JPH1197444A - Barrier layer for semiconductor substrate wiring - Google Patents

Barrier layer for semiconductor substrate wiring

Info

Publication number
JPH1197444A
JPH1197444A JP27049297A JP27049297A JPH1197444A JP H1197444 A JPH1197444 A JP H1197444A JP 27049297 A JP27049297 A JP 27049297A JP 27049297 A JP27049297 A JP 27049297A JP H1197444 A JPH1197444 A JP H1197444A
Authority
JP
Japan
Prior art keywords
barrier layer
wiring
alloy
semiconductor substrate
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27049297A
Other languages
Japanese (ja)
Other versions
JP3554665B2 (en
Inventor
Naoaki Kogure
直明 小榑
Hiroaki Inoue
裕章 井上
Hirokazu Ezawa
弘和 江澤
Masahiro Miyata
雅弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP27049297A priority Critical patent/JP3554665B2/en
Publication of JPH1197444A publication Critical patent/JPH1197444A/en
Application granted granted Critical
Publication of JP3554665B2 publication Critical patent/JP3554665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To employ a material that has a strong junction to wiring material and low resistivity and prevent a counter diffusion between insulation films, by using Ni-alloy member containing B (Boron) for a barrier layer between wiring and an adjoining insulation. SOLUTION: A barrier layer 11 is formed in an inner surface of a groove on an insulative SiO2 film 10 that is formed on a semiconductor substrate. A wiring layer 12 that is made of Cu or Cu-alloy is formed in a groove surrounded by the barrier layer 11. The barrier layer 11 comprises Ni-B alloy member containing B. A B-content of the Ni-B alloy is 10 at%. At the content, Ni-B alloy material has the highest density fill crystal structure around annealing and a barrier function of Cu that is used for material of the wiring layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板に設けた
配線と該配線に隣接する絶縁膜との間に設けられ、該配
線と該絶縁膜の間で生じる相互拡散を防止するバリア層
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barrier layer provided between a wiring provided on a semiconductor substrate and an insulating film adjacent to the wiring and for preventing mutual diffusion between the wiring and the insulating film. It is.

【0002】[0002]

【従来の技術】従来、半導体基板の配線材料には、アル
ミニウム又はアルミニウム合金が用いられている。アル
ミニウム又はアルミニウム合金は電気比抵抗(ρ)が約
3μΩcmと大きく、ICの集積密度が高くなると、例
えば1G以上になると、配線、が細く電流容量が不足す
るという問題があり、ストレスマイグレーション、エレ
クトロニクスマイグレーションが発生、極端な場合は配
線が断線するという問題があった。
2. Description of the Related Art Conventionally, aluminum or an aluminum alloy has been used as a wiring material for a semiconductor substrate. Aluminum or an aluminum alloy has a large electric resistivity (ρ) of about 3 μΩcm, and when the integration density of the IC becomes high, for example, when it becomes 1 G or more, there is a problem that wiring becomes thin and current capacity is insufficient. In extreme cases, the wiring is broken.

【0003】近年、アルミニウム又はアルミニウム合金
より、電気比抵抗(ρ)が小さく(約1.7μΩc
m)、且つ耐エレクトロニクスマイグレーション、耐ス
トレスマイグレーションの良好なCuが配線材料として
使用されるようになってきた。Cu材を配線材料として
用いた場合、隣接する絶縁膜、例えばSiO2と相互拡
散し、配線の電気特性を著しく低下させる。そのため従
来は、この相互拡散を防止するため、配線と絶縁膜の間
にTiN膜をバリア層として設けている。
In recent years, electric resistivity (ρ) is smaller than that of aluminum or aluminum alloy (about 1.7 μΩc).
m) and Cu having good resistance to electronics migration and stress migration has been used as a wiring material. When a Cu material is used as a wiring material, the Cu material interdiffuses with an adjacent insulating film, for example, SiO 2, and significantly reduces the electrical characteristics of the wiring. Therefore, conventionally, in order to prevent this interdiffusion, a TiN film is provided as a barrier layer between the wiring and the insulating film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ようにバリア層にTiN材を用いた場合、該TiN材は
バリア層を形成した後に形成される配線材料との接合が
弱く、且つ比抵抗(ρ)が高いので、本来の配線として
の材料特性が活用できないという問題があった。
However, when a TiN material is used for the barrier layer as described above, the TiN material has a weak junction with a wiring material formed after the formation of the barrier layer and has a specific resistance ( ρ) is high, there is a problem that the material characteristics as the original wiring cannot be utilized.

