JPH1196987A - Degassing method during initial charge of lithium secondary battery and its degassing structure - Google Patents

Degassing method during initial charge of lithium secondary battery and its degassing structure

Info

Publication number
JPH1196987A
JPH1196987A JP9253245A JP25324597A JPH1196987A JP H1196987 A JPH1196987 A JP H1196987A JP 9253245 A JP9253245 A JP 9253245A JP 25324597 A JP25324597 A JP 25324597A JP H1196987 A JPH1196987 A JP H1196987A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
gas
liquid inlet
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9253245A
Other languages
Japanese (ja)
Other versions
JP3174289B2 (en
Inventor
Hideaki Nagura
秀哲 名倉
Minoru Inagaki
稔 稲垣
Tomoya Murata
知也 村田
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP25324597A priority Critical patent/JP3174289B2/en
Publication of JPH1196987A publication Critical patent/JPH1196987A/en
Application granted granted Critical
Publication of JP3174289B2 publication Critical patent/JP3174289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To release a gas generated during initial charge without strictly controlling humidity by injecting an electrolytic solution from an injection mouth provided at the bottom most end of a recessed part formed at a battery can toward inside of the can, mounting a metallic ball to close the injection mouth being fell in the recessed part of the injection mouth by its own weight, performing initial charge, and then fixing the metallic ball by means of resistance welding after completing initial charge. SOLUTION: This is composed of a pan bottom shape recessed part 3 formed roundly at a can lid 1a, an injection port 5 formed concentrically opened at the most bottom end of the recessed part 3, and a metallic ball 4 contained in the recessed part. A sliding surface material 11 that is non-soluble to an electrolytic solution is injected between a periphery of the injection port 5 and the metallic ball 4 so as to return the electrolytic solution that adheres inside of the recessed part 3 to inside a battery can. When an inside pressure becomes to be high by a generated gas during initial charge, the metallic ball 4 rises by the gas to release the gas outside the battery can. After completing the initial charge, the metallic ball 4 is resistance welded between the recessed part 3 to seal. Thereby, an initial charge can be easily performed in a normal working room.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の初充電時に発生するガスを外部に排出するためのガス
抜き方法及びそのガス抜き構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing method for discharging gas generated at the time of initial charging of a lithium secondary battery to the outside and a degassing structure thereof.

【0002】[0002]

【従来の技術】一般に、リチウム二次電池は、正極活物
質として、遷移金属のリチウム含有酸化物、すなわち層
状構造を有するLiMO2 あるいはスピネル構造を有す
るLiM2 4 (但しMは遷移金属、例えばコバルト、
マンガン、ニッケル鉄のいずれか)などを用いると共
に、負極物質としてカーボン材料を用い、正極と負極と
の間で一方が放出したリチウムイオンを他方が吸蔵する
という可逆反応によって充放電を行うものである。
2. Description of the Related Art In general, a lithium secondary battery uses, as a positive electrode active material, a lithium-containing oxide of a transition metal, that is, LiMO 2 having a layered structure or LiM 2 O 4 having a spinel structure (where M is a transition metal, for example, cobalt,
Manganese or nickel iron), and a carbon material is used as a negative electrode material, and charge and discharge are performed by a reversible reaction between the positive electrode and the negative electrode, in which one absorbs lithium ions released by the other. .

【0003】かかるリチウム二次電池においては、その
初充電時に内部にガスが発生し、内圧が上昇するという
問題がある。
[0003] In such a lithium secondary battery, there is a problem that gas is generated inside at the time of the first charge and the internal pressure rises.

【0004】この問題に対しては、従来、次のような対
策方法とっていた。 (1)リチウム二次電池の構造上、初充電時の内圧上昇
に対して十分耐え得るような機械的強度を持たせるべ
く、電池缶に、肉厚の厚い缶を使用する。 (2)リチウム二次電池の製造時に電池缶を開放にして
初充電を行う。つまり、構造上、電池缶をガスが抜ける
状態にしておき、電池内部が外部に開放された状態のも
とで初充電を行い、同時にガス抜きを行う。ガス抜き
後、電池缶を完全密封する。
Conventionally, the following measures have been taken to solve this problem. (1) Due to the structure of the lithium secondary battery, a thick can is used for the battery can in order to have sufficient mechanical strength to withstand an increase in internal pressure during initial charging. (2) At the time of manufacturing a lithium secondary battery, the battery can is opened to perform initial charging. That is, due to the structure, the battery can is left in a state in which gas escapes, and the initial charging is performed while the inside of the battery is open to the outside, and the gas is simultaneously vented. After degassing, the battery can is completely sealed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記
(1)の厚い缶を使用するという方法では、電池缶の内
容積が少なくなり、リチウム二次電池の電池容量が小さ
くなるという問題がある。
However, the method (1) of using a thick can has a problem that the internal volume of the battery can is reduced and the battery capacity of the lithium secondary battery is reduced.

【0006】これに対し、上記(2)の方法では、先に
ガス抜きしてから電池缶を密封するので、電池缶の肉厚
を薄く作製しておくことができるという長所が得られ
る。しかし、リチウム二次電池の内部を開放にして初充
電を行うという従来のガス抜き方法では、次のような問
題点がある。 (イ)初充電時に電池内部が外部に開放されるため、電
解液が蒸発して、電池特性が悪くなる。 (ロ)また、封口部に電解液成分が付着し、封口不良が
発生する。この封口の信頼性を向上させるため、封口部
に付着した電解液成分を拭き取る工程が必要である。 (ハ)更に、充電中の厳密な湿度管理が必要である。す
なわち、充電中は、相対湿度1〜2%という乾燥した環
境を確保する必要があるが、かかる環境を通常の空気調
和機で達成することは困難である。このため、特別の乾
燥室を用意する必要がある。
On the other hand, the method (2) has an advantage that the battery can is made thinner because the battery can is sealed after degassing first. However, the conventional degassing method in which the inside of the lithium secondary battery is opened and the first charge is performed has the following problems. (A) Since the inside of the battery is opened to the outside at the time of initial charging, the electrolytic solution evaporates, and the battery characteristics deteriorate. (B) In addition, the electrolyte component adheres to the sealing portion, resulting in poor sealing. In order to improve the reliability of the sealing, a step of wiping the electrolyte component attached to the sealing portion is required. (C) Further, strict humidity control during charging is required. That is, during charging, it is necessary to ensure a dry environment with a relative humidity of 1 to 2%, but it is difficult to achieve such an environment with a normal air conditioner. For this reason, it is necessary to prepare a special drying room.

