JPH11288704A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH11288704A
JPH11288704A JP10105797A JP10579798A JPH11288704A JP H11288704 A JPH11288704 A JP H11288704A JP 10105797 A JP10105797 A JP 10105797A JP 10579798 A JP10579798 A JP 10579798A JP H11288704 A JPH11288704 A JP H11288704A
Authority
JP
Japan
Prior art keywords
positive electrode
polymer electrolyte
parts
weight
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10105797A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Makoto Uesugi
誠 上杉
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10105797A priority Critical patent/JPH11288704A/en
Priority to US09/119,608 priority patent/US6132904A/en
Priority to CA002266985A priority patent/CA2266985C/en
Publication of JPH11288704A publication Critical patent/JPH11288704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery with high capacity and a satisfactory charge and discharge cycle characteristic by including, in a battery comprising a positive electrode, a negative electrode containing a carbon material as lithium ion storing material and a polymer electrolytic film used also as a separator, a polymer electrolyte consisting of a composite of a block copolymer of polystyrene and polyethylene oxide with a lithium salt in the positive electrode and negative electrode. SOLUTION: The active material of a positive electrode consists of LiNix Co1-x O2 (0<=x<=1) or LiMn2 O4 . To 100 pts.wt. of this compound, the active material of the positive electrode and the carbon material of a negative electrode preferably contain 1-40 pts.wt. and 0.6-30 pts.wt. of a polymer electrolyte, respectively. They more preferably contain 1-29 pts.wt. and 1-19 pts.wt., respectively. As the active material of the positive electrode, LiV2 O5 , LiCoO2 , LiNiO2 and the like may be also used. As the carbon material of the negative electrode, graphite, coke, cresol resin baked carbon or the like is used. The polymer electrolytic film consists of a composite of polyethylene oxide or the like with LiClO4 or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、正極と、炭素材料
をリチウムイオン吸蔵材とする負極と、セパレータを兼
ねる高分子電解質膜とを備えるリチウム二次電池に係わ
り、詳しくは、高容量で、しかも充放電サイクル特性が
良いリチウム二次電池を提供することを目的とした、正
極及び負極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a polymer electrolyte membrane also serving as a separator. In addition, the present invention relates to improvement of a positive electrode and a negative electrode for the purpose of providing a lithium secondary battery having good charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
リチウム二次電池の電解質としては、イオン伝導性の良
い液体電解質が使用されているが、液体電解質には、漏
液、電極物質の溶出などの問題がある。
2. Description of the Related Art
As an electrolyte of a lithium secondary battery, a liquid electrolyte having good ionic conductivity is used, but the liquid electrolyte has problems such as leakage of liquid and elution of electrode substances.

【0003】このため、最近、上述した問題が無く、薄
膜成形が容易で、しかも安価である高分子電解質膜が、
リチウム二次電池の電解質として注目されている。
For this reason, a polymer electrolyte membrane which does not have the above-mentioned problems, is easily formed into a thin film, and is inexpensive has recently been developed.
It is attracting attention as an electrolyte for lithium secondary batteries.

【0004】しかしながら、高分子電解質膜を使用した
リチウム二次電池には、イオン伝導性、及び、電極と高
分子電解質膜との密着性が良くないために、電池容量、
特に大電流放電(高率放電)での電池容量が小さいとと
もに、充放電を繰り返したときの容量低下が大きいとい
う問題がある。
However, a lithium secondary battery using a polymer electrolyte membrane has a low battery capacity, due to poor ion conductivity and poor adhesion between an electrode and the polymer electrolyte membrane.
In particular, there is a problem that the battery capacity in a large current discharge (high-rate discharge) is small, and the capacity decrease when charging and discharging are repeated is large.

【0005】したがって、本発明は、高分子電解質膜を
使用するも、高容量で、しかも充放電サイクル特性が良
いリチウム二次電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics even though a polymer electrolyte membrane is used.

【0006】[0006]

【課題を解決するための手段】本発明に係るリチウム二
次電池(本発明電池)は、正極と、炭素材料をリチウム
イオン吸蔵材とする負極と、セパレータを兼ねる高分子
電解質膜とを備え、正極及び負極が、ポリスチレンとポ
リエチレンオキシドのブロック共重合体とリチウム塩と
の複合体からなる高分子電解質を含有している。
A lithium secondary battery (battery of the present invention) according to the present invention includes a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a polymer electrolyte membrane also serving as a separator. The positive and negative electrodes contain a polymer electrolyte composed of a composite of a block copolymer of polystyrene and polyethylene oxide and a lithium salt.

