永久磁石回転電機1では、永久磁石
を保持する機械的な強度の確保が重要である。一方、ト
ルクの確保のためには、空隙及び非磁性の永久磁石保持
部材の厚さhbはできる限り小さくとる必要がある。こ
の点より、空隙は高速で回転した場合の永久磁石回転子
3の膨らみのよって固定子1に接触しない範囲で最小に
選択される。ここで、非磁性の永久磁石保持部材7の導
電性は、永久磁石よりも小さい値を有する材料を使用す
るものとする。非磁性の永久磁石保持部材7として導電
性を高いものを使用すると、空隙中の永久磁石の磁束を
直接切ることによって、渦電流を発生する恐れがあるた
めである。高速回転で用いられる永久磁石回転電機では
特にこの点が重要である。本実施形態は、高速の永久磁
石回転電機に高性能永久磁石を使用し、永久磁石6の
半径方向厚さhmをできる限り小さく選定することによ
って、永久磁石重量を小さくし、これによって永久磁石
6による遠心力を小さくする、の永久磁石保持部材7
の厚さhbを大きくすることによって、高速回転まで永
久磁石6にかかる遠心力を保持し、これによって高速ま
での回転を可能とする、点にある。この考えは、高性能
磁石の採用によって初めて可能である。残留磁束密度が
8000〜12000G(0.8〜1.2テスラ)と高
い永久磁石を使用した永久磁石回転電機を空隙及び非磁
性の永久磁石保持部材の厚さを小さいままで高速領域に
おいて使用することは、固定子各部の磁束密度が高くか
つ高速で回転することから、大きな鉄損(周波数の1.
6乗に比例する。)が発生する。すなわち、この方法で
永久磁石回転電機を使用したのでは、鉄損による熱で固
定子鉄心を温度上昇させ、それによって回転子側の永久
磁石の温度上昇も生ぜしめる。特に、ネオジウム・鉄・
ボロンからなる永久磁石は、温度による磁気特性の依存
性が高いために、上記の使用方法では、永久磁石の磁気
特性を損ない、最悪の場合には不可逆の減磁を招く恐れ
もある。従って、本実施形態では、非磁性の永久磁石保
持部材7の半径方向の厚さhbを永久磁石6の半径方向
の長さhmより大きくすることによって、強度を確保
し、また、永久磁石6の磁束密度を適正に減少させて、
鉄損を減少させることが可能となる。In the high-speed permanent magnet rotating electric machine 1, it is important to secure mechanical strength for holding the permanent magnet. On the other hand, in order to secure the torque, it is necessary to make the gap and the thickness hb of the non-magnetic permanent magnet holding member as small as possible. From this point, the air gap is selected to be the minimum within a range where the air gap does not contact the stator 1 due to the swelling of the permanent magnet rotor 3 when rotating at high speed. Here, the conductivity of the non-magnetic permanent magnet holding member 7 is assumed to be a material having a value smaller than that of the permanent magnet. If a non-magnetic permanent magnet holding member 7 having high conductivity is used, an eddy current may be generated by directly cutting off the magnetic flux of the permanent magnet in the air gap. This point is particularly important in a permanent magnet rotating electric machine used at high speed rotation. The present embodiment uses a high-performance permanent magnet for a high-speed permanent magnet rotating electric machine, and reduces the weight of the permanent magnet 6 by selecting the radial thickness hm of the permanent magnet 6 as small as possible. Permanent magnet holding member 7 for reducing centrifugal force due to
By increasing the thickness hb, the centrifugal force applied to the permanent magnet 6 is maintained until high-speed rotation, thereby enabling rotation at high speed. This idea is only possible with the use of high-performance magnets. A permanent magnet rotating electric machine using a permanent magnet having a high residual magnetic flux density of 8000 to 12000 G (0.8 to 1.2 Tesla) is used in a high-speed region with a small gap and a small thickness of a non-magnetic permanent magnet holding member. This is because the magnetic flux density of each part of the stator is high and the stator rotates at high speed, so that a large iron loss (1.
It is proportional to the sixth power. ) Occurs. That is, when the permanent magnet rotating electric machine is used in this method, the temperature of the stator core is increased by the heat due to the iron loss, and thereby the temperature of the permanent magnet on the rotor side is also increased. In particular, neodymium, iron,
Since the permanent magnet made of boron is highly dependent on the magnetic properties depending on the temperature, the above-mentioned method of use may impair the magnetic properties of the permanent magnet and, in the worst case, cause irreversible demagnetization. Therefore, in the present embodiment, the strength is ensured by making the radial thickness hb of the non-magnetic permanent magnet holding member 7 larger than the radial length hm of the permanent magnet 6, and the permanent magnet 6 By appropriately reducing the magnetic flux density,
Iron loss can be reduced.