【0007】本発明は以上の様な従来の課題に鑑みてな
されたものであり、その目的は、リチウム二次電池にお
いて、充電中の厳密な湿度管理を必要とせずに、初充電
時の発生ガスを放出させることができ、しかも封口不良
や電池特性の悪化を来すことがない初充電時のガス抜き
方法及びそのガス抜き構造を提供することにある。
[0007] The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a lithium secondary battery that does not require strict humidity control during charging, and that is not required during initial charging. It is an object of the present invention to provide a method of degassing at the time of initial charging and a degassing structure thereof, which can release gas and do not cause poor sealing or deterioration of battery characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、リチウム二次電池における初充電時の
ガス抜き方法及びそのガス抜き構造は、次のように構成
した。
In order to achieve the above object, according to the present invention, a method and a structure for degassing a lithium secondary battery at the time of initial charging are configured as follows.

【0009】即ち、請求項1に係る初充電時のガス抜き
方法では、リチウム二次電池の電池缶に缶内部に向けて
窪ませられて形成された凹部内の最下端部に設けられた
注液口から電解液を注入した後、該凹部内に、自重で該
注液口に落ち込んで該注液口を塞ぐ金属球を装填すると
ともに、注液口の周囲と金属球との隙間に電解液に対し
て不溶解性の油状物を注入し、この状態で初充電を行
い、該充電時に缶内部に発生するガスの圧力で該金属球
を浮上させて該ガスを排出し、初充電の終了後に該注液
口を塞いだ該金属球を抵抗溶接によって固着して封口す
ることを特徴とする。
In other words, in the method for degassing at the time of the first charge according to the first aspect, the note provided at the lowermost end in the concave portion formed in the battery can of the lithium secondary battery by being depressed toward the inside of the can. After injecting the electrolytic solution from the liquid port, a metal sphere that drops into the liquid injection port by its own weight and closes the liquid injection port is loaded into the concave portion, and an electrolytic solution is inserted into a gap between the liquid injection port and the metal ball. An insoluble oil is injected into the liquid, and initial charging is performed in this state, the metal ball is floated by the pressure of gas generated inside the can at the time of charging to discharge the gas, and the gas is discharged. After completion of the injection, the metal ball closing the liquid inlet is fixed by resistance welding and sealed.

【0010】また、請求項2に係る初充電時のガス抜き
構造では、リチウム二次電池の電池缶に設ける電解液の
注液口を、缶内部向けて窪む凹部の最下端部に円形に形
成し、該凹部内には、自重により該注液口に落ち込んで
これを塞ぐとともに初充電時に缶内部に発生するガス圧
で浮上して該注液口を開放する金属球を装填し、注液口
の周囲と金属球との隙間には電解液に対して不溶解性の
油状物を注入することを特徴とする。
Further, in the gas venting structure at the time of the first charge according to the second aspect, the electrolyte injection port provided in the battery can of the lithium secondary battery is formed in a circular shape at the lowermost end of the concave portion recessed toward the inside of the can. In the concave portion, a metal ball that drops into the liquid inlet by its own weight and closes the liquid inlet and closes it, and floats by the gas pressure generated inside the can at the time of initial charging to open the liquid inlet is loaded, An oil insoluble in the electrolytic solution is injected into the gap between the periphery of the liquid port and the metal ball.

【0011】上記構成による初充電時のガス抜き方法及
びそのガス抜き構造によれば、初充電前にあっては凹部
内の金属球が底部中央の注液口を塞いでいる。しかし、
初充電中にガスが発生し内圧が高くなると、ガスが金属
球を押し上げて浮上させるとともに、油状物質の間から
ガスが放出される。このとき、放出されるガスにより油
状物質や外気は外方に押しやられるから、当該初充電中
に油状物質や外気が電池缶内に入り込むことはない。内
圧が下がると同時に金属球が下がり注液口が塞がる。
According to the degassing method and the degassing structure at the time of the first charge having the above configuration, before the first charge, the metal sphere in the concave portion closes the liquid inlet at the bottom center. But,
When gas is generated during the initial charge and the internal pressure is increased, the gas pushes up the metal spheres to float and the gas is released from between the oily substances. At this time, the released gas pushes the oily substance and the outside air outward, so that the oily substance and the outside air do not enter the battery can during the initial charge. At the same time as the internal pressure decreases, the metal sphere drops and the injection port is closed.

【0012】即ち、金属球及び油状物質が逆止弁作用を
する。このため、従来のように相対湿度1〜2%という
乾燥した特別の乾燥室を用意することは必要なくなり、
通常の空気調和機を利用した作業室で初充電を行うこと
ができるようになる。よって、充電中の湿度管理が極め
て容易となる。
That is, the metal sphere and the oily substance act as a check valve. For this reason, it is not necessary to prepare a special drying room in which the relative humidity is 1 to 2% as in the related art.
The first charge can be performed in a work room using a normal air conditioner. Therefore, humidity management during charging becomes extremely easy.

【0013】また、金属球の表面や当該金属球と注液口
との隙間内には、油状物質により皮膜が形成されるた
め、初充電時のガス発生に伴い電池缶内の注液口に向け
て電解液成分の飛沫が飛来してきても、この飛沫は油状
物質の皮膜に付着して落下し、電池缶内に回収される。
このため、従来のように、初充電終了後に封口部に乾燥
した電解液成分が白い粉状に残ることはなく、封口部に
付着した電解液成分を拭き取る工程を必要としない。従
って、封口部の信頼性が向上する。
[0013] Further, since a film is formed of an oily substance on the surface of the metal ball or in the gap between the metal ball and the liquid inlet, the gas is generated at the time of the first charge, so that the film is formed at the liquid inlet in the battery can. Even if the droplets of the electrolyte component fly toward, the droplets adhere to the film of the oily substance, fall, and are collected in the battery can.
For this reason, unlike the conventional case, the dried electrolyte component does not remain in the form of a white powder in the sealing portion after the completion of the initial charging, and a step of wiping the electrolyte component attached to the sealing portion is not required. Therefore, the reliability of the sealing portion is improved.