【0007】本発明電池は、正極と、炭素材料をリチウ
ムイオン吸蔵材とする負極と、セパレータを兼ねる高分
子電解質膜とを備える。正極の活物質としては、リチウ
ム含有バナジウム酸化物(LiV2 5 など)、リチウ
ム含有コバルト酸化物(LiCoO2 など)、リチウム
含有ニッケル酸化物(LiNiO2 など)、リチウム含
有ニッケル・コバルト複合酸化物(LiNix Co1-x
2 (0<x<1))、リチウム含有マンガン酸化物
(LiMn2 4 など)、リチウム含有チタン酸化物
(LiTiO2 など)、リチウム含有クロム酸化物(L
iCrO2 など)などのリチウム含有遷移金属酸化物が
例示される。高容量のリチウム二次電池を得る上で、L
iNix Co1-x 2 (0≦x≦1)及びLiMn2
4 が好ましい。
The battery of the present invention comprises a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a polymer electrolyte membrane also serving as a separator. Examples of the active material of the positive electrode include lithium-containing vanadium oxide (such as LiV 2 O 5 ), lithium-containing cobalt oxide (such as LiCoO 2 ), lithium-containing nickel oxide (such as LiNiO 2 ), and lithium-containing nickel-cobalt composite oxide. (LiNi x Co 1-x
O 2 (0 <x <1)), lithium-containing manganese oxide (such as LiMn 2 O 4 ), lithium-containing titanium oxide (such as LiTiO 2 ), lithium-containing chromium oxide (L
and a lithium-containing transition metal oxide such as iCrO 2 . In order to obtain a high capacity lithium secondary battery, L
iNi x Co 1-x O 2 (0 ≦ x ≦ 1) and LiMn 2 O
4 is preferred.

【0008】炭素材料としては、黒鉛、コークス、クレ
ゾール樹脂焼成炭素、フラン樹脂焼成炭素、ポリアクリ
ロニトリル焼成炭素、気相成長法により作製した炭素、
メソフェーズピッチ焼成炭素が例示される。
Examples of the carbon material include graphite, coke, cresol resin fired carbon, furan resin fired carbon, polyacrylonitrile fired carbon, carbon produced by a vapor phase growth method,
Mesophase pitch calcined carbon is exemplified.

【0009】セパレータを兼ねる高分子電解質膜は、高
分子とリチウム塩との複合体である。高分子としては、
ポリエチレンオキシド、ポリプロピレンオキシド、ポリ
エチレンオキシドとポリプロピレンオキシドの共重合
体、ポリスチレンとポリエチレンオキシドとの共重合
体、ポリエーテルイミド、ポリエーテルスルホン、ポリ
シロキサン、ポリスルホンが例示される。高分子電解質
膜はセパレータを兼ねる部材であるので、機械的強度の
大きい、分子量の大きいものが好ましい。例えば、ポリ
エチレンオキシドの場合は、通常、数平均分子量Mn2
00万〜800万程度のものが好ましい。リチウム塩と
しては、LiClO4 、LiCF3 SO3 、LiP
6 、LiN(C2 5 SO2 2 、LiBF4 、Li
SbF6 、LiAsF6 が例示される。イオン伝導性を
高めるために、高分子電解質膜として、高分子と、リチ
ウム塩を溶媒に溶かして成る電解液との複合体を使用し
てもよい。使用する溶媒としては、プロピレンカーボネ
ート、エチレンカーボネート等の環状炭酸エステル;γ
−ブチロラクトン等の環状エステル;テトラヒドロフラ
ン、1,3−ジオキサン、1,2−ジメトキシエタン、
メチルジグライム等のエーテル類;アセトニトリル、ベ
ンゾニトリル等のニトリル類;ジオキサラン;スルホラ
ン及びこれらの2種以上の混合物が例示される。
The polymer electrolyte membrane also serving as a separator is a composite of a polymer and a lithium salt. As a polymer,
Examples thereof include polyethylene oxide, polypropylene oxide, a copolymer of polyethylene oxide and polypropylene oxide, a copolymer of polystyrene and polyethylene oxide, polyetherimide, polyethersulfone, polysiloxane, and polysulfone. Since the polymer electrolyte membrane is a member that also functions as a separator, a polymer electrolyte membrane having high mechanical strength and high molecular weight is preferable. For example, in the case of polyethylene oxide, the number average molecular weight Mn2
It is preferable to use the one of about 100,000 to 8,000,000. Lithium salts include LiClO 4 , LiCF 3 SO 3 , LiP
F 6 , LiN (C 2 F 5 SO 2 ) 2 , LiBF 4 , Li
SbF 6 and LiAsF 6 are exemplified. In order to increase ion conductivity, a composite of a polymer and an electrolytic solution obtained by dissolving a lithium salt in a solvent may be used as the polymer electrolyte membrane. As the solvent used, cyclic carbonates such as propylene carbonate and ethylene carbonate; γ
Cyclic esters such as -butyrolactone; tetrahydrofuran, 1,3-dioxane, 1,2-dimethoxyethane,
Examples thereof include ethers such as methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxalane; sulfolane; and a mixture of two or more thereof.

【0010】本発明電池の正極及び負極は、ポリスチレ
ンとポリエチレンオキシドのブロック共重合体とリチウ
ム塩との複合体からなる高分子電解質を含有している。
ブロック共重合体としては、ポリスチレンとポリエチレ
ンオキシドの共重合モル比が20:80〜80:20の
ものが好ましい。ポリスチレンの割合が小さいものでは
電極の機械的強度を充分に高めることが困難であり、一
方ポリエチレンオキシドの割合が小さいものではイオン
伝導性を充分に高めることが困難である。また、ブロッ
ク共重合体としては、数平均分子量(Mn)10万〜8
0万のものが好ましい。
The positive and negative electrodes of the battery of the present invention contain a polymer electrolyte composed of a composite of a block copolymer of polystyrene and polyethylene oxide and a lithium salt.
As the block copolymer, those having a copolymerization molar ratio of polystyrene and polyethylene oxide of 20:80 to 80:20 are preferable. If the proportion of polystyrene is small, it is difficult to sufficiently increase the mechanical strength of the electrode, while if the proportion of polyethylene oxide is small, it is difficult to sufficiently increase the ionic conductivity. Further, as the block copolymer, a number average molecular weight (Mn) of 100,000 to 8
A thing of 100,000 is preferable.