【0005】本発明は上述の点に鑑みてなされたもの
で、配線材料との接合が強く、且つ比抵抗(ρ)が低い
材料を用い、絶縁膜の間で生じる相互拡散を防止できる
半導体基板配線のバリア層を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and uses a material having a strong bonding with a wiring material and a low specific resistance (ρ) to prevent a semiconductor substrate from interdiffusion occurring between insulating films. It is an object of the present invention to provide a wiring barrier layer.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、半導体基板に設けた配線と該
配線に隣接する絶縁膜との間に設けられ、該配線と該絶
縁膜の間で生じる相互拡散を防止するバリア層であっ
て、該バリア層はBを含有するNi合金材からなること
を特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor device comprising: a wiring provided on a semiconductor substrate and an insulating film adjacent to the wiring; A barrier layer for preventing interdiffusion between films, wherein the barrier layer is made of a B-containing Ni alloy material.

【0007】また、請求項2に記載の発明は、請求項1
に記載の半導体基板配線のバリア層において、Ni合金
材がfcc結晶構造(最密充填結晶構造)を保持してい
ることを特徴とする。
[0007] The invention described in claim 2 is the first invention.
Wherein the Ni alloy material has an fcc crystal structure (closest-packed crystal structure) in the barrier layer of the semiconductor substrate wiring described in (1).

【0008】また、請求項3に記載の発明は、請求項2
に記載の半導体基板配線のバリア層において、Ni合金
材のBの含有率が0.01at%〜10at%であるこ
とを特徴とする。
[0008] Further, the invention described in claim 3 is based on claim 2.
Wherein the content of B in the Ni alloy material is 0.01 at% to 10 at%.

【0009】また、請求項4に記載の発明は、請求項2
又は3に記載の半導体基板配線のバリア層において、該
バリア層の厚さが100Å以上であることを特徴とす
る。
The invention described in claim 4 is the same as the invention described in claim 2.
Alternatively, in the barrier layer of the semiconductor substrate wiring according to 3, the thickness of the barrier layer is 100 ° or more.

【0010】また、請求項5に記載の発明は、請求項2
又は3又は4に記載の半導体基板配線のバリア層におい
て、該バリア層は無電解メッキで形成されたことを特徴
とする。
The invention described in claim 5 is the same as the claim 2.
Alternatively, in the barrier layer of the semiconductor substrate wiring according to 3 or 4, the barrier layer is formed by electroless plating.

【0011】また、請求項6に記載の発明は、請求項2
又は3又は4に記載の半導体基板配線のバリア層におい
て、該バリア層は電解メッキで形成されたことを特徴と
する。
[0011] The invention described in claim 6 is the invention according to claim 2.
Alternatively, in the barrier layer of the semiconductor substrate wiring according to 3 or 4, the barrier layer is formed by electrolytic plating.

【0012】また、請求項7に記載の発明は、請求項2
又は3又は4に記載の半導体基板配線のバリア層におい
て、該バリア層はスパッタ法で形成されたことを特徴と
する。
The invention described in claim 7 is the same as the invention described in claim 2.
Alternatively, in the barrier layer of the semiconductor substrate wiring according to 3 or 4, the barrier layer is formed by a sputtering method.

【0013】また、請求項8に記載の発明は、請求項2
又は3又は4に記載の半導体基板配線のバリア層におい
て、該バリア層はCVD法で形成されたことを特徴とす
る。
The invention described in claim 8 is the second invention.
Alternatively, in the barrier layer of the semiconductor substrate wiring according to 3 or 4, the barrier layer is formed by a CVD method.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図1は本発明の半導体基板配線
のバリア層の構成例を示す図である。図示するように、
半導体基板の上に形成した絶縁膜であるSiO2膜10
に形成された溝の内面にバリア層11を形成し、該バリ
ア層11で囲まれた溝にCu又はCu合金の配線層12
を形成する。バリア層11はBを含有するNi合金材
(Ni−B合金材)からなる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a barrier layer of a semiconductor substrate wiring according to the present invention. As shown
SiO 2 film 10 as an insulating film formed on a semiconductor substrate
A barrier layer 11 is formed on the inner surface of the groove formed in the substrate, and a wiring layer 12 of Cu or Cu alloy is formed in the groove surrounded by the barrier layer 11.
To form The barrier layer 11 is made of a Ni alloy material containing B (Ni-B alloy material).

【0015】ここで上記Ni−B合金材のBの含有率が
10at%とする。Bの含有率が10at%ではアニー
ル前後においてもNi−B合金材はfccの結晶構造を
有し、配線層12の材料であるCuのバリアとしての機
能を有する。ここでBの含有率を10at%以上とする
と、バリア層11の厚さに関係なく、アニール前後でそ
の構造がfccの結晶構造でなく(アニール前はアモル
ファス(非晶質)、アニール後は金属間化合物)、Cu
のバリア材としての機能を有しない。
Here, it is assumed that the content of B in the Ni-B alloy material is 10 at%. When the B content is 10 at%, the Ni-B alloy material has a crystal structure of fcc before and after annealing, and has a function as a barrier for Cu as a material of the wiring layer 12. If the B content is 10 at% or more, the structure is not a fcc crystal structure before and after annealing regardless of the thickness of the barrier layer 11 (amorphous before annealing, and metal after annealing). Compound), Cu
Does not function as a barrier material.

【0016】Ni−B合金材とTiN合金材との比抵抗
(ρ)は下記の通りであり、Ni−B合金材の方がTi
N合金材と比較して小さく、バリア層11の材料として
適している。 TiN 100μΩcm〜200μΩcm Ni−B 10μΩcm〜20μΩcm
The specific resistance (ρ) between the Ni—B alloy material and the TiN alloy material is as follows.
It is smaller than the N alloy material and is suitable as a material for the barrier layer 11. TiN 100μΩcm ~ 200μΩcm Ni-B 10μΩcm ~ 20μΩcm

【0017】また、Ni−B合金材はその構造がfcc
結晶構造であり、構造が金属間化合物であるTiN合金
材と比較して、配線材であるCuとの接合力が強く、バ
リア層11を構成する材料として好適である。
The structure of the Ni—B alloy material is fcc
It has a crystalline structure, and has a stronger bonding force with Cu as a wiring material than a TiN alloy material as an intermetallic compound, and is suitable as a material forming the barrier layer 11.

【0018】また、上記Ni−B合金材のBの含有率が
0.01at%〜10at%であれば、fccの結晶構
造を維持し、バリア材として使用できることは確認して
いる。また、上記バリア層11の厚さは100Å以上と
し、無電解メッキ、電解メッキ、スパッタリング法、C
VD法で形成する。無電解メッキの場合は、例えば、N
iSo4・6H2O+DMAB(ジメチルアミンボラン)
のメッキ液を用い温度80℃で行う。
Further, it has been confirmed that when the B content of the above-mentioned Ni—B alloy material is 0.01 at% to 10 at%, the crystal structure of fcc can be maintained and used as a barrier material. The barrier layer 11 has a thickness of 100 mm or more, and is formed by electroless plating, electrolytic plating, sputtering,
It is formed by the VD method. In the case of electroless plating, for example, N
iSo 4 · 6H 2 O + DMAB ( dimethylamine borane)
And at a temperature of 80.degree.

【0019】配線層12は無電解メッキ又は電解メッキ
で形成する。そのメッキ液の元素・イオン、化学種、成
分等の例を図2に示す。なお、図2において、電解メッ
キのメッキ液において、添加剤は非イオン系界面活性剤
であり、塩素イオンは添加剤の分解抑制用である。ま
た、EDTA・4Na(エチレンジアミン四酢酸ナトリ
ウム)はCuと安定するキレート化合物(配位子による
錯化合物)を形成し、電解メッキ液で削除可能である。
また、無電解メッキ液において、NaOHとホルマリン
は還元剤として供給する。電解メッキ及び無電解メッキ
は図3に示す条件で行う。
The wiring layer 12 is formed by electroless plating or electrolytic plating. FIG. 2 shows examples of elements, ions, chemical species, components, and the like of the plating solution. In FIG. 2, in the plating solution for electrolytic plating, the additive is a nonionic surfactant, and the chloride ion is for suppressing the decomposition of the additive. EDTA · 4Na (sodium ethylenediaminetetraacetate) forms a stable chelate compound (complex with a ligand) with Cu, and can be removed with an electrolytic plating solution.
In the electroless plating solution, NaOH and formalin are supplied as reducing agents. The electrolytic plating and the electroless plating are performed under the conditions shown in FIG.

【0020】図4はNi−B合金膜のX線解析測定結果
を示す図である。図示するように、Bの組成が3.2a
t%では堆積時(アニール前)及び400℃のアニール
後共にNi−B合金のfcc結晶構造で、バリア性能を
有する。しかし、Bの組成が13.5at%、20.0
at%ではアニール前は非晶質、400℃でのアニール
後はNi+Ni3B(金属間化合物)となり、共にバリ
ア性を有しない。
FIG. 4 is a diagram showing the results of X-ray analysis measurement of the Ni-B alloy film. As shown, the composition of B is 3.2a.
At t%, the Ni-B alloy has an fcc crystal structure at the time of deposition (before annealing) and after annealing at 400 ° C., and has barrier performance. However, the composition of B is 13.5 at%, 20.0 at%.
At at%, it becomes amorphous before annealing and becomes Ni + Ni 3 B (intermetallic compound) after annealing at 400 ° C., and both have no barrier properties.

【0021】図5乃至図8はそれぞれNi−B合金膜の
バリア性を確認するための解析結果である。図5はCu
板の上に厚さ0.58μmのAg膜を形成し、その上に
Bを4.2at%含有する厚さ0.18μmのNi−B
合金膜を形成したものでの解析結果であり、図5(a)
及び(b)はスパッタリング法で表面から順次削り取
り、現れる元素の割合を解析した結果であり、図5
(c)は表面をAES(オージエ電子分光分析)で解析
した結果を示す。また、図5(a)は堆積時(アニール
前)を、図5(b)及び(c)は400℃のアニール後
を示す。同図から明らかなように、Bを4.2at%含
有するNi−B合金膜で被覆した場合は、表面にCuが
析出することなく、Cuのバリア材として優れたもので
あることがわかる。
FIGS. 5 to 8 show the results of analysis for confirming the barrier properties of the Ni—B alloy film. FIG.
A 0.58 μm thick Ag film is formed on a plate, and 0.18 μm thick Ni—B containing 4.2 at% of B is formed thereon.
FIG. 5 (a) is an analysis result of an alloy film formed.
5A and 5B are the results of analyzing the ratio of the appearing elements by sequentially scraping off the surface by the sputtering method, and FIG.
(C) shows the result of analyzing the surface by AES (Auger electron spectroscopy). FIG. 5A shows the state at the time of deposition (before annealing), and FIGS. 5B and 5C show the state after annealing at 400 ° C. As is clear from the figure, when coated with a Ni-B alloy film containing 4.2 at% of B, Cu is not deposited on the surface, and is excellent as a Cu barrier material.

【0022】図6はシリコンウエハ基板の上に厚さ0.
2μmのCu膜を形成し、その上に厚さ0.5μmのA
g膜を形成し、その上にBを3.2at%含有する厚さ
0.18μmのNi−B合金膜を形成したものでの解析
結果であり、図6(a)及び(b)はスパッタリング法
で表面から順次削り取り、現れる元素の割合を解析した
結果であり、図6(c)は表面をAES(オージエ電子
分光分析)で解析した結果を示す。また、図6(a)は
堆積時(アニール前)を、図6(b)及び(c)は40
0℃のアニール後を示す。同図から明らかなように、B
を3.2at%含有するNi−B合金膜で被覆した場合
は、表面にCuが析出することなく、Cuのバリア材と
して優れたものであることがわかる。
FIG. 6 shows that a silicon wafer having a thickness of 0.
A Cu film having a thickness of 2 μm is formed, and an A film having a thickness of 0.5 μm is formed thereon.
FIG. 6A and FIG. 6B show the results of analysis on the case where a 0.18 μm-thick Ni—B alloy film containing 3.2 at% of B was formed thereon. FIG. 6 (c) shows the result of analyzing the ratio of the appearing elements by sequentially scraping the surface from the surface, and FIG. 6 (c) shows the result of analyzing the surface by AES (Auger electron spectroscopy). 6A shows the state at the time of deposition (before annealing), and FIGS.
Shown after annealing at 0 ° C. As is clear from FIG.
Is covered with an Ni-B alloy film containing 3.2 at%, Cu is not deposited on the surface, and is excellent as a Cu barrier material.

【0023】図7はシリコンウエハ基板の上に厚さ0.
2μmのCu膜を形成し、その上に厚さ0.5μmのA
g膜を形成し、その上にBを13.5at%含有する厚
さ0.33μmのNi−B合金膜を形成したものでの解
析結果であり、図7(a)及び(b)はスパッタリング
法で表面から順次削り取り、現れる元素の割合を解析し
た結果であり、図7(c)は表面をAES(オージエ電
子分光分析)で解析した結果を示す。また、図7(a)
は堆積時(アニール前)を、図7(b)及び(c)は4
00℃のアニール後を示す。同図から明らかなように、
Bを13.5at%含有するNi−B合金膜で被覆した
場合は、表面にCuが析出し、Cuのバリア材として不
適切であることがわかる。
FIG. 7 shows the case where the thickness of the silicon wafer is 0.
A Cu film having a thickness of 2 μm is formed, and an A film having a thickness of 0.5 μm is formed thereon.
7 (a) and 7 (b) show the results of analysis on a Ni-B alloy film having a thickness of 0.33 μm containing 13.5 at% of B formed thereon. FIG. 7 (c) shows the results of analysis of the ratio of the appearing elements by successively shaving off the surface by the method. FIG. 7 (c) shows the results of analyzing the surface by AES (Auger electron spectroscopy). FIG. 7 (a)
7 shows the state at the time of deposition (before annealing), and FIGS.
Shown after annealing at 00 ° C. As is clear from the figure,
In the case of coating with a Ni-B alloy film containing 13.5 at% of B, Cu precipitates on the surface, which indicates that it is inappropriate as a Cu barrier material.

【0024】図8はシリコンウエハ基板の上に厚さ0.
2μmのCu膜を形成し、その上に厚さ0.5μmのA
g膜を形成し、その上にBを12.2at%含有する厚
さ0.59μmのNi−B合金膜を形成したものでの解
析結果であり、図8(a)及び(b)はスパッタリング
法で表面から順次削り取り、現れる元素の割合を解析し
た結果であり、図8(c)は表面をAES(オージエ電
子分光分析)で解析した結果を示す。また、図8(a)
は堆積時(アニール前)を、図8(b)及び(c)は4
00℃のアニール後を示す。同図から明らかなように、
Bを12.2at%含有するNi−B合金膜で被覆した
場合は、表面にCuが析出し、Cuのバリア材として不
適切であることがわかる。
FIG. 8 shows that a silicon wafer having a thickness of 0.
A Cu film having a thickness of 2 μm is formed, and an A film having a thickness of 0.5 μm is formed thereon.
FIG. 8 (a) and FIG. 8 (b) show the results of analysis in which a 0.59 μm-thick Ni—B alloy film containing 12.2 at% of B was formed thereon. FIG. 8C shows the result of analyzing the ratio of elements appearing by sequentially scraping off the surface by the method, and FIG. 8C shows the result of analyzing the surface by AES (Auger electron spectroscopy). FIG. 8 (a)
8 shows the time of deposition (before annealing), and FIGS.
Shown after annealing at 00 ° C. As is clear from the figure,
In the case of coating with a Ni—B alloy film containing 12.2 at% of B, Cu precipitates on the surface, which is unsuitable as a Cu barrier material.

【0025】上記のようにBの含有率が10at%
(0.01at%〜10at%)であるNi−B合金は
fcc結晶構造なので、Cu配線の被覆材として使用す
ることで、従来のTiNに比べて低抵抗で、Cu配線と
の接合力が強く、且つCuの拡散防止効果を発揮するこ
とが期待できる。従って、例えば半導体デバイスにおい
て、多層配線を形成する場合、上記Ni−B合金膜を配
線のバリア材として用いるとバリア材にTiN合金膜を
用いる従来例に比較し、比抵抗が低い配線を提供でき、
半導体デバイスの高密度化、高速化に貢献することが期
待できる。
As described above, the content of B is 10 at%.
(0.01 at% to 10 at%) Ni-B alloy has an fcc crystal structure, and therefore, by using it as a coating material for Cu wiring, has a lower resistance than conventional TiN and a stronger bonding force with Cu wiring. In addition, it can be expected to exhibit a Cu diffusion preventing effect. Therefore, for example, in the case of forming a multilayer wiring in a semiconductor device, when the above-described Ni-B alloy film is used as a wiring barrier material, a wiring having a lower specific resistance can be provided as compared with the conventional example using a TiN alloy film as a barrier material. ,
It can be expected to contribute to higher density and higher speed of semiconductor devices.

【0026】なお、図1では、SiO2の絶縁膜10に
設けられた溝内面にNi−B合金膜のバリア層11を形
成し、該内面がバリア層11で囲まれた溝内にCuから
なる配線層12を電解メッキ又は無電解メッキにより埋
め込み方式で形成する例を示したが、バリア層11の形
状はこれに限定されるものではなく、例えば、図9に示
すように配線層12をバリア層で囲む形状であっても良
い。
In FIG. 1, a barrier layer 11 of a Ni—B alloy film is formed on the inner surface of the groove provided in the insulating film 10 of SiO 2 , and the inner surface is formed of Cu in the groove surrounded by the barrier layer 11. Although the example in which the wiring layer 12 is formed in a buried manner by electrolytic plating or electroless plating has been described, the shape of the barrier layer 11 is not limited to this. For example, as shown in FIG. The shape may be surrounded by a barrier layer.

【0027】[0027]

【発明の効果】以上説明したように本願各請求項に記載
の発明によれば、配線と該配線に隣接する絶縁物の間に
介在させるバリア層にBを含有するNi合金材を用いる
ので、配線との接合が強く、低比抵抗(ρ)で、配線と
絶縁膜との間で生じる相互拡散を防止でき、半導体デバ
イスの高密度化、高速化に貢献することが期待できる。
As described above, according to the invention described in the claims of the present application, the Ni alloy material containing B is used for the barrier layer interposed between the wiring and the insulator adjacent to the wiring. It has a strong junction with the wiring, has a low specific resistance (ρ), can prevent interdiffusion between the wiring and the insulating film, and can be expected to contribute to higher density and higher speed of the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体基板配線のバリア層の構成例を
示す図である。
FIG. 1 is a diagram showing a configuration example of a barrier layer of a semiconductor substrate wiring according to the present invention.

【図2】Cu配線を形成するメッキ液の組成例を示す図
である。
FIG. 2 is a diagram illustrating a composition example of a plating solution for forming a Cu wiring.

【図3】Cu配線を形成するメッキ条件例を示す図であ
る。
FIG. 3 is a diagram showing an example of plating conditions for forming a Cu wiring.

【図4】Ni−B合金膜のX線解析測定結果を示す図で
ある。
FIG. 4 is a diagram showing an X-ray analysis measurement result of a Ni—B alloy film.

【図5】Ni−B合金膜のバリア性を確認するための解
析結果を示す図である。
FIG. 5 is a diagram showing an analysis result for confirming a barrier property of the Ni—B alloy film.

【図6】Ni−B合金膜のバリア性を確認するための解
析結果を示す図である。
FIG. 6 is a diagram showing an analysis result for confirming a barrier property of the Ni—B alloy film.

【図7】Ni−B合金膜のバリア性を確認するための解
析結果を示す図である。
FIG. 7 is a diagram showing an analysis result for confirming a barrier property of the Ni—B alloy film.

【図8】Ni−B合金膜のバリア性を確認するための解
析結果を示す図である。
FIG. 8 is a diagram showing an analysis result for confirming a barrier property of the Ni—B alloy film.

【図9】本発明の半導体基板配線のバリア層の他の構成
例を示す図である。
FIG. 9 is a diagram showing another configuration example of the barrier layer of the semiconductor substrate wiring of the present invention.

【符号の説明】[Explanation of symbols]

10 SiO2膜 11 バリア層 12 配線層10 SiO 2 film 11 barrier layer 12 interconnect layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江澤 弘和 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 宮田 雅弘 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hirokazu Ezawa 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture Inside Toshiba Yokohama Office (72) Masahiro Miyata 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Toshiba Yokohama Office

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に設けた配線と該配線に隣接
する絶縁膜との間に設けられ、該配線と該絶縁膜の間で
生じる相互拡散を防止するバリア層であって、前記バリ
ア層はB(ボロン)を含有するNi(ニッケル)合金材
からなることを特徴とする半導体基板配線のバリア層。
A barrier layer provided between a wiring provided on a semiconductor substrate and an insulating film adjacent to the wiring, for preventing mutual diffusion occurring between the wiring and the insulating film; Is a barrier layer for semiconductor substrate wiring, comprising a Ni (nickel) alloy material containing B (boron).
【請求項2】 前記Ni合金材がfcc結晶構造(最密
充填結晶構造)を保持していることを特徴とする請求項
1に記載の半導体基板配線のバリア層。
2. The barrier layer according to claim 1, wherein the Ni alloy material has an fcc crystal structure (closest-packed crystal structure).
【請求項3】 前記Ni合金材のBの含有率が0.01
at%〜10at%であることを特徴とする請求項2に
記載の半導体基板配線のバリア層。
3. The B content of said Ni alloy material is 0.01
The barrier layer of a semiconductor substrate wiring according to claim 2, wherein the barrier layer is at% to 10 at%.
【請求項4】 前記バリア層の厚さが100Å以上であ
ることを特徴とする請求項2又は3に記載の半導体基板
配線のバリア層。
4. The barrier layer according to claim 2, wherein the thickness of the barrier layer is 100 ° or more.
【請求項5】 前記バリア層は無電解メッキで形成され
たことを特徴とする請求項2又は3又は4に記載の半導
体基板配線のバリア層。
5. The barrier layer according to claim 2, wherein the barrier layer is formed by electroless plating.
【請求項6】 前記バリア層は電解メッキで形成された
ことを特徴とする請求項2又は3又は4に記載の半導体
基板配線のバリア層。
6. The barrier layer according to claim 2, wherein the barrier layer is formed by electrolytic plating.
【請求項7】 前記バリア層はスパッタ法で形成された
ことを特徴とする請求項2又は3又は4に記載の半導体
基板配線のバリア層。
7. The barrier layer for semiconductor substrate wiring according to claim 2, wherein the barrier layer is formed by a sputtering method.
【請求項8】 前記バリア層はCVD法で形成されたこ
とを特徴とする請求項2又は3又は4に記載の半導体基
板配線のバリア層。
8. The barrier layer according to claim 2, wherein the barrier layer is formed by a CVD method.
JP27049297A 1997-09-17 1997-09-17 Barrier layer and wiring structure of semiconductor substrate wiring Expired - Lifetime JP3554665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27049297A JP3554665B2 (en) 1997-09-17 1997-09-17 Barrier layer and wiring structure of semiconductor substrate wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27049297A JP3554665B2 (en) 1997-09-17 1997-09-17 Barrier layer and wiring structure of semiconductor substrate wiring

Publications (2)

Publication Number Publication Date
JPH1197444A true JPH1197444A (en) 1999-04-09
JP3554665B2 JP3554665B2 (en) 2004-08-18

Family

ID=17487041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27049297A Expired - Lifetime JP3554665B2 (en) 1997-09-17 1997-09-17 Barrier layer and wiring structure of semiconductor substrate wiring

Country Status (1)

Country Link
JP (1) JP3554665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503766A (en) * 1998-02-12 2002-02-05 エーシーエム リサーチ,インコーポレイティド Plating equipment and method
KR100443514B1 (en) * 2001-12-22 2004-08-09 주식회사 하이닉스반도체 method for manufacturing a diffusion barrier layer
JP2006526070A (en) * 2003-05-09 2006-11-16 ビーエーエスエフ アクチェンゲゼルシャフト Composition for electroless plating of ternary materials for use in the semiconductor industry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503766A (en) * 1998-02-12 2002-02-05 エーシーエム リサーチ,インコーポレイティド Plating equipment and method
KR100443514B1 (en) * 2001-12-22 2004-08-09 주식회사 하이닉스반도체 method for manufacturing a diffusion barrier layer
JP2006526070A (en) * 2003-05-09 2006-11-16 ビーエーエスエフ アクチェンゲゼルシャフト Composition for electroless plating of ternary materials for use in the semiconductor industry
US7850770B2 (en) 2003-05-09 2010-12-14 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US9062378B2 (en) 2003-05-09 2015-06-23 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry

Also Published As

Publication number Publication date
JP3554665B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US6933230B2 (en) Method for making interconnects and diffusion barriers in integrated circuits
KR100339179B1 (en) Copper interconnection structure incorporating a metal seed layer
US6958547B2 (en) Interconnect structures containing conductive electrolessly deposited etch stop layers, liner layers, and via plugs
JPS62271454A (en) Method of selective non-electrolytic plating of aperture in vlsi device
TW477014B (en) Electroless metal liner formation methods
WO2002045155A2 (en) ELECTROLESS METHOD OF SEED LAYER DEPOSITION, REPAIR, AND FABRICATION OF Cu INTERCONNECTS
JP2002226974A (en) ELECTROLESS Ni-B PLATING SOLUTION, ELECTRONIC DEVICE, AND MANUFACTURING METHOD THEREOF
KR101170560B1 (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
JP2789332B2 (en) Structure of metal wiring and method of forming the same
US6670266B2 (en) Multilayered diffusion barrier structure for improving adhesion property
JPH07321111A (en) Method of forming electroless plated interconnection for integrated circuit
JP2000156406A (en) Semiconductor device and its manufacture
CN1777990A (en) Thermal interconnect systems methods of production and uses thereof
JPH1197444A (en) Barrier layer for semiconductor substrate wiring
KR100559030B1 (en) Copper metal wiring formation method of semiconductor device
US6875260B2 (en) Copper activator solution and method for semiconductor seed layer enhancement
US6955984B2 (en) Surface treatment of metal interconnect lines
TW200301524A (en) Method for improving electromigration performance of metallization features through multiple depositions of binary alloys
TW543101B (en) Method of achieving high adhesion of CVD copper thin films on TaN substrates
KR100710201B1 (en) Method for forming metal line of semiconductor device
JP2570857B2 (en) Method for manufacturing semiconductor device
JP2001319930A (en) Method of manufacturing semiconductor device
JP2008042199A (en) Semiconductor element, and its manufacturing method
KR100369352B1 (en) Semiconductor device and manufacturing method thereof
JPH0529258A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040331

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term