【0014】更に、請求項3に示すように、上記初充電
を行った後、金属球と電池缶との間で抵抗溶接により封
口するようにすれば、金属球を初充電中に上記逆止弁と
して機能させるだけでなく、溶接電極の接触子としての
作用を行わせることができ、製造工程の簡易化を図れ
る。また、注液口の周囲に電解液の付着が生じないの
で、これによるトラブルが起きることがない。
Furthermore, if the metal ball is sealed by resistance welding after the initial charge is performed, the check is made during the initial charge of the metal ball. Not only can it function as a valve, but it can also act as a contact for the welding electrode, thus simplifying the manufacturing process. In addition, since the electrolyte does not adhere around the inlet, no trouble occurs.

【0015】また、例えば請求項4に示すように、前記
凹部は円形に窪む鍋底状に形成し、その底壁の中央に同
心的に前記注液口を設け、かつ該注液口周縁の内周部側
底壁は下方に向かって湾曲させてカール加工し、該凹部
の周壁の内径寸法は前記金属球の直径の2倍未満に設定
するとともに、該注液口周縁の内周部側底壁の下方への
湾曲開始点から該凹部の周壁面までの距離は該金属球の
半径以下に設定すれば、缶内圧力により金属球が凹部内
の最外周寄りに浮上移動されて、周壁面に接触されてい
る状態にあっても、当該金属球の中心(重心)は注液口
に臨んでその上方に常に位置するので、缶内のガスが放
出されてその圧力が低下すれば、自動的に自重で注液口
に向けて落ち込んでこれを閉塞させるようになし得、ま
た鍋底状の底部で油状物を滞留保持させておくことがで
きる。
Further, for example, the recess is formed in a pot-like shape with a circular recess, and the liquid inlet is provided concentrically at the center of the bottom wall. The inner peripheral side bottom wall is curved downward and curled, the inner diameter of the peripheral wall of the concave portion is set to less than twice the diameter of the metal ball, and the inner peripheral side of the liquid injection port peripheral edge. If the distance from the starting point of the downward bending of the bottom wall to the peripheral wall surface of the concave portion is set to be equal to or less than the radius of the metal sphere, the metal sphere is lifted and moved to the outermost periphery in the concave portion by the pressure in the can, and Even when the metal ball is in contact with the wall surface, the center (center of gravity) of the metal sphere faces the injection port and is always located above it, so if the gas in the can is released and its pressure decreases, It can be automatically dropped by its own weight toward the injection port to close it, and the bottom of the pot bottom Jo was capable allowed to dwell held.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明に係るガス抜き構造が採用さ
れた扁平角形リチウムイオン二次電池の全体構成を概略
的に示す分解斜視図であり、図2はそのガス抜き構造を
示す縦断面図、図3はそのガス抜き構造を示す平面図で
ある。図1に示すように、偏平角形リチウムイオン二次
電池は、正極板と負極板とをセパレータを介して非円形
にスパイラル状に巻回してなる電極体12と、この電極
体を収納する電池缶1、及びこの電池缶1の上部開口を
密閉する缶蓋1aとから主になり、この缶蓋1aに設け
られた電解液の注液部2に本発明に係るガス抜き構造が
適用されている。
FIG. 1 is an exploded perspective view schematically showing the entire structure of a flat rectangular lithium ion secondary battery employing a gas vent structure according to the present invention, and FIG. 2 is a longitudinal sectional view showing the gas vent structure. FIG. 3 is a plan view showing the gas vent structure. As shown in FIG. 1, an oblong prismatic lithium ion secondary battery includes an electrode body 12 in which a positive electrode plate and a negative electrode plate are spirally wound non-circularly with a separator interposed therebetween, and a battery can housing the electrode body. 1 and a can lid 1a for sealing the upper opening of the battery can 1, and the gas vent structure according to the present invention is applied to the electrolyte injection portion 2 provided on the can lid 1a. .

【0018】当該注液部2は缶蓋1aに円形に形成され
た鍋底状の凹部3と、この凹部3の最下端部である底壁
3a中央に同心的に開口形成された注液口5と、この凹
部3内に入れられている金属球4とを有する。ここで、
凹部3の直径D1は金属球4の直径Mの2倍以下(D1
≦2M)に設定され、深さHは金属球4の半径M/2以
上(H≧M/2)に設定されている。また、底壁3a中
央に開口された注液口5の直径D2は、金属球4の直径
Mよりも小さく形成されている。注液口5の周縁部の中
央側底壁部6には、半径R1の丸みが付けられて下方に
湾曲されてカール加工されており、金属球4が凹部3内
の注液口5を密に閉塞し得るようになっている。また、
その湾曲開始点7から鍋底状凹部3の周壁3bまでの幅
(距離)Wは金属球の半径M/2以下(W≦M/2)に
設定されている。
The pouring section 2 has a pot-shaped concave portion 3 formed in a circular shape on the can lid 1a, and a pouring port 5 formed concentrically at the center of the bottom wall 3a, which is the lowermost portion of the concave portion 3. And a metal ball 4 placed in the recess 3. here,
The diameter D1 of the recess 3 is not more than twice the diameter M of the metal ball 4 (D1
≦ 2M), and the depth H is set to be equal to or larger than the radius M / 2 of the metal sphere 4 (H ≧ M / 2). The diameter D2 of the liquid inlet 5 opened at the center of the bottom wall 3a is smaller than the diameter M of the metal ball 4. The central bottom wall 6 at the periphery of the liquid injection port 5 is rounded with a radius R1 and is curved downward so as to be curled. A metal ball 4 closes the liquid injection port 5 in the recess 3. Can be closed. Also,
The width (distance) W from the bending start point 7 to the peripheral wall 3b of the pot bottom-shaped recess 3 is set to be equal to or less than the radius M / 2 of the metal sphere (W ≦ M / 2).