【0011】正極及び負極に含有せしめる高分子電解質
の好適な量は、それぞれ正極活物質の種類及び量、並び
に、炭素材料の量によって異なる。例えば、正極活物質
がLiNix Co1-x 2 (0≦x≦1)又はLiMn
2 4 である場合には、正極にLiNix Co1-x 2
(0≦x≦1)又はLiMn2 4 100重量部に対し
て高分子電解質を1〜40重量部の割合で含有せしめる
とともに、負極に炭素材料100重量部に対して高分子
電解質を0.6〜30重量部の割合で含有せしめること
が好ましい。正極にLiNix Co1-x 2 (0≦x≦
1)又はLiMn2 4 100重量部に対して高分子電
解質を1〜29重量部の割合で含有せしめるとともに、
負極に炭素材料100重量部に対して高分子電解質を1
〜19重量部の割合で含有せしめることが、より好まし
い。含有せしめる高分子電解質の量が少な過ぎる場合
は、イオン伝導性が充分には高められないとともに、電
極と高分子電解質膜との密着性が充分には改善されず、
一方含有せしめる高分子電解質の量が多過ぎる場合は、
充放電時の電極の体積変化が大きくなって正極活物質又
は炭素材料が電極から剥離し易くなる。高分子電解質と
して、ポリスチレンとポリエチレンオキシドのブロック
共重合体と、リチウム塩を溶媒に溶かして成る電解液と
の複合体を使用してもよい。この場合に使用する溶媒と
しては、高分子電解質膜に使用する溶媒と同じものが例
示される。
The preferred amount of the polymer electrolyte contained in the positive electrode and the negative electrode depends on the type and amount of the positive electrode active material and the amount of the carbon material, respectively. For example, when the positive electrode active material is LiNi x Co 1-x O 2 (0 ≦ x ≦ 1) or LiMn
In the case of 2 O 4 , LiNi x Co 1-x O 2
(0 ≦ x ≦ 1) or 100 to 100 parts by weight of LiMn 2 O 4 , and the polymer electrolyte is contained in a ratio of 1 to 40 parts by weight. It is preferred that the content is 6 to 30 parts by weight. LiNi x Co 1-x O 2 (0 ≦ x ≦
1) Alternatively, the polymer electrolyte is contained in a proportion of 1 to 29 parts by weight with respect to 100 parts by weight of LiMn 2 O 4 ,
The polymer electrolyte was added to the negative electrode with 100 parts by weight of the carbon material.
More preferably, it is contained in an amount of from 19 to 19 parts by weight. If the amount of the polymer electrolyte to be contained is too small, the ion conductivity is not sufficiently increased, and the adhesion between the electrode and the polymer electrolyte membrane is not sufficiently improved,
On the other hand, if the amount of the polymer electrolyte to be contained is too large,
The change in the volume of the electrode during charging and discharging is large, and the positive electrode active material or the carbon material is easily peeled off from the electrode. As the polymer electrolyte, a complex of a block copolymer of polystyrene and polyethylene oxide and an electrolyte obtained by dissolving a lithium salt in a solvent may be used. As the solvent used in this case, the same solvent as that used for the polymer electrolyte membrane is exemplified.

【0012】本発明電池は、電極(正極及び負極)が特
定の高分子電解質を含有しているので、電極内のイオン
伝導性、及び、電極と高分子電解質膜との密着性が良
い。したがって、本発明電池は、高容量で、しかも充放
電サイクル特性が良い。
In the battery of the present invention, since the electrodes (positive electrode and negative electrode) contain a specific polymer electrolyte, the ion conductivity in the electrode and the adhesion between the electrode and the polymer electrolyte membrane are good. Therefore, the battery of the present invention has high capacity and good charge / discharge cycle characteristics.

【0013】[0013]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0014】(実験1)この実験では、LiCoO2
正極活物質とする本発明電池及び比較電池を作製し、各
電池の1サイクル目及び100サイクル目の放電容量を
調べた。
(Experiment 1) In this experiment, a battery of the present invention and a comparative battery using LiCoO 2 as a positive electrode active material were produced, and the discharge capacity at the first cycle and the 100th cycle of each battery was examined.

【0015】〔正極の作製〕正極活物質としてのLiC
oO2 粉末85重量部と、導電剤としての炭素粉末10
重量部と、結着剤としてのポリフッ化ビニリデン粉末5
重量部のNMP(N−メチル−2−ピロリドン)溶液
と、ポリスチレンとポリエチレンオキシドのブロック共
重合体(共重合モル比50:50)とLiClO4 との
重量比20:1の複合体からなる高分子電解質とを混練
してペーストを調製し、このペーストを正極集電体(ス
テンレス鋼板)にドクターブレード法により約80μm
の厚みに塗布し、130°Cで加熱処理して、直径10
mmの円盤状の各種正極を作製した。各正極に含まれる
LiCoO2 100重量部に対する高分子電解質の量
(重量部)を表1〜表7に示す。
[Preparation of positive electrode] LiC as positive electrode active material
85 parts by weight of oO 2 powder and carbon powder 10 as a conductive agent
Parts by weight and polyvinylidene fluoride powder 5 as a binder
Parts by weight of an NMP (N-methyl-2-pyrrolidone) solution, a composite of a block copolymer of polystyrene and polyethylene oxide (copolymer molar ratio 50:50) and LiClO 4 at a weight ratio of 20: 1. A paste is prepared by kneading with a molecular electrolyte, and the paste is applied to a positive electrode current collector (stainless steel plate) by a doctor blade method to about 80 μm.
And heated at 130 ° C to a diameter of 10
mm-shaped disc-shaped positive electrodes were produced. Tables 1 to 7 show the amount (parts by weight) of the polymer electrolyte with respect to 100 parts by weight of LiCoO 2 contained in each positive electrode.