【0010】また、永久磁石6に導電性があることは、
永久磁石内に渦電流を生ぜしめ、ここでも前述のように
永久磁石に悪い影響を与える鉄損を発生する。永久磁石
6に渦電流が発生する要因は、次の二つがある。第1
は、スリット部43の存在により、回転子3の永久磁石
表面の磁束が脈動するためによって生じるものであり、
スロットリップル成分による。これは原理上無負荷の状
態でも発生する。第2は、固定子巻線5による起磁力に
よって発生する高調波磁界によって生じる渦電流損であ
る。これは負荷がかかり、固定子巻線5に電流が流れる
ことによって発生するものである。The fact that the permanent magnet 6 has conductivity is as follows.
An eddy current is generated in the permanent magnet, and again, as described above, an iron loss that adversely affects the permanent magnet is generated. The following two factors cause the eddy current to be generated in the permanent magnet 6. First
Is caused by the pulsation of the magnetic flux on the surface of the permanent magnet of the rotor 3 due to the presence of the slit 43.
It depends on the slot ripple component. This also occurs in principle with no load. The second is an eddy current loss caused by a harmonic magnetic field generated by a magnetomotive force generated by the stator winding 5. This occurs when a load is applied and a current flows through the stator winding 5.
【0011】以下、第1の要因である鉄損発生について
説明する。一般の永久磁石回転電機の永久磁石表面の磁
束分布を図3(a)に示す。図3(a)の磁束分布は、
図3(b)に示すほぼ台形形状の波形とスリット部44
の影響により磁束密度が落ち込む部分の重畳したものと
なる。鉄損は、この磁束密度が落ち込む部分Bpによっ
て発生し、このBpが大きい程大きくなる。ところで、
非磁性の永久磁石保持部材7の厚さhb及びスリット部
44の半径方向長さhsの比とスリット部44の下の磁
束密度の落ち込み量Bpとの関係は、図3(c)で示す
ようになる。図3(c)において、縦軸はBp、横軸は
hb/hsであり、hb/hsが1.0より大きくなる
と、Bpは小さくなる。従って、本実施形態のように、
非磁性の永久磁石保持部材7の厚さhbをスリット部4
4の半径方向の長さhsより大きくすることによって、
永久磁石6の表面にはスリット部44の影響による磁束
密度の落ち込み量Bpの発生を抑制することができる。
図3(d)は、本実施形態による永久磁石回転電機の永
久磁石表面の磁束分布を示す。このように、本実施形態
によれば、図3(d)から明らかなように、磁束密度の
落ち込み量Bpが殆ど現われず、従って永久磁石表面に
発生する渦電流を抑え、鉄損を小さくすることが可能に
なる。また、第2の要因である鉄損発生について、永久
磁石6を周方向に複数に分割すること、つまり、永久磁
石6の一磁極を複数に分割することによって、固定子巻
線5の電機子反作用磁束による渦電流の小さな回路と
し、これによって、渦電流の発生量の総和を小さくし、
永久磁石6に発生する渦電流損を低減することができ
る。Hereinafter, generation of iron loss, which is the first factor, will be described. FIG. 3A shows a magnetic flux distribution on a permanent magnet surface of a general permanent magnet rotating electric machine. The magnetic flux distribution in FIG.
The substantially trapezoidal waveform shown in FIG.
Of the magnetic flux density is reduced by the influence of the above. Iron loss is generated by the portion Bp where the magnetic flux density falls, and the larger the Bp, the larger the iron loss. by the way,
The relationship between the ratio of the thickness hb of the non-magnetic permanent magnet holding member 7 to the radial length hs of the slit portion 44 and the amount of drop Bp of the magnetic flux density below the slit portion 44 is as shown in FIG. become. In FIG. 3C, the vertical axis is Bp, and the horizontal axis is hb / hs. When hb / hs is larger than 1.0, Bp becomes smaller. Therefore, as in the present embodiment,
The thickness hb of the non-magnetic permanent magnet holding member 7 is determined by the slit portion 4.