【0019】即ち、上記凹部3の内径D1及び深さH、
注液口5の直径D2、金属球4の直径M、そして周壁3
bから湾曲開始点7までの幅Wの相互の寸法的関係は、
常に金属球4が自重で凹部3内の注液口5に落ち込ん
で、当該注液口5を塞ぐようになっている。つまり、凹
部3の内部形状は、金属球4が自重で自動的に注液口5
に落ち込んでこれを安定的に塞ぐような形状にされてい
る。具体的には、通常は、凹部3内の金属球4が底部中
央に形成されている注液口5を塞いでいるが、図2に
(イ)又は(ロ)で示したように、凹部3の半径方向最
外部に金属球4が移動して周壁3bに接しているような
場合にあっても、当該金属球4の中心(重心)8は注液
口5の周縁部6の下方への湾曲開始点7よりも内側にあ
って、注液口5側に位置するという関係になるように形
成されている。なお、凹部3の電池缶表面側との境界を
なす外周縁部9には半径R2による丸みが付けられ、ま
た、凹部3の底壁3aから周壁3aにかけても半径R3
による丸みが付けられている。
That is, the inner diameter D1 and the depth H of the recess 3
The diameter D2 of the injection port 5, the diameter M of the metal ball 4, and the peripheral wall 3
The mutual dimensional relationship of the width W from b to the bending start point 7 is
The metal ball 4 always drops by its own weight into the liquid inlet 5 in the recess 3, and closes the liquid inlet 5. In other words, the inner shape of the concave portion 3 is such that the metal ball 4 is automatically moved by its own weight to the liquid inlet 5
It is shaped so that it falls down and stably closes it. Specifically, the metal sphere 4 in the concave portion 3 normally closes the liquid inlet 5 formed in the center of the bottom portion, but as shown in FIG. Even when the metal ball 4 moves to the outermost part in the radial direction of the metal ball 3 and is in contact with the peripheral wall 3 b, the center (center of gravity) 8 of the metal ball 4 moves downward to the peripheral part 6 of the liquid inlet 5. Are formed on the inner side of the bending start point 7 and on the liquid inlet 5 side. The outer peripheral edge 9 of the concave portion 3 bordering the battery can surface is rounded with a radius R2, and the radius R3 extends from the bottom wall 3a of the concave portion 3 to the peripheral wall 3a.
Rounded.

【0020】また、凹部3内の注液口5の周囲と金属球
4との隙間には、凹部内に付着する電解液成分を滑らせ
て電池缶1内に戻すため、電解液に対して不溶解性の油
状物から成る滑面物質11が注入されている。この滑面
物質11は、具体的にはポリブテン(分子量約300)
から成る。このポリブテンは、多少電池缶1内に入って
も支障のないものであるが、できるだけ入れないように
するため、上記のように凹部3は鍋底状に形成して、こ
こに貯留させる形でポリブテンを設けている。なお、こ
のポリブデンは粘性が高く、水飴状の流動性を呈する。
Further, in the gap between the metal ball 4 and the periphery of the injection port 5 in the recess 3, the electrolyte component adhering in the recess is slid and returned into the battery can 1. A lubricating substance 11 consisting of an insoluble oil is injected. Specifically, this smooth material 11 is made of polybutene (molecular weight: about 300).
Consists of Although this polybutene does not cause any trouble even if it enters into the battery can 1, the concave portion 3 is formed in the shape of a pot bottom as described above so that the polybutene can be stored here. Is provided. In addition, this polybutene has high viscosity and exhibits syrup-like fluidity.

【0021】上記の如く構成される注液部2の金属球4
と滑面物質11とは、注液口5から電解液を注液した後
に、凹部3内に設けられる。即ち、注液後に先ず金属球
4が凹部3内に装填され、金属球4が注液口5に落ち込
んでこれを塞いでいる状態で、更に滑面物質11が注入
される。その後に、リチウムイオン二次電池に対して初
充電が行なわれる。
The metal sphere 4 of the liquid injection section 2 configured as described above
The smooth surface substance 11 is provided in the recess 3 after the electrolyte is injected from the injection port 5. That is, after the injection, the metal spheres 4 are first loaded into the concave portions 3, and the smooth surface substance 11 is further injected in a state where the metal spheres 4 fall into the injection port 5 and block the injection port 5. Thereafter, the lithium-ion secondary battery is initially charged.

【0022】初充電中の注液部2の働きは次のようにな
る。即ち、初充電の開始当初においては、図4(a)に
示す如く、注液口5は金属球4により塞がれ、その外周
囲を油状物から成る滑面物質11が取り巻いて密封して
いる。初充電中にガスが発生して電池缶1内の内圧が高
まると、図4(b)に示す如く、ガスにより金属球4が
押し上げられて浮上し、油状物質11の間から、ガスが
電池缶の外部に放出される。内圧が下がると、同時に金
属球4が下がり、注液口5が閉塞される。つまり、金属
球4は逆止弁として機能する。そのあいだ、油状物質か
ら成る滑面物質11は放出されるガスによって外周囲に
押しやられるから、電池缶1内に流れ込むことはなく、
また外気も入ることはない。
The function of the liquid injection section 2 during the initial charging is as follows. That is, at the beginning of the initial charging, as shown in FIG. 4 (a), the injection port 5 is closed by the metal ball 4, and the outer periphery is surrounded by the smooth surface material 11 made of an oily substance and sealed. I have. When gas is generated during the initial charging and the internal pressure in the battery can 1 increases, the metal sphere 4 is pushed up by the gas and floats up, as shown in FIG. Released outside the can. When the internal pressure decreases, the metal ball 4 simultaneously lowers, and the liquid inlet 5 is closed. That is, the metal ball 4 functions as a check valve. In the meantime, since the smooth surface substance 11 composed of an oily substance is pushed to the outer periphery by the released gas, it does not flow into the battery can 1,
There is no outside air.

【0023】上記初充電中には、電池缶1の内部で注液
口5やその近傍に向けて電解液成分の飛沫が飛来してく
るが、金属球4の表面及び金属球4と注液口5との缶の
隙間には、油状物質から成る滑面物質11による皮膜が
形成されているため、この電解液成分は滑面物質11に
付着することとなる。すなわち、滑面物質11の働きに
より、電解液成分は当該滑面物質11上を滑り落ち、電
池缶1内に戻される。このため、従来のように、封口部
に電解液成分が付着したままとなって乾燥した白い粉状
に残ることはなく、封口部の信頼性が向上する。
During the above-mentioned initial charge, droplets of the electrolytic solution components splash toward the liquid inlet 5 and the vicinity thereof inside the battery can 1. In the gap between the can and the mouth 5, a film of the smooth surface substance 11 made of an oily substance is formed, so that the electrolytic solution component adheres to the smooth surface substance 11. That is, due to the action of the smooth surface material 11, the electrolyte component slides down on the smooth surface material 11 and is returned into the battery can 1. For this reason, unlike the related art, the electrolyte component does not remain attached to the sealing portion and does not remain as a dry white powder, and the reliability of the sealing portion is improved.