【0016】一般式:CH2 =CH−COO−(CH2
−CH2 −O)n−CH2 −CH3で表される液状のポ
リエチレングリコールエチルエーテルアクリレート(ア
ルドリッチ社製、数平均分子量360)とLiClO4
とを重量比94:6で混合して溶液を調製し、この溶液
を正極の片面に25μmの厚みに塗布し、エレクトロン
カーテン式電子線照射装置(出力:200kV、照射線
量:2Mrad、被照射体の移動速度:1m/分)によ
り電子線を照射して、ポリエチレングリコールエチルエ
ーテルアクリレートを重合させて、正極の片面にセパレ
ータを兼ねる高分子電解質膜を形成した。
General formula: CH 2 CHCH—COO— (CH 2
—CH 2 —O) n-CH 2 —CH 3 , a liquid polyethylene glycol ethyl ether acrylate (manufactured by Aldrich, number average molecular weight 360) and LiClO 4
Was mixed at a weight ratio of 94: 6 to prepare a solution, and this solution was applied to one surface of the positive electrode to a thickness of 25 μm, and was applied to an electron curtain type electron beam irradiation device (output: 200 kV, irradiation dose: 2 Mrad, irradiation target). (Migration speed: 1 m / min) to irradiate an electron beam to polymerize polyethylene glycol ethyl ether acrylate, thereby forming a polymer electrolyte membrane serving also as a separator on one surface of the positive electrode.

【0017】〔負極の作製〕リチウムイオン吸蔵材とし
ての平均粒径10μmの黒鉛粉末95重量部と、結着剤
としてのポリフッ化ビニリデン5重量部のNMP溶液
と、ポリスチレンとポリエチレンオキシドのブロック共
重合体(共重合モル比50:50)とLiClO4 との
重量比20:1の複合体からなる高分子電解質とを混練
してペーストを調製し、このペーストを負極集電体(ス
テンレス鋼板)にドクターブレード法により約70μm
の厚みに塗布し、130°Cで加熱処理して、直径10
mmの円盤状の各種負極を作製した。各負極に含まれる
黒鉛100重量部に対する高分子電解質の量(重量部)
を表1〜表7に示す。
[Preparation of Negative Electrode] NMP solution of 95 parts by weight of graphite powder having an average particle size of 10 μm as a lithium ion storage material, 5 parts by weight of polyvinylidene fluoride as a binder, and a block copolymer of polystyrene and polyethylene oxide A paste is prepared by kneading a polymer electrolyte composed of a composite (copolymer molar ratio 50:50) and LiClO 4 at a weight ratio of 20: 1, and this paste is used as a negative electrode current collector (stainless steel plate). About 70μm by doctor blade method
And heated at 130 ° C to a diameter of 10
mm-shaped disc-shaped negative electrodes were produced. Amount of polymer electrolyte per 100 parts by weight of graphite contained in each negative electrode (parts by weight)
Are shown in Tables 1 to 7.

【0018】〔リチウム二次電池の作製〕高分子電解質
膜に負極を重ねて電極体とし、これを用いて扁平形のリ
チウム二次電池A1〜A156,B1〜B24を作製し
た。電池A1〜A156は本発明電池であり、電池B1
〜B24は比較電池である。電池B1は、従来電池でも
ある。いずれの電池も、正極と負極の容量比を約1:
1.1とした。図1は、作製したリチウム二次電池の断
面図であり、同図に示すリチウム二次電池BAは、高分
子電解質を含有する、正極1及び負極2、これらを離間
する高分子電解質膜3、正極蓋4、負極缶5、正極集電
体6、負極集電体7、絶縁パッキング8などからなる。
正極1及び負極2は、高分子電解質膜3を介して対向し
て正極蓋4及び負極缶5が形成する電池缶内に収納され
ており、正極1は正極集電体6を介して正極蓋4に、負
極2は負極集電体7を介して負極缶5に、それぞれ接続
され、電池内部に生じた化学エネルギーを電気エネルギ
ーとして外部へ取り出し得るようになっている。
[Preparation of Lithium Secondary Battery] A negative electrode was superposed on a polymer electrolyte membrane to form an electrode body, and flat lithium secondary batteries A1 to A156, B1 to B24 were prepared using this. Batteries A1 to A156 are the batteries of the present invention, and battery B1
B24 is a comparative battery. Battery B1 is also a conventional battery. In all of the batteries, the capacity ratio of the positive electrode to the negative electrode was about 1:
1.1. FIG. 1 is a cross-sectional view of the manufactured lithium secondary battery. The lithium secondary battery BA shown in FIG. 1 includes a positive electrode 1 and a negative electrode 2 containing a polymer electrolyte, a polymer electrolyte membrane 3 separating them, It comprises a positive electrode lid 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8, and the like.
The positive electrode 1 and the negative electrode 2 are housed in a battery can formed by forming a positive electrode lid 4 and a negative electrode can 5 so as to face each other with a polymer electrolyte membrane 3 interposed therebetween. 4, the negative electrode 2 is connected to a negative electrode can 5 via a negative electrode current collector 7, so that chemical energy generated inside the battery can be taken out to the outside as electric energy.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】〈各電池の1サイクル目及び100サイク
ル目の放電容量〉各電池について、25°Cにて、電流
密度100μA/cm2 で4.2Vまで充電した後、電
流密度100μA/cm2 で2.75Vまで放電する充
放電を100サイクル行い、各電池の1サイクル目及び
100サイクル目の正極1cm2当たりの放電容量(m
Ah/cm2 )を求めた。結果を先の表1〜表7に示
す。
<Discharge Capacity at 1st and 100th Cycle of Each Battery> Each battery was charged at 25 ° C. at a current density of 100 μA / cm 2 to 4.2 V, and then charged at a current density of 100 μA / cm 2 . performed 100 cycles of charge and discharge for discharging to 2.75 V, the discharge capacity of the cathode 1 cm 2 per 1 cycle and 100th cycle of each battery (m
Ah / cm 2 ). The results are shown in Tables 1 to 7 above.

【0027】表1〜表7に示すように、本発明電池A1
〜A156は比較電池B1(従来電池)に比べて、1サ
イクル目及び100サイクル目の放電容量が大きい。こ
の事実から、正極及び負極に本発明で規定する高分子電
解質を含有せしめることにより、電池容量の増大及び充
放電サイクル特性の向上がもたらされることが分かる。
また、本発明電池A1〜A156のうち、本発明電池A
2〜A11,A15〜A24,A28〜A37,A41
〜A50,A54〜A63,A67〜A76,A80〜
A89,A93〜A102,A106〜A115,A1
19〜A128は、他の本発明電池と比較して、100
サイクル目の放電容量が特に大きい。この事実から、正
極には高分子電解質をLiCoO2 100重量部に対し
て1〜40重量部含有せしめ、且つ負極には高分子電解
質を黒鉛100重量部に対して0.6〜30重量部含有
せしめることが好ましいことが分かる。さらに、本発明
電池A2〜A11,A15〜A24,A28〜A37,
A41〜A50,A54〜A63,A67〜A76,A
80〜A89,A93〜A102,A106〜A11
5,A119〜A128のうち、本発明電池A3〜A
9,A16〜A22,A29〜A35,A42〜A4
8,A55〜A61,A68〜A74,A81〜A8
7,A94〜A100は、100サイクル目の放電容量
が特に大きい。この事実から、正極には高分子電解質を
LiCoO2 100重量部に対して1〜29重量部含有
せしめ、且つ負極には高分子電解質を黒鉛100重量部
に対して1〜19重量部含有せしめることが、より好ま
しいことが分かる。
As shown in Tables 1 to 7, the battery A1 of the present invention
A156 have larger discharge capacities at the first and 100th cycles than the comparative battery B1 (conventional battery). From this fact, it is understood that the incorporation of the polymer electrolyte defined in the present invention into the positive electrode and the negative electrode leads to an increase in battery capacity and an improvement in charge / discharge cycle characteristics.
Also, among the batteries A1 to A156 of the present invention, the battery A of the present invention
2-A11, A15-A24, A28-A37, A41
~ A50, A54 ~ A63, A67 ~ A76, A80 ~
A89, A93 to A102, A106 to A115, A1
19 to A128 are 100 times smaller than the other batteries of the present invention.
The discharge capacity at the cycle is particularly large. From this fact, the positive electrode contains 1 to 40 parts by weight of the polymer electrolyte per 100 parts by weight of LiCoO 2 , and the negative electrode contains the polymer electrolyte of 0.6 to 30 parts by weight based on 100 parts by weight of graphite. It can be seen that it is preferable to make it work. Furthermore, the batteries A2 to A11, A15 to A24, A28 to A37,
A41 to A50, A54 to A63, A67 to A76, A
80-A89, A93-A102, A106-A11
5, batteries A3 to A of the present invention among A119 to A128
9, A16 to A22, A29 to A35, A42 to A4
8, A55 to A61, A68 to A74, A81 to A8
7, A94 to A100 have a particularly large discharge capacity at the 100th cycle. From this fact, it is necessary that the positive electrode contains 1 to 29 parts by weight of the polymer electrolyte with respect to 100 parts by weight of LiCoO 2 , and the negative electrode contains 1 to 19 parts by weight of the polymer electrolyte with respect to 100 parts by weight of graphite. Is more preferable.

【0028】(実験2)この実験では、LiNi0.8
0.2 2 、LiNi0.5 Co0.5 2 、LiMn2
4 又はLiNiO2 を正極活物質とする本発明電池及び
比較電池を作製し、各電池の1サイクル目及び100サ
イクル目の放電容量を調べた。
(Experiment 2) In this experiment, LiNi 0.8 C
o 0.2 O 2 , LiNi 0.5 Co 0.5 O 2 , LiMn 2 O
A battery of the present invention and a comparative battery using 4 or LiNiO 2 as the positive electrode active material were produced, and the discharge capacity at the first cycle and the 100th cycle of each battery was examined.