By making it larger than the radial length hs of 4,
On the surface of the permanent magnet 6, the amount of drop Bp of the magnetic flux density due to the influence of the slit portion 44 can be suppressed.
FIG. 3D shows the magnetic flux distribution on the surface of the permanent magnet of the permanent magnet rotating electric machine according to the present embodiment. As described above, according to the present embodiment, as is apparent from FIG. 3D, the drop amount Bp of the magnetic flux density hardly appears. Therefore, the eddy current generated on the surface of the permanent magnet is suppressed, and the iron loss is reduced. It becomes possible. Regarding the second cause of iron loss, the armature of the stator winding 5 is divided by dividing the permanent magnet 6 into a plurality of pieces in the circumferential direction, that is, by dividing one magnetic pole of the permanent magnet 6 into a plurality of pieces. A circuit with a small eddy current due to the reaction magnetic flux reduces the total amount of eddy current generated,
Eddy current loss generated in the permanent magnet 6 can be reduced.
【0012】図4は、本発明の他の実施形態による永久
磁石回転電機を示す。ここで、固定子2は図1で示した
構造と同一のものである。ここでは、前述の鉄損発生要
因の第1と第2に対する対策構造を示す。本実施形態に
おいて、永久磁石回転子3は、高透磁率磁性材料であ
る、例えば珪素鋼板よりなる回転子鉄心8と、その回転
子鉄心8に設けられた永久磁石挿入孔に挿入された永久
磁石6(永久磁石6を回転子鉄心8に埋め込んだ構造)
とシャフト9とからなる。この高透磁率磁性材料からな
る回転子鉄心8は、図1の構成の他に永久磁石6間に設
けられたブリッジ81と永久磁石6の外周に設けられた
ブリッジ82とで構成し、ここには永久磁石挿入孔とシ
ャフト9を通す孔が打ち抜かれる構造である。このよう
な構成にすると、永久磁石外周のブリッジ82の存在に
よって固定子鉄心4のスリット部43による永久磁石表
面の磁気的な落ち込み量を緩和することができるととも
に、固定子巻線5による永久磁石6にかかる電機子反作
用磁束の変動量も緩和してくれる。これによって、渦電
流を小さくすることができる。一般に、制御回路が固定
子巻線5に正弦波電流を流す180度通電方式では、電
機子反作用による磁界は円形回転磁界となり、永久磁石
の渦電流の発生の原因となる脈動磁束発生の恐れは少な
くなる。しかし、固定子のスロット数が一極当たり3個
程度であると、低次の高調波が発生し、これによる脈動
トルクが発生し、永久磁石内に渦電流を発生する。さら
に、通電方式として120度通電方式の場合は円形回転
磁界とならないために、永久磁石に電機子反作用による
大きな渦電流を発生せしめる。これは大きな渦電流損を
発生させ、永久磁石を高温にさせ、さらに必要トルクに
対しては電流が増加する。以上は正帰還となり、最悪の
場合は永久磁石は減磁に至る恐れもある。本実施形態に
よれば、永久磁石6は、ブリッジ81、ブリッジ82に
囲まれているため、上記の脈動磁束は永久磁石6よりも
ブリッジ81、ブリッジ82を流れ、永久磁石6に流れ
る脈動磁束を緩和するために、渦電流の発生を抑える効
果を発揮する。FIG. 4 shows a permanent magnet rotating electric machine according to another embodiment of the present invention. Here, the stator 2 has the same structure as that shown in FIG. Here, a countermeasure structure for the above-described first and second causes of the iron loss occurrence will be described. In the present embodiment, the permanent magnet rotor 3 includes a rotor core 8 made of a high magnetic permeability magnetic material, for example, a silicon steel plate, and a permanent magnet inserted into a permanent magnet insertion hole provided in the rotor core 8. 6 (structure in which permanent magnet 6 is embedded in rotor core 8)
And a shaft 9. The rotor core 8 made of this high magnetic permeability magnetic material is configured by a bridge 81 provided between the permanent magnets 6 and a bridge 82 provided on the outer periphery of the permanent magnet 6 in addition to the configuration shown in FIG. Has a structure in which a permanent magnet insertion hole and a hole through which the shaft 9 passes are punched. With such a configuration, the presence of the bridge 82 on the outer periphery of the permanent magnet can reduce the amount of magnetic drop on the surface of the permanent magnet due to the slit 43 of the stator core 4, and the permanent magnet formed by the stator winding 5 It also reduces the amount of change in the armature reaction magnetic flux applied to 6. Thereby, the eddy current can be reduced. In general, in the 180-degree conduction system in which the control circuit supplies a sine-wave current to the stator winding 5, the magnetic field due to the armature reaction becomes a circular rotating magnetic field, and there is a possibility that a pulsating magnetic flux which causes an eddy current of the permanent magnet is generated. Less. However, when the number of slots in the stator is about three per pole, low-order harmonics are generated, which generates pulsating torque and generates eddy currents in the permanent magnet. Further, in the case of the 120-degree conduction method, a large rotating eddy current is generated due to the armature reaction in the permanent magnet because a circular rotating magnetic field does not occur. This causes large eddy current losses, heats up the permanent magnet, and increases the current for the required torque. The above is positive feedback, and in the worst case, the permanent magnet may be demagnetized. According to the present embodiment, since the permanent magnet 6 is surrounded by the bridge 81 and the bridge 82, the pulsating magnetic flux flows through the bridge 81 and the bridge 82 more than the permanent magnet 6, and the pulsating magnetic flux flowing through the permanent magnet 6 is reduced. In order to alleviate this, the effect of suppressing the generation of eddy current is exhibited.