【0024】上記初充電を行った後、図5に示すよう
に、電池缶1を抵抗溶接の相手側電極13上に置き、抵
抗溶接機の電極14を、注液部2の凹部3内にある金属
球4に押し当て、金属球4と電池缶1との間で抵抗溶接
により封口する。金属球4が押されて注液口5の縁部6
に接触した時点で、すなわち金属同士が接触した時点で
電気的に導通するので、自動的に抵抗溶接が開始され
る。この際、油状物質11は溶接を阻害することはな
く、電解液付着によるトラブルも避けられる。
After the initial charging, as shown in FIG. 5, the battery can 1 is placed on the counter electrode 13 for resistance welding, and the electrode 14 of the resistance welding machine is placed in the recess 3 of the liquid injection section 2. The metal ball 4 is pressed against a certain metal ball 4 and sealed between the metal ball 4 and the battery can 1 by resistance welding. The metal ball 4 is pushed and the edge 6 of the injection port 5
At the time of contact, that is, at the time of contact between metals, resistance welding is automatically started. At this time, the oily substance 11 does not hinder the welding, and the trouble due to the adhesion of the electrolyte can be avoided.

【0025】<実施例>正極活物質としてLiCoO2
を91重量部、導電剤として黒鉛を4重量部、バインダ
としてPVDFを5重量部混合し、適量のNメチルピロ
リジノンを加えよく混合し、塗料状とした。一方、黒鉛
90重量部と、PVDF10重量部とを混合し正極と同
様に適量のNメチルピロリジノンを加えよく混合し塗料
状とした。
<Example> LiCoO 2 as a positive electrode active material
, 91 parts by weight of graphite, 4 parts by weight of graphite as a conductive agent, and 5 parts by weight of PVDF as a binder. An appropriate amount of N-methylpyrrolidinone was added and mixed well to obtain a paint. Separately, 90 parts by weight of graphite and 10 parts by weight of PVDF were mixed, and an appropriate amount of N-methylpyrrolidinone was added similarly to the positive electrode and mixed well to obtain a paint.

【0026】続いて、正極集電体として20μmのAl
箔、負極集電体として10μmのCuを用いて、先ず片
面に塗布を行い、乾燥後もう片方の面にも同様に塗布、
乾燥を行った。両面塗布を行った電極をロール圧延し
て、圧延後の正極は220μm、負極は130μmとし
た。
Subsequently, 20 μm Al was used as a positive electrode current collector.
Using foil and 10 μm Cu as the negative electrode current collector, first apply on one side, and after drying, apply the same on the other side,
Drying was performed. The electrode coated on both sides was roll-rolled, and the rolled positive electrode was 220 μm and the negative electrode was 130 μm.

【0027】続いて正極については幅31mm長さ33
0mm、負極については幅33mm長さ380mmに切
り出し正極端部には厚さ100μmの短冊リード板15
を、負極部には厚さ50μmの短冊状リード板16を溶
接した。
Subsequently, for the positive electrode, a width of 31 mm and a length of 33
0 mm, the negative electrode was cut into a width of 33 mm and a length of 380 mm, and a 100 μm-thick strip lead plate 15 was formed at the end of the positive electrode.
And a strip-shaped lead plate 16 having a thickness of 50 μm was welded to the negative electrode portion.

【0028】以上作製した電極と厚さ25μm、幅35
mmのポリプロピレン製微多孔膜をセパレータに用い
て、幅29mm×高さ35mm、厚さ7mmの、断面が
長円状の電極体12(図3)を作製した。
The electrode prepared above was combined with a thickness of 25 μm and a width of 35
An electrode body 12 (FIG. 3) having a width of 29 mm × a height of 35 mm and a thickness of 7 mm and a cross section of an ellipse was prepared using a microporous membrane made of polypropylene having a thickness of 7 mm as a separator.

【0029】該電極体の上下に絶縁シートを配置し、電
池缶1内に該電極体12を収納し、ニッケルリード板1
6の一端を缶の開口部付近に溶接接合し、蓋に形成され
た正極端子17の内側部の一端に正極リード板15の一
端を溶接して、その缶蓋1aにより缶1の開口部を閉じ
てから、その周囲をレーザ溶接により接合して一体化
し、30mm×40mm×8mmの偏平角形リチウムイ
オン二次電池(700mAh)を作製した。
An insulating sheet is disposed above and below the electrode body, and the electrode body 12 is accommodated in the battery can 1.
6 is welded to the vicinity of the opening of the can, and one end of the positive electrode lead plate 15 is welded to one end of the inside of the positive electrode terminal 17 formed on the lid, and the opening of the can 1 is formed by the can lid 1a. After closing, the periphery was joined by laser welding and integrated to produce a 30 mm × 40 mm × 8 mm flat rectangular lithium ion secondary battery (700 mAh).

【0030】缶蓋1aには前述の本発明によるガス抜き
構造を備えた注液部2が形成されており、この注液部2
の注液口5から充分な量の電解液を注入し、その後、注
液部2の凹部3内に金属球4を装填した。この金属球4
はステンレス球(直径M=3mm)を用いた。また、注
液部2の凹部3は、深さH=約2mm、内径D1=φ
4.5mm、注液口5の直径D2=φ1.8mmとし
た。また、金属球4と凹部3との隙間には油状物から成
る滑面物質11としてポリブテン(分子量約300)を
注入した。
The can lid 1a is formed with a liquid injection section 2 having the above-described gas vent structure according to the present invention.
Then, a sufficient amount of electrolyte was injected from the injection port 5 of the above, and then the metal ball 4 was loaded into the concave portion 3 of the injection section 2. This metal ball 4
Used stainless steel balls (diameter M = 3 mm). The concave portion 3 of the liquid injection section 2 has a depth H = about 2 mm and an inner diameter D1 = φ
The diameter of the injection port 5 was 4.5 mm, and the diameter D2 of the injection port 5 was 1.8 mm. In addition, polybutene (molecular weight: about 300) was injected into the gap between the metal sphere 4 and the recess 3 as a smooth surface substance 11 composed of an oily substance.

【0031】次に、初充電を行った。この初充電は、7
0mAで、4.1Vまで行った。初充電の開始から約3
時間はガス発生が続いたが、その後は発生しなかった。
Next, initial charging was performed. This first charge is 7
It went to 4.1V at 0 mA. About 3 from the start of the first charge
Gas generation continued for a period of time, but did not occur thereafter.