【0029】正極活物質として、LiCoO2 に代え
て、LiNi0.8 Co0.2 2 、LiNi0.5 Co0.5
2 、LiMn2 4 又はLiNiO2 を使用したこと
以外は実験1と同様にして、リチウム二次電池A157
〜A164,B25〜B28を作製した。電池A15
7,A158は、正極活物質としてLiNi0.8 Co
0.22 を使用した本発明電池であり、電池B25は、
正極活物質としてLiNi0.8 Co0.2 2 を使用した
比較電池である。電池A159,A160は、正極活物
質としてLiNi0.5 Co0.5 2 を使用した本発明電
池であり、電池B26は、正極活物質としてLiNi
0.5 Co0.5 2 を使用した比較電池である。電池A1
61,A162は、正極活物質としてLiMn2 4
使用した本発明電池であり、電池B27は、正極活物質
としてLiMn2 4 を使用した比較電池である。電池
A163,A164は、正極活物質としてLiNiO2
を使用した本発明電池であり、電池B28は、正極活物
質としてLiNiO2 を使用した比較電池である。各正
極に含まれる正極活物質100重量部に対する高分子電
解質の量(重量部)及び各負極に含まれる炭素材料10
0重量部に対する高分子電解質の量を表8に示す。これ
らの各電池について、実験1で行ったものと同じ条件の
充放電を100サイクル行い、各電池の1サイクル目及
び100サイクル目の正極1cm2 当たりの放電容量
(mAh/cm2 )を求めた。結果を表8に示す。
As the positive electrode active material, instead of LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Co 0.5
A lithium secondary battery A157 was prepared in the same manner as in Experiment 1, except that O 2 , LiMn 2 O 4 or LiNiO 2 was used.
To A164, B25 to B28. Battery A15
7, A158 is LiNi 0.8 Co as a positive electrode active material.
The battery of the present invention using 0.2 O 2 , wherein battery B25 is
This is a comparative battery using LiNi 0.8 Co 0.2 O 2 as a positive electrode active material. Batteries A159 and A160 are batteries of the present invention using LiNi 0.5 Co 0.5 O 2 as a positive electrode active material, and battery B26 is LiNi as a positive electrode active material.
This is a comparative battery using 0.5 Co 0.5 O 2 . Battery A1
61 and A162 are batteries of the present invention using LiMn 2 O 4 as a positive electrode active material, and battery B27 is a comparative battery using LiMn 2 O 4 as a positive electrode active material. Batteries A163 and A164 are made of LiNiO 2 as a positive electrode active material.
, And a battery B28 is a comparative battery using LiNiO 2 as the positive electrode active material. The amount (parts by weight) of the polymer electrolyte with respect to 100 parts by weight of the positive electrode active material contained in each positive electrode and the carbon material 10 contained in each negative electrode
Table 8 shows the amount of the polymer electrolyte with respect to 0 parts by weight. For each of these batteries, 100 cycles of charging and discharging under the same conditions as those performed in Experiment 1 were performed, and the discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode at the first cycle and the 100th cycle of each battery was determined. . Table 8 shows the results.

【0030】[0030]

【表8】 [Table 8]

【0031】表8より、正極活物質がLiNi0.8 Co
0.2 2 、LiNi0.5 Co0.5 2 、LiMn2 4
又はLiNiO2 の場合も、正極及び負極に本発明で規
定する高分子電解質を含有せしめることにより、高容量
で、しかも充放電サイクル特性の良い電池が得られるこ
とが分かる。なお、これらの正極活物質を使用した場合
も、正極及び負極の高分子電解質含有量については、実
験1で述べた範囲と同じ範囲が好ましいことを確認し
た。
According to Table 8, the positive electrode active material was LiNi 0.8 Co
0.2 O 2 , LiNi 0.5 Co 0.5 O 2 , LiMn 2 O 4
Also, in the case of LiNiO 2 , it can be seen that a battery with high capacity and good charge / discharge cycle characteristics can be obtained by incorporating the polymer electrolyte specified in the present invention into the positive electrode and the negative electrode. In addition, even when these positive electrode active materials were used, it was confirmed that the same range as the range described in Experiment 1 was preferable for the polymer electrolyte content of the positive electrode and the negative electrode.

【0032】(実験3)この実験では、正極及び負極が
ポリスチレンとLiClO4 との複合体又はポリエチレ
ンオキシドとLiClO4 との複合体からなる高分子電
解質を含有する比較電池を作製し、各電池の1サイクル
目及び100サイクル目の放電容量を調べた。
(Experiment 3) In this experiment, a comparative battery in which the positive electrode and the negative electrode contained a polymer electrolyte composed of a composite of polystyrene and LiClO 4 or a composite of polyethylene oxide and LiClO 4 was prepared. The discharge capacity at the first cycle and the 100th cycle was examined.

【0033】正極及び負極に含有せしめる高分子電解質
として、ポリスチレン(数平均分子量:約30万)とL
iClO4 との重量比20:1の複合体又はポリエチレ
ンオキシド(数平均分子量:約30万)とLiClO4
との重量比20:1の複合体を使用したこと以外は実験
1と同様にして、リチウム二次電池B29〜B32を作
製した。電池B29,B30は、高分子電解質としてポ
リスチレンとLiClO4 との複合体を使用した比較電
池であり、電池B31,B32は、高分子電解質として
ポリエチレンオキシドとLiClO4 との複合体を使用
した比較電池である。各正極に含まれる正極活物質10
0重量部に対する高分子電解質の量(重量部)及び各負
極に含まれる炭素材料100重量部に対する高分子電解
質の量を表9に示す。これらの各電池について、実験1
で行ったものと同じ条件の充放電を100サイクル行
い、各電池の1サイクル目及び100サイクル目の正極
1cm2 当たりの放電容量(mAh/cm2 )を求め
た。結果を表9に示す。
As the polymer electrolyte contained in the positive electrode and the negative electrode, polystyrene (number average molecular weight: about 300,000) and L
Complex with iClO 4 at a weight ratio of 20: 1 or polyethylene oxide (number average molecular weight: about 300,000) and LiClO 4
Lithium secondary batteries B29 to B32 were produced in the same manner as in Experiment 1, except that a composite having a weight ratio of 20: 1 was used. Batteries B29 and B30 are comparative batteries using a composite of polystyrene and LiClO 4 as a polymer electrolyte, and batteries B31 and B32 were comparative batteries using a composite of polyethylene oxide and LiClO 4 as a polymer electrolyte. It is. Positive electrode active material 10 contained in each positive electrode
Table 9 shows the amount of the polymer electrolyte with respect to 0 parts by weight (parts by weight) and the amount of the polymer electrolyte with respect to 100 parts by weight of the carbon material contained in each negative electrode. For each of these batteries, Experiment 1
The battery was subjected to 100 charge / discharge cycles under the same conditions as those described in 1., and the discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode at the first cycle and the 100th cycle of each battery was determined. Table 9 shows the results.

【0034】[0034]

【表9】 [Table 9]

【0035】表9に示すように、比較電池B29〜B3
2の1サイクル目及び100サイクル目の放電容量は、
比較電池B1のそれらに比べると大きいが、本発明電池
A4及びA30のそれらに比べると小さい。この事実か
ら、高容量で、しかも充放電サイクル特性の良い電池を
得るためには、正極及び負極に含有せしめる高分子電解
質として、ポリスチレンとポリエチレンオキシドのブロ
ック共重合体とLiClO4 との複合体を使用する必要
があることが分かる。
As shown in Table 9, comparative batteries B29 to B3
The discharge capacity at the first cycle and the 100th cycle of No. 2 is
It is larger than those of the comparative battery B1, but smaller than those of the batteries A4 and A30 of the present invention. From this fact, in order to obtain a battery with high capacity and good charge / discharge cycle characteristics, a composite of a block copolymer of polystyrene and polyethylene oxide and LiClO 4 was used as a polymer electrolyte to be contained in the positive electrode and the negative electrode. It turns out that it needs to be used.

【0036】[0036]

【発明の効果】高容量で、しかも充放電サイクル特性の
良いリチウム二次電池が提供される。
According to the present invention, a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した扁平形のリチウム二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a flat lithium secondary battery manufactured in an example.

【符号の説明】[Explanation of symbols]

BA リチウム二次電池 1 正極 2 負極 3 高分子電解質膜 4 正極蓋 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング BA Lithium secondary battery 1 Positive electrode 2 Negative electrode 3 Polymer electrolyte membrane 4 Positive lid 5 Negative can 6 Positive current collector 7 Negative current collector 8 Insulation packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と、炭素材料をリチウムイオン吸蔵材
とする負極と、セパレータを兼ねる高分子電解質膜とを
備えるリチウム二次電池において、正極及び負極が、ポ
リスチレンとポリエチレンオキシドのブロック共重合体
とリチウム塩との複合体からなる高分子電解質を含有し
ていることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a polymer electrolyte membrane serving also as a separator, wherein the positive electrode and the negative electrode are made of a block copolymer of polystyrene and polyethylene oxide. A lithium secondary battery comprising a polymer electrolyte comprising a composite of a lithium salt and a lithium salt.
【請求項2】正極の活物質が、LiNix Co1-x 2
(0≦x≦1)又はLiMn2 4である請求項1記載
のリチウム二次電池。
2. The method according to claim 1, wherein the active material of the positive electrode is LiNi x Co 1-x O 2.
2. The lithium secondary battery according to claim 1, wherein (0 ≦ x ≦ 1) or LiMn 2 O 4 .
【請求項3】正極が前記高分子電解質をLiNix Co
1-x 2 (0≦x≦1)又はLiMn2 4 100重量
部に対して1〜40重量部含有し、且つ負極が前記高分
子電解質を前記炭素材料100重量部に対して0.6〜
30重量部含有する請求項2記載のリチウム二次電池。
3. A cathode according to claim 1, wherein said polymer electrolyte is LiNi x Co.
1-x O 2 (0 ≦ x ≦ 1) or 1 to 40 parts by weight based on 100 parts by weight of LiMn 2 O 4 , and the negative electrode contains the polymer electrolyte in an amount of 0.1 to 40 parts by weight based on 100 parts by weight of the carbon material. 6 ~
3. The lithium secondary battery according to claim 2, which contains 30 parts by weight.
【請求項4】正極が前記高分子電解質をLiNix Co
1-x 2 (0≦x≦1)又はLiMn2 4 100重量
部に対して1〜29重量部含有し、且つ負極が前記高分
子電解質を前記炭素材料100重量部に対して1〜19
重量部含有する請求項2記載のリチウム二次電池。
4. A cathode according to claim 1, wherein said polymer electrolyte is LiNi x Co.
1-x O 2 (0 ≦ x ≦ 1) or 1 to 29 parts by weight based on 100 parts by weight of LiMn 2 O 4 , and the negative electrode contains the polymer electrolyte in an amount of 1 to 100 parts by weight based on 100 parts by weight of the carbon material. 19
The lithium secondary battery according to claim 2, which contains parts by weight.
JP10105797A 1997-07-24 1998-03-31 Lithium secondary battery Pending JPH11288704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10105797A JPH11288704A (en) 1998-03-31 1998-03-31 Lithium secondary battery
US09/119,608 US6132904A (en) 1997-07-24 1998-07-22 Polyelectrolytic battery having a polyelectrolyte based on a polystyrene main chain and polyethylene oxide side chain
CA002266985A CA2266985C (en) 1998-03-31 1999-03-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10105797A JPH11288704A (en) 1998-03-31 1998-03-31 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11288704A true JPH11288704A (en) 1999-10-19

Family

ID=14417123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10105797A Pending JPH11288704A (en) 1997-07-24 1998-03-31 Lithium secondary battery

Country Status (2)

Country Link
JP (1) JPH11288704A (en)
CA (1) CA2266985C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
JP2006522441A (en) * 2003-03-07 2006-09-28 バスキャップ Method for producing composite material for electrode
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
JP2012209230A (en) * 2011-03-30 2012-10-25 Daiso Co Ltd Nonaqueous electrolyte secondary battery
CN104904038A (en) * 2012-12-14 2015-09-09 尤米科尔公司 Low porosity electrodes for rechargeable batteries
JP2018533176A (en) * 2015-09-30 2018-11-08 シーオ インコーポレーテッドSeeo, Inc. Block copolymer electrolytes containing polymer additives
CN111430667A (en) * 2019-12-31 2020-07-17 蜂巢能源科技有限公司 Negative electrode slurry, negative electrode plate, power battery and electric automobile
JP2020530187A (en) * 2017-11-30 2020-10-15 エルジー・ケム・リミテッド Compositions for gel polymer electrolytes, gel polymer electrolytes to be produced, and lithium secondary batteries containing them.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449447B2 (en) * 2003-12-22 2010-04-14 日産自動車株式会社 Method for producing solid electrolyte battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
JP2002203606A (en) * 2000-12-28 2002-07-19 Sony Corp Nonaqueous electrolyte solution battery
JP4939927B2 (en) * 2003-03-07 2012-05-30 バスキャップ Method for producing composite material for electrode
JP2006522441A (en) * 2003-03-07 2006-09-28 バスキャップ Method for producing composite material for electrode
JP2012209230A (en) * 2011-03-30 2012-10-25 Daiso Co Ltd Nonaqueous electrolyte secondary battery
CN104904038A (en) * 2012-12-14 2015-09-09 尤米科尔公司 Low porosity electrodes for rechargeable batteries
JP2016504727A (en) * 2012-12-14 2016-02-12 ユミコア Low porosity electrode for rechargeable batteries
US10193151B2 (en) 2012-12-14 2019-01-29 Umicore Low porosity electrodes for rechargeable batteries
JP2018533176A (en) * 2015-09-30 2018-11-08 シーオ インコーポレーテッドSeeo, Inc. Block copolymer electrolytes containing polymer additives
JP2020530187A (en) * 2017-11-30 2020-10-15 エルジー・ケム・リミテッド Compositions for gel polymer electrolytes, gel polymer electrolytes to be produced, and lithium secondary batteries containing them.
US11522219B2 (en) 2017-11-30 2022-12-06 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same
CN111430667A (en) * 2019-12-31 2020-07-17 蜂巢能源科技有限公司 Negative electrode slurry, negative electrode plate, power battery and electric automobile
CN111430667B (en) * 2019-12-31 2022-06-21 蜂巢能源科技有限公司 Negative electrode slurry, negative electrode plate, power battery and electric automobile

Also Published As

Publication number Publication date
CA2266985C (en) 2005-08-16
CA2266985A1 (en) 1999-09-30

Similar Documents

Publication Publication Date Title
JP3238954B2 (en) Non-aqueous secondary battery
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP2002251996A (en) Lithium secondary battery
JP6128481B2 (en) Nonaqueous electrolyte secondary battery
JP2002042889A (en) Nonaqueous electrolyte secondary battery
JP2002216745A (en) Lithium secondary battery
JP2000277148A (en) Polymer electrolyte battery
JP2009200043A (en) Battery
JP3574072B2 (en) Gel polymer electrolyte lithium secondary battery
JP7177277B2 (en) Electrodes for lithium secondary batteries
JPH11288704A (en) Lithium secondary battery
JP4307927B2 (en) Nonaqueous electrolyte secondary battery
JP3384661B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP2003217586A (en) Lithium ion secondary battery
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JP3172444B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same
JP3433079B2 (en) Lithium secondary battery
JP2002289175A (en) Lithium secondary battery
JP2019096419A (en) Negative electrode active substance, negative electrode, and lithium ion secondary battery
CN111129441B (en) Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery
JP2018166054A (en) Positive electrode and lithium ion secondary battery using the same
JP2001250557A (en) Lithium secondary cell
JP2000331683A (en) Lithium secondary battery