【0013】以上、本発明は、実施形態として内転型の
永久磁石回転電機について述べたが、外転型の永久磁石
回転電機についても適用可能である。また、固定子巻線
として分布巻の固定子の例を示したが、集中巻永久磁石
回転電機についても有効である。さらには、軸方向の空
隙を有する回転電機及び発電機、電動機及び直進型の電
動機についても適用可能である。As described above, the present invention has been described with reference to the internal rotation type permanent magnet rotary electric machine as an embodiment. However, the present invention is also applicable to an external rotation type permanent magnet rotary electric machine. Further, although the example of the stator winding having the distributed winding is shown as the stator winding, the present invention is also effective for a concentrated winding permanent magnet rotating electric machine. Further, the present invention is also applicable to a rotating electric machine, a generator, an electric motor, and a straight-type electric motor having an axial gap.
【0014】[0014]
【発明の効果】以上説明したように、本発明によれば、
永久磁石回転電機に高性能永久磁石を使用することによ
って、永久磁石回転電機を小形・軽量化することができ
ると同時に、非磁性の永久磁石保持部材の半径方向の厚
さを永久磁石の半径方向の長さより大きくするので、従
来例に比し、強度を確保して高速までの回転を可能とす
る。また、永久磁石保持部材の厚さをスリット部の半径
方向の長さより大きくするので、永久磁石表面に発生す
る渦電流を抑え、高効率の回転を実現することができ
る。また、永久磁石を回転子鉄心によるブリッジによっ
て囲むことにより、永久磁石に流れる脈動磁束を緩和
し、渦電流の発生を抑え、回転効率を高くすることがで
きる。As described above, according to the present invention,
By using a high-performance permanent magnet for the permanent magnet rotating electric machine, the size and weight of the permanent magnet rotating electric machine can be reduced, and at the same time, the thickness of the non-magnetic permanent magnet holding member in the radial direction can be reduced. Since the length is larger than that of the conventional example, the strength can be secured and rotation up to high speed is possible. Further, since the thickness of the permanent magnet holding member is made larger than the radial length of the slit portion, eddy current generated on the surface of the permanent magnet can be suppressed, and high-efficiency rotation can be realized. Further, by surrounding the permanent magnet with a bridge made of a rotor core, pulsating magnetic flux flowing through the permanent magnet can be reduced, generation of eddy current can be suppressed, and rotation efficiency can be increased.
【図1】本発明の一実施形態を示す永久磁石回転電機FIG. 1 shows a permanent magnet rotating electric machine showing one embodiment of the present invention.
【図2】本発明の永久磁石回転電機の断面図FIG. 2 is a sectional view of a permanent magnet rotating electric machine according to the present invention.
【図3】本発明の動作説明図FIG. 3 is a diagram illustrating the operation of the present invention.
【図4】本発明の他の実施形態FIG. 4 shows another embodiment of the present invention.
1:永久磁石回転電機 2:固定子 3:回転子 4:固定子鉄心 41:固定子歯部及び突極部 42:固定子ヨーク
部 43:スロット部 44:スリット部 5:固定子巻線 6:永久磁石 7:永久磁石保持部材 8:回転子鉄心 81:ブリッジ 82:ブリッジ 9:シャフト 10:ハウジング 11:エンドブラケット 12:ベアリング1: permanent magnet rotating electric machine 2: stator 3: rotor 4: stator core 41: stator teeth and salient poles 42: stator yoke 43: slot 44: slit 5: stator winding 6 : Permanent magnet 7: permanent magnet holding member 8: rotor core 81: bridge 82: bridge 9: shaft 10: housing 11: end bracket 12: bearing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 治雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Haruo Miura 603 Kandamachi, Tsuchiura-shi, Ibaraki Pref.
Claims (4)
めのスリットを有し、固定子巻線を収納するスロット部
と、磁気回路を形成する固定子歯部及び固定子ヨーク部
とを備えた固定子鉄心からなる固定子と、回転子鉄心
と、その外周に円弧状に配置された永久磁石と、永久磁
石の外周に位置し、永久磁石を保持する永久磁石保持部
材とからなる回転子を具備する永久磁石回転電機におい
て、固定子鉄心のスリットの周方向幅をhs、永久磁石
保持部材の厚さをhbとしたとき、hs<hbとするこ
とを特徴とする永久磁石回転電機。1. A stator winding, a slot having a slit for inserting the stator winding and accommodating the stator winding, a stator tooth and a stator yoke forming a magnetic circuit. A stator consisting of a stator core comprising: a rotor core; a permanent magnet arranged in an arc shape on the outer periphery thereof; and a permanent magnet holding member which is located on the outer periphery of the permanent magnet and holds the permanent magnet. Wherein the circumferential width of the slit of the stator core is hs and the thickness of the permanent magnet holding member is hb, hs <hb. Electric machine.
めのスリットを有し、固定子巻線を収納するスロット部
と、磁気回路を形成する固定子歯部及び固定子ヨーク部
とを備えた固定子鉄心からなる固定子と、回転子鉄心
と、その外周に円弧状に配置された永久磁石と、永久磁
石の外周に位置し、永久磁石を保持する永久磁石保持部
材とからなる回転子を具備する永久磁石回転電機におい
て、永久磁石の厚さをhm、永久磁石保持部材の厚さを
hbとしたとき、hm<hbとすることを特徴とする永
久磁石回転電機。2. A stator winding, a slot having a slit for inserting the stator winding and accommodating the stator winding, a stator tooth and a stator yoke forming a magnetic circuit. A stator consisting of a stator core comprising: a rotor core; a permanent magnet arranged in an arc shape on the outer periphery thereof; and a permanent magnet holding member which is located on the outer periphery of the permanent magnet and holds the permanent magnet. A permanent magnet rotating electric machine comprising a rotor, wherein hm <hb, where hm is the thickness of the permanent magnet and hb is the thickness of the permanent magnet holding member.
子鉄心は、永久磁石間に設けられたブリッジと永久磁石
の外周に設けられたブリッジから構成することを特徴と
する永久磁石回転電機。3. The permanent magnet rotating electric machine according to claim 1, wherein the rotor core comprises a bridge provided between the permanent magnets and a bridge provided on the outer periphery of the permanent magnets.
て、永久磁石として残留磁束密度が0.8テスラ以上の
特性を有することを特徴とする永久磁石回転電機。4. The permanent magnet rotating electric machine according to claim 1, wherein the permanent magnet has a characteristic that a residual magnetic flux density is 0.8 Tesla or more as a permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9267727A JPH1198728A (en) | 1997-09-12 | 1997-09-12 | Permanent magnet dynamo-electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9267727A JPH1198728A (en) | 1997-09-12 | 1997-09-12 | Permanent magnet dynamo-electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1198728A true JPH1198728A (en) | 1999-04-09 |
Family
ID=17448738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9267727A Pending JPH1198728A (en) | 1997-09-12 | 1997-09-12 | Permanent magnet dynamo-electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1198728A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000324736A (en) * | 1999-05-12 | 2000-11-24 | Mitsubishi Electric Corp | Permanent magnet mounted motor |
US6683389B2 (en) * | 2000-06-30 | 2004-01-27 | Capstone Turbine Corporation | Hybrid electric vehicle DC power generation system |
JPWO2002073788A1 (en) * | 2001-03-14 | 2004-07-08 | 保坂 明 | Magnetic motor |
JP2005354899A (en) * | 2005-09-09 | 2005-12-22 | Mitsubishi Electric Corp | Permanent magnet type motor |
WO2013054439A1 (en) * | 2011-10-14 | 2013-04-18 | 三菱電機株式会社 | Permanent magnet motor |
JP2013531459A (en) * | 2010-06-22 | 2013-08-01 | エアリステック・コントロール・テクノロジーズ・リミテッド | Control device |
JPWO2013054439A1 (en) * | 2011-10-14 | 2015-03-30 | 三菱電機株式会社 | Permanent magnet type motor |
US9698645B2 (en) | 2013-03-14 | 2017-07-04 | Regal Beloit America, Inc. | Electric machine and associated method |
WO2020166222A1 (en) * | 2019-02-12 | 2020-08-20 | 三菱電機株式会社 | Rotating electric machine rotor and method for manufacturing same |
-
1997
- 1997-09-12 JP JP9267727A patent/JPH1198728A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000324736A (en) * | 1999-05-12 | 2000-11-24 | Mitsubishi Electric Corp | Permanent magnet mounted motor |
US6683389B2 (en) * | 2000-06-30 | 2004-01-27 | Capstone Turbine Corporation | Hybrid electric vehicle DC power generation system |
JPWO2002073788A1 (en) * | 2001-03-14 | 2004-07-08 | 保坂 明 | Magnetic motor |
JP2005354899A (en) * | 2005-09-09 | 2005-12-22 | Mitsubishi Electric Corp | Permanent magnet type motor |
JP2013531459A (en) * | 2010-06-22 | 2013-08-01 | エアリステック・コントロール・テクノロジーズ・リミテッド | Control device |
WO2013054439A1 (en) * | 2011-10-14 | 2013-04-18 | 三菱電機株式会社 | Permanent magnet motor |
JPWO2013054439A1 (en) * | 2011-10-14 | 2015-03-30 | 三菱電機株式会社 | Permanent magnet type motor |
US9564779B2 (en) | 2011-10-14 | 2017-02-07 | Mitsubishi Electric Corporation | Permanent magnet motor |
US9698645B2 (en) | 2013-03-14 | 2017-07-04 | Regal Beloit America, Inc. | Electric machine and associated method |
WO2020166222A1 (en) * | 2019-02-12 | 2020-08-20 | 三菱電機株式会社 | Rotating electric machine rotor and method for manufacturing same |
JPWO2020166222A1 (en) * | 2019-02-12 | 2021-02-25 | 三菱電機株式会社 | Rotor of rotary electric machine and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4311643B2 (en) | Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation | |
US7595575B2 (en) | Motor/generator to reduce cogging torque | |
JP5449892B2 (en) | Permanent magnet excitation type radial magnetic bearing and magnetic bearing device including the radial magnetic bearing | |
JP2007221961A (en) | Electric machine | |
EP4080743A1 (en) | Magnetic geared rotary electric machine | |
JP2005218183A (en) | Electric rotating machine and electromagnetic apparatus | |
CN110838779B (en) | Mixed excitation wound rotor and mixed excitation wound synchronous motor | |
JP3655205B2 (en) | Rotating electric machine and electric vehicle using the same | |
JPH1198728A (en) | Permanent magnet dynamo-electric machine | |
JP2005224006A (en) | Ipm rotary electric machine | |
JP2010161832A (en) | Permanent magnet rotating electrical machine | |
JP2008283806A (en) | Buried-magnet motor | |
JP2005080381A (en) | Ipm rotary electric machine | |
JP2002238194A (en) | Structure of rotor of permanent-magnet motor | |
WO2011089797A1 (en) | Rotor, rotating electrical machine using same, and power generator | |
JP2005130689A (en) | Rotating electric machine | |
JP2010172053A (en) | Slotless motor | |
JP4491211B2 (en) | Permanent magnet rotating electric machine | |
JP2018148675A (en) | Stator for rotary electric machine | |
Upadhyay et al. | Effect of armature reaction on the performance of an axial-field permanent-magnet brushless DC motor using FE method | |
KR102120361B1 (en) | A rotor having a conductor bar of a different length and a synchronous motor comprising the same | |
CN110120732B (en) | Induction tandem type brushless excitation motor | |
Haylock et al. | Predicting and preventing demagnetisation in permanent magnet motor drives | |
EP3915182A1 (en) | Permanent magnet assisted synchronous reluctance machine | |
JP2005130627A (en) | Embedded magnet type synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040324 |