【0032】爾後、抵抗溶接機を用いて、注液部2を封
口した。これは、図5に示すように、電池缶1を抵抗溶
接の相手側電極13上に置き、抵抗溶接機の電極14を
注液部2の金属球4に押し当て、金属球4と電池缶1と
の間で抵抗溶接することにより封口した。
Thereafter, the liquid injection section 2 was sealed with a resistance welding machine. As shown in FIG. 5, the battery can 1 is placed on the mating electrode 13 of resistance welding, and the electrode 14 of the resistance welding machine is pressed against the metal ball 4 of the liquid injection section 2 so that the metal ball 4 and the battery can 1 was sealed by resistance welding.

【0033】一方、同じ規格の扁平角形電池について、
注液部を塞いで電池缶1を密閉状態にしてから初充電を
行ったリチウムイオン二次電池と、注液部を開放状態に
してガス抜きをしながら初充電を行った後にその注液部
を塞いで密封したリチウムイオン電池とを比較例として
試作した。開放状態でガス抜きをしたものについては、
電解液成分を良く拭き取って、スポット溶接を行った。
なお、初充電は同じく70mAで、4.1Vまで行っ
た。
On the other hand, for a flat rectangular battery of the same standard,
A lithium-ion secondary battery that was initially charged after the battery can 1 was sealed after the liquid injection part was closed, and after the initial charge was performed with the liquid injection part opened and degassing performed, As a comparative example, a prototype was made with a lithium-ion battery sealed by closing. For gas vented in the open state,
The electrolyte components were wiped off well and spot welding was performed.
The initial charge was also performed at 70 mA to 4.1 V.

【0034】そして、これら3種の角形電池に対し、更
にサイクル試験を行った。このサイクル試験の結果を図
6のグラフに示す。この図6中において、aは本発明に
係る角形電池の場合を、bは開放状態でガス抜きをした
角形電池の場合を、cは密閉状態でガス抜きをせずに初
充電した角形電池の場合をそれぞれ示す。
A cycle test was further performed on these three types of prismatic batteries. The results of this cycle test are shown in the graph of FIG. In FIG. 6, a represents the case of the prismatic battery according to the present invention, b represents the case of the prismatic battery degassed in the open state, and c represents the prismatic battery initially charged without degassing in the closed state. Each case is shown.

【0035】図6から明らかなように、本発明の角形電
池aにおける第1サイクルの容量を100としたとき、
開放状態でガス抜きをした角形電池bの容量は、それよ
り10%近く容量が低い。これは開放状態でガス抜きを
する結果、水分の侵入、電解液の組成変化があるためと
考えられる。また、密閉状態にしてガス抜きをしなかっ
た角形電池cの場合は、ガスが内部に溜まり約1mmの
膨らみが発生した。また、電極の接触の不安定さが原因
と考えられる充電サイクルでの容量変動があった。
As is clear from FIG. 6, when the capacity of the first cycle in the prismatic battery a of the present invention is 100,
The capacity of the prismatic battery b that has been vented in the open state is nearly 10% lower than that. This is considered to be due to the intrusion of moisture and a change in the composition of the electrolytic solution as a result of degassing in the open state. Further, in the case of the prismatic battery c which was not degassed in a sealed state, gas was accumulated inside and a swelling of about 1 mm occurred. In addition, there was a change in capacity during the charging cycle, which is considered to be caused by instability of electrode contact.

【0036】このように本発明の角形リチウム二次電池
は、効率よくガスを放出することができ、封口も、電解
液成分拭き取り工程が不要で電池特性も良好であった。
As described above, the prismatic lithium secondary battery of the present invention was able to release gas efficiently, and the battery characteristics were good because the sealing was not required and the electrolyte component wiping step was unnecessary.

【0037】[0037]

【発明の効果】以上に詳しく説明したように、本発明に
かかるリチウム二次電池における初充電時のガス抜き方
法及びそのガス抜き構造よれば、次のような優れた効果
が得られる。
As described in detail above, the following excellent effects can be obtained according to the degassing method and the degassing structure at the time of the initial charge in the lithium secondary battery according to the present invention.

【0038】(1)初充電前にあっては凹部内の金属球
と油状物質とで注液口を密封し、初充電中にガスが発生
し内圧が高くなった場合に、ガスで金属球を押し上げて
浮上させ、油状物質間を通じてガスを放出させ、内圧が
下がると金属球の自重で注液口を自動的に塞ぐという逆
止弁として機能を、金属球及び油状物質に行わせること
ができ、よって従来のように相対湿度1〜2%という乾
燥した特別の乾燥室を用意する必要はなく、通常の空気
調和機を利用した作業室で初充電を容易に行うことがで
きるようになり、充電中の湿度管理が極めて容易とな
る。
(1) Before the first charge, the injection port is sealed with a metal sphere in the concave portion and an oily substance. If gas is generated during the initial charge and the internal pressure becomes high, the metal sphere is used with the gas. The gas sphere and the oily substance can function as a check valve that automatically lifts up and releases gas through the space between the oily substances, releases gas through the space between the oily substances, and automatically closes the injection port with the weight of the metal sphere when the internal pressure drops. Therefore, it is not necessary to prepare a special drying room with a relative humidity of 1 to 2% unlike the conventional case, and the initial charging can be easily performed in a work room using a normal air conditioner. This makes it extremely easy to control humidity during charging.

【0039】(2)金属球の表面や当該金属球と注液口
との隙間内には、油状物質により皮膜が形成されるた
め、初充電時のガス発生に伴い電池缶内の注液口に向け
て電解液成分の飛沫が飛来してきても、この飛沫は油状
物質の皮膜に付着して落下し、電池缶内に回収されるの
で、従来のように、初充電終了後に封口部に乾燥した電
解液成分が白い粉状に残ることはなく、封口部に付着し
た電解液成分を拭き取る工程を必要としない。従って、
封口部の信頼性が向上する。
(2) Since a film is formed of an oily substance on the surface of the metal sphere or in the gap between the metal sphere and the liquid injection port, the liquid injection port in the battery can is caused by gas generation at the time of the first charge. Even if the droplets of the electrolyte component come in, the droplets adhere to the film of the oily substance, fall down, and are collected in the battery can. The electrolyte component does not remain in the form of white powder, and a step of wiping the electrolyte component attached to the sealing portion is not required. Therefore,
The reliability of the sealing portion is improved.

