JPH1197071A - High polymer solid electrolyte secondary battery - Google Patents

High polymer solid electrolyte secondary battery

Info

Publication number
JPH1197071A
JPH1197071A JP9278116A JP27811697A JPH1197071A JP H1197071 A JPH1197071 A JP H1197071A JP 9278116 A JP9278116 A JP 9278116A JP 27811697 A JP27811697 A JP 27811697A JP H1197071 A JPH1197071 A JP H1197071A
Authority
JP
Japan
Prior art keywords
high polymer
oxide
solid electrolyte
polymer
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278116A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Makoto Uesugi
誠 上杉
Seiji Yoshimura
精司 吉村
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9278116A priority Critical patent/JPH1197071A/en
Publication of JPH1197071A publication Critical patent/JPH1197071A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve charge and discharge cycle characteristics as well as to improve capacity by forming a layer made of a complex of poyalkylene oxide-group high polymer having the specified number average molecular weight and electrolyte salt on the surface to be joined to a high polymer solid electrolyte film of a negative electrode. SOLUTION: The number average molecular weight of a polyalkylene oxide- group high polymer is in the range of 80000 to 800000. Preferably, polyethylene oxide, polypropylene oxide, and a copolymer of polyethylene oxide and polypropylene oxide are given. As electrolyte salt for forming a complex together with the high polymer, alkaline metallic salt such as LiClO4 is given. Since a composite layer of a polyalkylene oxide-base high polymer having the small molecular weight in comparison with a high polymer for forming a base material of the high polymer solid electrolyte film and electrolyte salt is formed, the contact area of the negative electrode and the high polymer solid electrolyte is large, in particular, the discharge amount in high efficient discharge is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、負極のカチオン吸
蔵材として炭素材料を使用した高分子固体電解質二次電
池に係わり、詳しくは、高容量で、しかも充放電サイク
ル特性の良い高分子固体電解質二次電池を提供すること
を目的とした、負極の、高分子固体電解質膜と接合する
面の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte secondary battery using a carbon material as a cation storage material for a negative electrode, and more particularly, to a polymer solid electrolyte having a high capacity and good charge / discharge cycle characteristics. The present invention relates to an improvement in a surface of a negative electrode to be joined to a solid polymer electrolyte membrane for the purpose of providing a secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
負極に炭素材料を使用した二次電池の電解質としては、
イオン伝導性に優れる液体電解質が使用されているが、
液体電解質には、漏液、電極物質の溶出などの問題があ
る。
2. Description of the Related Art
As an electrolyte for a secondary battery using a carbon material for the negative electrode,
Liquid electrolyte with excellent ionic conductivity is used,
Liquid electrolytes have problems such as liquid leakage and elution of electrode materials.

【0003】このため、最近、このような問題が無い固
体電解質膜、特に薄膜成形が容易で、しかも安価である
高分子固体電解質膜が注目されている。
[0003] For this reason, a solid electrolyte membrane which does not have such a problem, particularly a polymer solid electrolyte membrane which can be easily formed into a thin film and is inexpensive, has recently attracted attention.

【0004】しかしながら、負極に炭素材料を使用した
二次電池に高分子固体電解質膜を使用しても、放電容
量、特に大電流放電(高率放電)での放電容量が小さい
電池しか得られない。負極と高分子固体電解質膜との接
触面積が小さいために、両者の界面における電気抵抗
(界面抵抗)が大きいからである。
However, even if a polymer solid electrolyte membrane is used for a secondary battery using a carbon material for the negative electrode, only a battery having a small discharge capacity, particularly a discharge capacity at a large current discharge (high-rate discharge), can be obtained. . This is because the electric resistance (interface resistance) at the interface between the negative electrode and the solid polymer electrolyte membrane is large because the contact area between the negative electrode and the solid polymer electrolyte membrane is small.

【0005】電極と高分子固体電解質膜との接触面積を
増大させる方法としては、高分子の溶液に電解質塩を溶
かした高分子電解質溶液を、界面活性剤とともに、非極
性有機溶媒に分散させて、低粘度の分散溶液とし、この
分散溶液を多孔性電極上に塗布し、乾燥して、多孔性電
極上に高分子固体電解質膜を一体的に形成する方法が提
案されている(特開平5−144315号公報参照)。
同公報によると、高分子電解質溶液は多孔性電極の微細
な空隙の中に一部が入り込んだ状態で固化するので、多
孔性電極と高分子固体電解質膜との接触面積が大きい、
高容量な高分子固体電解質電池を作製することができる
とのことである。
As a method for increasing the contact area between the electrode and the polymer solid electrolyte membrane, a polymer electrolyte solution obtained by dissolving an electrolyte salt in a polymer solution is dispersed together with a surfactant in a nonpolar organic solvent. There has been proposed a method in which a low-viscosity dispersion solution is applied, the dispersion solution is applied on a porous electrode, dried, and a polymer solid electrolyte membrane is integrally formed on the porous electrode (Japanese Patent Laid-Open No. Hei 5 (1993) -105). -144315).
According to the publication, the polymer electrolyte solution solidifies in a state in which a part thereof enters the fine voids of the porous electrode, so that the contact area between the porous electrode and the polymer solid electrolyte membrane is large,
It is said that a high-capacity polymer solid electrolyte battery can be manufactured.

【0006】しかしながら、上記の方法では、含有せる
界面活性剤が、充放電サイクルの経過に伴い次第に劣化
して、充放電を阻害する虞れがある。
[0006] However, in the above method, the surfactant contained therein may be gradually deteriorated with the progress of the charge / discharge cycle, and may hinder the charge / discharge.

【0007】したがって、本発明は、界面活性剤を使用
することなく、高容量で、しかも充放電サイクル特性の
良い高分子固体電解質二次電池を提供することを目的と
する。
Accordingly, an object of the present invention is to provide a polymer solid electrolyte secondary battery having a high capacity and good charge / discharge cycle characteristics without using a surfactant.

【0008】[0008]

【課題を解決するための手段】本発明に係る高分子固体
電解質二次電池(本発明電池)は、正極と、セパレータ
を兼ねる高分子固体電解質膜と、炭素材料をカチオン吸
蔵材とする負極とを備え、前記負極の、前記高分子固体
電解質膜と接合する面に、数平均分子量8万〜80万の
ポリアルキレンオキシド系高分子と電解質塩との複合体
からなる層が形成されたものである。
A polymer solid electrolyte secondary battery (battery of the present invention) according to the present invention comprises a positive electrode, a polymer solid electrolyte membrane also serving as a separator, and a negative electrode using a carbon material as a cation storage material. A layer comprising a composite of a polyalkylene oxide polymer having a number average molecular weight of 80,000 to 800,000 and an electrolyte salt is formed on a surface of the negative electrode, which is to be bonded to the polymer solid electrolyte membrane. is there.

【0009】正極活物質としては、周期律表I族元素の
化合物(CuO、Cu2 O、Ag2O、CuS、CuS
4 など)、周期律表IV族元素の化合物(TiS2 、S
iO2 、SnOなど)、周期律表V族元素の化合物(V
2 5 、V6 12、Nb2 5 、Bi2 3 、Sb2
3 など)、周期律表VI族元素の化合物(CrO3 、Cr
2 3 、MoO3 、WO3 、SeO3 など)、周期律表
VII 族元素の化合物(MnO2 、MnO3 など)、周期
律表VIII族元素の化合物(Fe2 3 、FeO、Fe3
4 、Ni2 3 、NiO、CoO3 、CoOなど)、
リチウム含有バナジウム酸化物(LiV2 5 など)、
リチウム含有コバルト酸化物(LiCoO2 など)、リ
チウム含有ニッケル酸化物(LiNiO2 など)、リチ
ウム含有マンガン酸化物(LiMn2 4 など)、リチ
ウム含有チタン酸化物(LiTiO2 など)、リチウム
含有クロム酸化物(LiCrO2 など)が例示される。
As the positive electrode active material, compounds of Group I elements of the periodic table (CuO, Cu 2 O, Ag 2 O, CuS, CuS
O 4 ), compounds of Group IV elements of the periodic table (TiS 2 , S
iO 2 , SnO, etc.), compounds of Group V elements of the periodic table (V
2 O 5 , V 6 O 12 , Nb 2 O 5 , Bi 2 O 3 , Sb 2 O
3 ), compounds of Group VI elements of the periodic table (CrO 3 , Cr
2 O 3 , MoO 3 , WO 3 , SeO 3 etc.), periodic table
Group VII compounds (MnO 2 , MnO 3, etc.) and Periodic Table VIII group compounds (Fe 2 O 3 , FeO, Fe 3
O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, etc.),
Lithium-containing vanadium oxides (such as LiV 2 O 5 ),
Lithium-containing cobalt oxide (such as LiCoO 2 ), lithium-containing nickel oxide (such as LiNiO 2 ), lithium-containing manganese oxide (such as LiMn 2 O 4 ), lithium-containing titanium oxide (such as LiTiO 2 ), and lithium-containing chromium oxide (LiCrO 2 etc.).

【0010】セパレータを兼ねる高分子固体電解質膜
は、高分子と電解質塩の複合体である。高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド、
ポリエチレンオキシドとポリプロピレンオキシドの共重
合体、ポリエーテルイミド、ポリエーテルスルホン、ポ
リシロキサン、ポリスルホンが例示される。高分子固体
電解質膜はセパレータを兼ねる部材であるため、膜の母
体をなす高分子としては機械的強度の大きい、分子量の
大きいものが使用される。例えば、ポリエチレンオキシ
ドの場合は、通常、数平均分子量Mn200万〜800
万程度のものが使用される。高分子とともに複合体を形
成する電解質塩としては、LiClO4 、LiCF3
3 、LiPF6 、LiN(C2 5 SO2 2 、Li
BF4 、LiSbF6 、LiAsF6 (以上、リチウム
電池用)、NaI、NaSCN、NaBr、NaClO
4 (以上、ナトリウム電池用)、KClO4 、KSCN
(以上、カリウム電池用)等のアルカリ金属塩が例示さ
れる。
The polymer solid electrolyte membrane also serving as a separator is a composite of a polymer and an electrolyte salt. As the polymer, polyethylene oxide, polypropylene oxide,
Examples thereof include a copolymer of polyethylene oxide and polypropylene oxide, polyetherimide, polyethersulfone, polysiloxane, and polysulfone. Since the polymer solid electrolyte membrane is a member also serving as a separator, a polymer having a high mechanical strength and a high molecular weight is used as a polymer forming a base of the membrane. For example, in the case of polyethylene oxide, the number average molecular weight Mn is usually 2,000,000 to 800.
About ten thousand are used. Examples of the electrolyte salt that forms a complex with a polymer include LiClO 4 and LiCF 3 S.
O 3 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , Li
BF 4, LiSbF 6, LiAsF 6 ( above, a lithium battery), NaI, NaSCN, NaBr, NaClO
4 (above, for sodium batteries), KClO 4 , KSCN
(Above, for a potassium battery) and the like.

【0011】負極の炭素材料としては、黒鉛、石油コー
クス、クレゾール樹脂焼成炭素、フラン樹脂焼成炭素、
ポリアクリロニトリル焼成炭素、気相成長法により作製
した炭素、メソフェーズピッチ焼成炭素が例示される。
As the carbon material of the negative electrode, graphite, petroleum coke, cresol resin fired carbon, furan resin fired carbon,
Examples thereof include polyacrylonitrile fired carbon, carbon produced by a vapor phase growth method, and mesophase pitch fired carbon.

【0012】ポリアルキレンオキシド系高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド、
ポリエチレンオキシドとポリプロピレンオキシドとの共
重合体が例示される。ポリアルキレンオキシド系高分子
とともに複合体を形成する電解質塩としては、先に例示
したものが挙げられる。ポリアルキレンオキシド系高分
子の数平均分子量Mnが8万〜80万に限定されるの
は、数平均分子量がこの範囲を外れると、電池容量が小
さくなるとともに、充放電サイクル特性が悪くなるから
である。ポリアルキレンオキシド系高分子としては、数
平均分子量Mnが10万〜60万のものが、特に好まし
い。
Examples of the polyalkylene oxide polymer include polyethylene oxide, polypropylene oxide,
Copolymers of polyethylene oxide and polypropylene oxide are exemplified. Examples of the electrolyte salt that forms a complex with the polyalkylene oxide-based polymer include those exemplified above. The reason why the number average molecular weight Mn of the polyalkylene oxide polymer is limited to 80,000 to 800,000 is that if the number average molecular weight is out of this range, the battery capacity becomes small and the charge / discharge cycle characteristics deteriorate. is there. As the polyalkylene oxide-based polymer, those having a number average molecular weight Mn of 100,000 to 600,000 are particularly preferable.

【0013】本発明を適用した高分子固体電解質二次電
池としては、リチウム二次電池、ナトリウム二次電池、
カリウム二次電池が例示される。
As the polymer solid electrolyte secondary battery to which the present invention is applied, a lithium secondary battery, a sodium secondary battery,
An example is a potassium secondary battery.

【0014】本発明電池は、負極の、高分子固体電解質
膜と接合する面に、高分子固体電解質膜の母体をなす高
分子に比べて分子量の小さいポリアルキレンオキシド系
高分子と電解質塩との複合体からなる層が形成されてい
るので、負極と高分子固体電解質膜とが直接接合してい
た従来の電池に比べて、負極と高分子固体電解質との接
触面積が大きく、高容量である。特に高率放電での放電
容量が大きい。また、本発明電池は、高分子固体電解質
中に、その劣化生成物が充放電を阻害する界面活性剤を
含有しないので、充放電サイクル特性が良い。
In the battery of the present invention, the surface of the negative electrode, which is to be bonded to the solid polymer electrolyte membrane, comprises a polyalkylene oxide-based polymer having a smaller molecular weight than the polymer forming the matrix of the solid polymer electrolyte membrane and an electrolyte salt. Since the composite layer is formed, the contact area between the negative electrode and the solid polymer electrolyte is larger than that of a conventional battery in which the negative electrode and the solid polymer electrolyte membrane are directly joined, and the capacity is high. . In particular, the discharge capacity in high-rate discharge is large. In addition, the battery of the present invention has good charge / discharge cycle characteristics because the degradation product does not contain a surfactant that inhibits charge / discharge in the solid polymer electrolyte.

【0015】[0015]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0016】〔正極の作製〕正極活物質としてのLiC
oO2 85重量部と、導電剤としての炭素粉末10重量
部と、結着剤としてのポリフッ化ビニリデン粉末5重量
部のNMP(N−メチル−2−ピロリドン)溶液とを混
合し、集電体にドクターブレード法により厚み約80μ
mに塗布し、130°Cで加熱処理して、直径10mm
の円盤状の正極を作製した。
[Preparation of positive electrode] LiC as positive electrode active material
A mixture of 85 parts by weight of oO 2, 10 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of polyvinylidene fluoride powder as a binder in an NMP (N-methyl-2-pyrrolidone) solution was mixed. About 80μ by doctor blade method
m, and heat-treated at 130 ° C to a diameter of 10 mm.
Was produced.

【0017】〔負極の作製〕リチウムイオン吸蔵材とし
ての平均粒径10μmの黒鉛粉末95重量部と、結着剤
としてのポリフッ化ビニリデン5重量部のNMP溶液と
を混合し、集電体にドクターブレード法により厚み約7
0μmに塗布し、130°Cで加熱処理して、直径10
mmの円盤状の負極を作製した。
[Preparation of Negative Electrode] A mixture of 95 parts by weight of graphite powder having an average particle diameter of 10 μm as a lithium ion storage material and an NMP solution of 5 parts by weight of polyvinylidene fluoride as a binder was mixed with a doctor. About 7 thickness by blade method
0 μm and heat-treated at 130 ° C.
mm was prepared as a disk-shaped negative electrode.

【0018】アセトニトリルにLiClO4 を0.5モ
ル/リットル溶かした溶液と、数平均分子量が、5万、
8万、10万、20万、40万、60万、80万、10
0万又は120万と異なる9種類の各ポリエチレンオキ
シドとを、エチレンオキシド単位とLiClO4 とのモ
ル比が6:1となるように混合し、先に作製した負極上
に塗布し、アセトニトリルを蒸散させるべく真空中にて
100°Cで加熱処理して、負極の、高分子固体電解質
膜と接合する面に、ポリエチレンオキシドとLiClO
4 との複合体からなる層を形成した。なお、負極の断面
を走査型電子顕微鏡(SEM)にて観察して、形成した
層の厚みを調べたところ、最も層の薄いところで、3μ
mであった。また、負極が多孔性電極であるため、高分
子固体電解質の一部が負極の内部にも進入していること
を視認した。
A solution prepared by dissolving 0.5 mol / liter of LiClO 4 in acetonitrile and a number average molecular weight of 50,000,
80,000, 100,000, 200,000, 400,000, 600,000, 800,000
Nine kinds of polyethylene oxides different from 100,000 or 1.2 million are mixed so that the molar ratio of the ethylene oxide units to LiClO 4 is 6: 1, and the mixture is applied on the previously prepared negative electrode to evaporate acetonitrile. Heat treatment at 100 ° C. in a vacuum so that polyethylene oxide and LiClO 4 are formed on the surface of the negative electrode to be joined to the solid polymer electrolyte membrane.
A layer composed of the composite with No. 4 was formed. The cross section of the negative electrode was observed with a scanning electron microscope (SEM), and the thickness of the formed layer was examined.
m. In addition, since the negative electrode was a porous electrode, it was visually confirmed that a part of the polymer solid electrolyte also entered the inside of the negative electrode.

【0019】〔高分子固体電解質膜の作製〕ポリエチレ
ングリコールエチルエーテルアクリレート(数平均分子
量360のCH2 =CH−COO−(CH2 −CH2
O)n−CH2 −CH3 )と、LiClO4 とを重量比
94:6で混合し、先に負極上に形成したポリエチレン
オキシドとLiClO4 との複合体からなる層の上に厚
み50μmに塗布し、エレクトロカーテン式電子線照射
装置(出力:200kV、照射線量:2Mrad)によ
り被照射体の移動速度1m/分で電子線を照射して、ポ
リエチレングリコールエチルエーテルアクリレートを重
合させて、高分子固体電解質膜を形成した。
[Preparation of Polymer Solid Electrolyte Membrane] Polyethylene glycol ethyl ether acrylate (CH 2 CHCH—COO— (CH 2 —CH 2 — having a number average molecular weight of 360)
O) n-CH 2 —CH 3 ) and LiClO 4 are mixed at a weight ratio of 94: 6, and a thickness of 50 μm is formed on the layer formed of the composite of polyethylene oxide and LiClO 4 previously formed on the negative electrode. It is applied and irradiated with an electron beam at a moving speed of an object to be irradiated of 1 m / min by an electro-curtain type electron beam irradiation device (output: 200 kV, irradiation dose: 2 Mrad) to polymerize polyethylene glycol ethyl ether acrylate, A solid electrolyte membrane was formed.

【0020】〔高分子固体電解質二次電池の作製〕上記
の正極と、高分子固体電解質膜と、負極とを用いて(但
し、三者は一体化している)、扁平形の高分子固体電解
質二次電池(リチウム二次電池)B1(比較電池;数平
均分子量が5万のポリエチレンオキシド使用),A1
(本発明電池;数平均分子量が8万のポリエチレンオキ
シド使用),A2(本発明電池;数平均分子量が10万
のポリエチレンオキシド使用),A3(本発明電池;数
平均分子量が20万のポリエチレンオキシド使用),A
4(本発明電池;数平均分子量が40万のポリエチレン
オキシド使用),A5(本発明電池;数平均分子量が6
0万のポリエチレンオキシド使用),A6(本発明電
池;数平均分子量が80万のポリエチレンオキシド使
用),B2(数平均分子量が100万のポリエチレンオ
キシド使用),B3(数平均分子量が120万のポリエ
チレンオキシド使用)を作製した。また、ポリエチレン
オキシドとLiClO4 との複合体からなる層を負極上
に形成することなく、高分子固体電解質膜を負極上に直
接形成したこと以外は先と同様にして、扁平形の高分子
固体電解質二次電池(リチウム二次電池)B4(比較電
池)を作製した。いずれの電池も、正極と負極の容量比
を1:1.1とし、電池容量が正極の容量により規制さ
れるようにした。
[Preparation of Polymer Solid Electrolyte Secondary Battery] A flat polymer solid electrolyte is prepared by using the above positive electrode, polymer solid electrolyte membrane and negative electrode (three members are integrated). Secondary battery (lithium secondary battery) B1 (comparative battery; using polyethylene oxide having a number average molecular weight of 50,000), A1
(Battery of the invention; use of polyethylene oxide having a number average molecular weight of 80,000), A2 (battery of the invention; use of polyethylene oxide having a number average molecular weight of 100,000), A3 (battery of the invention; polyethylene oxide of 200,000 number average molecular weight) Use), A
4 (Battery of the present invention; polyethylene oxide having a number average molecular weight of 400,000), A5 (Battery of the present invention;
A6 (use of polyethylene oxide having a number average molecular weight of 800,000), B2 (use of polyethylene oxide having a number average molecular weight of 1,000,000), B3 (polyethylene having a number average molecular weight of 1.2 million) (Using ethylene oxide). Further, a flat polymer solid electrolyte was formed in the same manner as above except that a polymer solid electrolyte membrane was formed directly on the negative electrode without forming a layer composed of a composite of polyethylene oxide and LiClO 4 on the negative electrode. An electrolyte secondary battery (lithium secondary battery) B4 (comparative battery) was produced. In each battery, the capacity ratio between the positive electrode and the negative electrode was 1: 1.1, and the battery capacity was regulated by the capacity of the positive electrode.

【0021】〈各電池の1サイクル目及び100サイク
ル目の放電容量〉各電池について、25°Cにて、電流
密度100μA/cm2 で4.2Vまで充電した後、電
流密度100μA/cm2 で2.75Vまで放電する充
放電を100サイクル行い、各電池の1サイクル目及び
100サイクル目の正極1cm2当たりの放電容量(m
Ah/cm2 )を求めた。結果を表1に示す。
<Discharge capacity of first and 100th cycles of each battery> Each battery was charged at 25 ° C. at a current density of 100 μA / cm 2 to 4.2 V, and then charged at a current density of 100 μA / cm 2 . performed 100 cycles of charge and discharge for discharging to 2.75 V, the discharge capacity of the cathode 1 cm 2 per 1 cycle and 100th cycle of each battery (m
Ah / cm 2 ). Table 1 shows the results.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示すように、数平均分子量8万〜8
0万のポリエチレンオキシドを使用した本発明電池A1
〜A6は、比較電池B4に比べて、1サイクル目及び1
00サイクル目の放電容量が大きい。数平均分子量5万
のポリエチレンオキシドを使用した比較電池B1、数平
均分子量100万のポリエチレンオキシドを使用した比
較電池B2及び数平均分子量100万のポリエチレンオ
キシドを使用した比較電池B3は、1サイクル目の放電
容量は大きいものの、100サイクル目の放電容量が極
めて小さい。これらの事実から、高容量で、しかも充放
電サイクル特性の良い電池を得るためには、数平均分子
量8万〜80万のポリエチレンオキシドを使用する必要
があることが分かる。また、本発明電池A2〜A5の1
00サイクル目の放電容量が特に大きいことから、ポリ
エチレンオキシドとしては、数平均分子量10万〜60
万のものが好ましいことが分かる。
As shown in Table 1, the number average molecular weight is 80,000 to 8
Inventive battery A1 using 100,000 polyethylene oxide
To A6 are the first cycle and the first cycle compared to the comparative battery B4.
The discharge capacity at the 00th cycle is large. A comparative battery B1 using polyethylene oxide having a number average molecular weight of 50,000, a comparative battery B2 using polyethylene oxide having a number average molecular weight of 1,000,000, and a comparative battery B3 using polyethylene oxide having a number average molecular weight of 1,000,000 were in the first cycle. Although the discharge capacity is large, the discharge capacity at the 100th cycle is extremely small. From these facts, it can be seen that in order to obtain a battery having high capacity and good charge / discharge cycle characteristics, it is necessary to use polyethylene oxide having a number average molecular weight of 80,000 to 800,000. In addition, one of the batteries A2 to A5 of the present invention
Since the discharge capacity at the 00th cycle is particularly large, the polyethylene oxide has a number average molecular weight of 100,000 to 60
It turns out that ten thousand are preferable.

【0024】[0024]

【発明の効果】本発明によれば、高容量で、しかも充放
電サイクル特性の良い高分子固体電解質二次電池が提供
される。
According to the present invention, a polymer solid electrolyte secondary battery having a high capacity and good charge / discharge cycle characteristics is provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、セパレータを兼ねる高分子固体電
解質膜と、炭素材料をカチオン吸蔵材とする負極とを備
える高分子固体電解質二次電池において、前記負極の、
前記高分子固体電解質膜と接合する面に、数平均分子量
8万〜80万のポリアルキレンオキシド系高分子と電解
質塩との複合体からなる層が形成されていることを特徴
とする高分子固体電解質二次電池。
1. A polymer solid electrolyte secondary battery comprising a positive electrode, a polymer solid electrolyte membrane also serving as a separator, and a negative electrode using a carbon material as a cation storage material.
A polymer solid having a layer formed of a complex of a polyalkylene oxide polymer having a number average molecular weight of 80,000 to 800,000 and an electrolyte salt formed on a surface to be joined to the polymer solid electrolyte membrane. Electrolyte secondary battery.
【請求項2】前記ポリアルキレンオキシド系高分子が、
ポリエチレンオキシド、ポリプロピレンオキシド、又
は、ポリエチレンオキシドとポリプロピレンオキシドと
の共重合体である請求項1記載の高分子固体電解質二次
電池。
2. The polyalkylene oxide polymer according to claim 2,
2. The solid polymer electrolyte secondary battery according to claim 1, wherein the secondary battery is polyethylene oxide, polypropylene oxide, or a copolymer of polyethylene oxide and polypropylene oxide.
JP9278116A 1997-09-24 1997-09-24 High polymer solid electrolyte secondary battery Pending JPH1197071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278116A JPH1197071A (en) 1997-09-24 1997-09-24 High polymer solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278116A JPH1197071A (en) 1997-09-24 1997-09-24 High polymer solid electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1197071A true JPH1197071A (en) 1999-04-09

Family

ID=17592850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278116A Pending JPH1197071A (en) 1997-09-24 1997-09-24 High polymer solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1197071A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846073B1 (en) 2006-01-31 2008-07-14 주식회사 엘지화학 Lithium Secondary Battery Employed with Electrolyte Containing Hydrophilic-hydrophobic Block Copolymer
CN110994016A (en) * 2019-12-11 2020-04-10 上海大学 Polymer solid electrolyte and preparation method and application thereof
WO2022239754A1 (en) 2021-05-14 2022-11-17 出光興産株式会社 Sulfide solid electrolyte composition, electrode mixture containing same, and method for producing sulfide solid electrolyte composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846073B1 (en) 2006-01-31 2008-07-14 주식회사 엘지화학 Lithium Secondary Battery Employed with Electrolyte Containing Hydrophilic-hydrophobic Block Copolymer
CN110994016A (en) * 2019-12-11 2020-04-10 上海大学 Polymer solid electrolyte and preparation method and application thereof
CN110994016B (en) * 2019-12-11 2023-09-01 上海大学 Polymer solid electrolyte and preparation method and application thereof
WO2022239754A1 (en) 2021-05-14 2022-11-17 出光興産株式会社 Sulfide solid electrolyte composition, electrode mixture containing same, and method for producing sulfide solid electrolyte composition

Similar Documents

Publication Publication Date Title
US7935270B2 (en) Cathode active material and lithium battery using the same
JP4016506B2 (en) Solid electrolyte battery
US7968232B2 (en) Cathode and lithium battery including the same
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
US7927506B2 (en) Cathode active material and lithium battery using the same
US6355379B1 (en) Polymer electrolyte batteries having improved electrode/electrolyte interface
KR102192082B1 (en) Anode active material, anode including the anode active material, and lithium secondary battery including the anode
JP5317435B2 (en) Negative electrode active material for all solid polymer battery and all solid polymer battery
KR19990082087A (en) Lithium ion battery
JP2023520192A (en) secondary battery
JPH10255842A (en) Lithium-polymer secondary battery
KR20200095188A (en) Composite for solid polymer electrolytes and all solid polymer electrolytes comprising the same
JP3574072B2 (en) Gel polymer electrolyte lithium secondary battery
JP2001217008A (en) Lithium polymer secondary battery
JP7282917B2 (en) Solid electrolyte composite and all-solid battery electrode containing the same
JP7282925B2 (en) Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US5561007A (en) Cathode-active material blends of Lix Mn2 O4 and Liy -α-MnO2
JP2022173135A (en) Electrode structure and all-solid secondary battery including the same
JP4193248B2 (en) Gel electrolyte battery
JP2000294291A (en) Polymer electrolyte battery
JPH11288704A (en) Lithium secondary battery
JPH1197071A (en) High polymer solid electrolyte secondary battery
JPH1145725A (en) Lithium battery
JP3363676B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JPH08124597A (en) Solid electrolytic secondary cell