【0040】(3)初充電を行った後に、金属球を電池
缶に抵抗溶接で固着して注液口を封口するようにすれ
ば、金属球を初充電中に逆止弁として機能させるだけで
なく、溶接電極の接触子としての作用をおこなわせるこ
とができ、製造工程の簡易化を図れる。
(3) If the metal ball is fixed to the battery can by resistance welding after the initial charge and the injection port is sealed, the metal ball only functions as a check valve during the initial charge. Instead, it can function as a contact of the welding electrode, and the manufacturing process can be simplified.

【0041】(4)前記凹部は円形に窪む鍋底状に形成
し、その底壁の中央に同心的に前記注液口を設け、かつ
該注液口周縁の内周部側底壁は下方に向かって湾曲させ
てカール加工し、該凹部の周壁の内径寸法は前記金属球
の直径の2倍未満に設定するとともに、該注液口周縁の
内周部側底壁の下方への湾曲開始点から該凹部の周壁面
までの距離は該金属球の半径以下に設定すれば、缶内圧
力により金属球が凹部内の最外周寄りに浮上移動され
て、周壁面に接触されている状態にあっても、当該金属
球の中心(重心)は注液口に臨んでその上方に常に位置
するので、缶内のガスが放出されてその圧力が低下すれ
ば、自動的に自重で注液口向けて落ち込んでこれを閉塞
させるようになし得、また鍋底状の底部で油状物を滞留
保持させておくことができる。
(4) The recess is formed in the shape of a circular pot bottom, and the liquid inlet is provided concentrically at the center of the bottom wall, and the inner peripheral side bottom wall of the liquid inlet peripheral edge is downward. And the inside diameter of the peripheral wall of the concave portion is set to be less than twice the diameter of the metal sphere, and the inner peripheral side bottom wall of the peripheral edge of the liquid inlet starts bending downward. If the distance from the point to the peripheral wall surface of the concave portion is set to be equal to or less than the radius of the metal sphere, the metal sphere is floated and moved to the outermost periphery in the concave portion by the pressure in the can, and is brought into contact with the peripheral wall surface. Even so, the center (center of gravity) of the metal ball faces the injection port and is always located above the injection port. Therefore, when the gas in the can is released and the pressure is reduced, the injection port is automatically adjusted by its own weight. Can be depressed so as to block it, and keep the oil stagnant at the bottom of the pot It can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る初充電時のガス抜き方法を採用す
るためのガス抜き構造が備えられたリチウム二次電池の
組立状態を示した斜視図である。
FIG. 1 is a perspective view showing an assembled state of a lithium secondary battery provided with a degassing structure for adopting a degassing method at the time of initial charging according to the present invention.

【図2】図1のリチウム二次電池に形成される注液部の
構成を示した断面図である。
FIG. 2 is a cross-sectional view showing a configuration of a liquid injection section formed in the lithium secondary battery of FIG.

【図3】図1のリチウム二次電池に形成される注液部の
構成を示した平面図である。
FIG. 3 is a plan view showing a configuration of a liquid injection section formed in the lithium secondary battery of FIG.

【図4】上記注液部における金属球の作用を示したもの
で、(a)は金属球が閉塞状態にあるときの図、(b)
は金属球との間からガスが抜ける状態を示した図であ
る。
FIGS. 4A and 4B show the action of a metal ball in the liquid injection section, where FIG. 4A is a view when the metal ball is in a closed state, and FIG.
FIG. 4 is a view showing a state in which gas escapes from between the metal ball and the metal ball.

【図5】図1のリチウム二次電池を製造する際の金属球
の抵抗溶接の仕方を示した図である。
FIG. 5 is a view showing a method of resistance welding of metal spheres when manufacturing the lithium secondary battery of FIG. 1;

【図6】本発明による初充電時のガス抜き方法を採用し
て製造されたリチウム二次電池の充電サイクル特性と、
従来のガス抜き方法で製造した電池の充電サイクル特性
とを比較して示したグラフである。
FIG. 6 is a graph showing charge cycle characteristics of a lithium secondary battery manufactured by employing the method of degassing during initial charging according to the present invention;
5 is a graph showing a comparison between the charge cycle characteristics of a battery manufactured by a conventional degassing method.

【符号の説明】[Explanation of symbols]

1 電池缶 2 注液部 3 凹部 3a 底壁 3b 周壁 4 金属球 5 注液口 6 底壁の内周部 7 湾曲開始点 8 金属球の中心 11 滑面物質 12 巻回体 13 相手側電極 13 抵抗溶接機の電極 17 正極端子 D1 凹部の内径 D2 注液口の直径 H 凹部の深さ M 金属球の直径 W 湾曲開始点から凹部の周壁までの幅(距離) DESCRIPTION OF SYMBOLS 1 Battery can 2 Injection part 3 Concave part 3a Bottom wall 3b Perimeter wall 4 Metal ball 5 Injection port 6 Inner peripheral part of bottom wall 7 Curve start point 8 Center of metal sphere 11 Smooth substance 12 Winding body 13 Counter electrode 13 Electrode of resistance welding machine 17 Positive electrode terminal D1 Inner diameter of concave part D2 Diameter of injection port H Depth of concave part M Diameter of metal sphere W Width (distance) from starting point of bending to peripheral wall of concave part

フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内Continued on the front page (72) Inventor Yoshiro Harada 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム二次電池の電池缶に缶内部に向
けて窪ませられて形成された凹部内の最下端部に設けら
れた注液口から電解液を注入した後、該凹部内に、自重
で該注液口に落ち込んで該注液口を塞ぐ金属球を装填す
るとともに、該注液口の周囲と該金属球との隙間に電解
液に対して不溶解性の油状物を注入し、この状態で初充
電を行い、該充電時に缶内部に発生するガスの圧力で該
金属球を浮上させて該ガスを排出することを特徴とする
リチウム二次電池における初充電時のガス抜き方法。
An electrolyte is injected into a battery can of a lithium secondary battery from a liquid inlet provided at a lowermost end of a recess formed by being recessed toward the inside of the can, and then into the recess. A metal ball which drops into the liquid inlet by its own weight and closes the liquid inlet is loaded, and an insoluble oily substance with respect to the electrolyte is injected into a gap between the liquid inlet and the metal ball. In this state, the first charge is performed, and the metal sphere is floated by the pressure of the gas generated inside the can at the time of the charge to discharge the gas and discharge the gas at the time of the first charge in the lithium secondary battery. Method.
【請求項2】 リチウム二次電池の電池缶に設ける電解
液の注液口を、缶内部向けて窪む凹部の最下端部に円形
に形成し、該凹部内には、自重により該注液口に落ち込
んでこれを塞ぐとともに初充電時に缶内部に発生するガ
ス圧で浮上して該注液口を開放する金属球を装填し、該
注液口の周囲と該金属球との隙間には電解液に対して不
溶解性の油状物を注入したことを特徴とするリチウム二
次電池のガス抜き構造。
2. A liquid inlet for an electrolytic solution provided in a battery can of a lithium secondary battery is formed in a circular shape at the lowermost end of a concave portion recessed toward the inside of the can, and the liquid is injected into the concave by its own weight. A metal sphere that drops into the mouth and closes it and floats with the gas pressure generated inside the can at the time of the first charge to open the injection port is loaded, and a gap between the circumference of the injection port and the metal ball is A degassing structure for a lithium secondary battery, wherein an oily substance insoluble in an electrolyte is injected.
【請求項3】 前記初充電の終了後に、該注液口を塞い
だ該金属球を抵抗溶接によって固着して封口することを
特徴とする請求項1記載のリチウム二次電池における初
充電時のガス抜き方法。
3. The lithium secondary battery according to claim 1, wherein, after the completion of the initial charge, the metal ball that has closed the liquid inlet is fixed by resistance welding and sealed. Degassing method.
【請求項4】 前記凹部が円形に窪んで鍋底状に形成さ
れ、その底壁の中央に同心的に前記注液口が設けられ、
かつ該注液口周縁の内周部側底壁は下方に向かって湾曲
されてカール加工され、該凹部の周壁の内径寸法は前記
金属球の直径の2倍未満に設定されるとともに、該注液
口周縁の内周部側底壁の下方への湾曲開始点から該凹部
の周壁面までの距離は該金属球の半径以下に設定されて
いることを特徴とする請求項2記載のリチウム二次電池
における初充電時のガス抜き構造。
4. The recess is formed in a pot bottom shape with a circular recess, and the liquid inlet is provided concentrically at the center of the bottom wall.
The inner peripheral bottom wall of the liquid inlet peripheral edge is curved downward and curled, and the inner diameter of the peripheral wall of the concave portion is set to be less than twice the diameter of the metal ball, and 3. The lithium secondary battery according to claim 2, wherein a distance from a starting point of downward bending of the inner peripheral side bottom wall of the liquid port peripheral edge to a peripheral wall surface of the concave portion is set to be equal to or less than a radius of the metal sphere. Outgassing structure at the time of the first charge in the secondary battery.
JP25324597A 1997-09-18 1997-09-18 Degassing method for the first charge of lithium secondary battery Expired - Fee Related JP3174289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25324597A JP3174289B2 (en) 1997-09-18 1997-09-18 Degassing method for the first charge of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25324597A JP3174289B2 (en) 1997-09-18 1997-09-18 Degassing method for the first charge of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH1196987A true JPH1196987A (en) 1999-04-09
JP3174289B2 JP3174289B2 (en) 2001-06-11

Family

ID=17248589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25324597A Expired - Fee Related JP3174289B2 (en) 1997-09-18 1997-09-18 Degassing method for the first charge of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3174289B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094068A (en) * 2007-10-09 2009-04-30 Samsung Sdi Co Ltd Lithium secondary battery
US7662511B2 (en) 2003-05-21 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery having an enlarged electrolytic solution inlet
US9147865B2 (en) 2012-09-06 2015-09-29 Johnson Controls Technology Llc System and method for closing a battery fill hole
US9812686B2 (en) 2010-06-30 2017-11-07 Gs Yuasa International Ltd. Manufacturing method of secondary battery, secondary battery, and assembled battery
KR102321906B1 (en) * 2021-03-25 2021-11-04 주식회사 유로셀 Cylindrical seconcary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662511B2 (en) 2003-05-21 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery having an enlarged electrolytic solution inlet
JP2009094068A (en) * 2007-10-09 2009-04-30 Samsung Sdi Co Ltd Lithium secondary battery
US9812686B2 (en) 2010-06-30 2017-11-07 Gs Yuasa International Ltd. Manufacturing method of secondary battery, secondary battery, and assembled battery
US9147865B2 (en) 2012-09-06 2015-09-29 Johnson Controls Technology Llc System and method for closing a battery fill hole
KR102321906B1 (en) * 2021-03-25 2021-11-04 주식회사 유로셀 Cylindrical seconcary battery

Also Published As

Publication number Publication date
JP3174289B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
EP1246274B1 (en) Battery and method of its manufacture
US7087345B2 (en) Spirally-rolled electrodes with separator and the batteries therewith
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
CA2342123A1 (en) Lithium secondary battery and manufacturing method thereof
KR101264425B1 (en) Cap assembly and rechargeable battery using the same
JP3584656B2 (en) Method of manufacturing sealing plate for prismatic nonaqueous electrolyte battery
EP2328198B1 (en) Battery can and alkaline battery
JP2006080066A (en) Lithium-ion secondary battery
JP3174289B2 (en) Degassing method for the first charge of lithium secondary battery
JP2000182573A (en) Secondary battery
JP2007073212A (en) Lithium-ion secondary battery
JP4110924B2 (en) Square lithium ion secondary battery
JP2001176455A (en) Cylindrical secondary battery
JP3302200B2 (en) Sealed rectangular non-aqueous electrolyte battery
JP2004303739A (en) Rectangular non-aqueous electrolyte battery
JP2001307686A (en) Battery can, its manufacturing method and battery
KR101264461B1 (en) Cap assembly and rechargeable battery using this same and assembly method of cap assembly
JP3744788B2 (en) Sealed battery and manufacturing method thereof
JP3399801B2 (en) Organic electrolyte secondary battery
JPH10214604A (en) Battery and nickel hydrogen secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP3670357B2 (en) Cylindrical battery
JP4035710B2 (en) Flat battery
JP2003109554A (en) Enclosed battery
JP3594752B2 (en) Air zinc button type battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees