JPH1195208A - Liquid crystal display device and film for visual field angle compensation used for the same - Google Patents

Liquid crystal display device and film for visual field angle compensation used for the same

Info

Publication number
JPH1195208A
JPH1195208A JP9259780A JP25978097A JPH1195208A JP H1195208 A JPH1195208 A JP H1195208A JP 9259780 A JP9259780 A JP 9259780A JP 25978097 A JP25978097 A JP 25978097A JP H1195208 A JPH1195208 A JP H1195208A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
value
retardation
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259780A
Other languages
Japanese (ja)
Other versions
JP3470567B2 (en
Inventor
Koji Azuma
浩二 東
Akiko Shimizu
朗子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17338882&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1195208(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP25978097A priority Critical patent/JP3470567B2/en
Publication of JPH1195208A publication Critical patent/JPH1195208A/en
Application granted granted Critical
Publication of JP3470567B2 publication Critical patent/JP3470567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain a TFT-VAN-LCD having an excellent visual field angle characteristic by paralleling or orthogonally intersecting the delay phase axis within the film plane of specific phase difference films with the absorption axis of adjacent polarizing films. SOLUTION: The phase difference film for visual field angle compensation comprising one or two sheets of the phase difference films is disposed between a liquid crystal cell and at least one the polarizing films. The retardation (R) value within the film plane expressed by the equation I; R=(nx -ny )×d of the phase difference film of this liquid crystal display device exceeds 0 nm and below 100 nm and the retardation (R') value of the film thickness direction expressed by equation II; R'=[(nx +ny )/2-nz ]×d is >=100 nm and the delay phase axis within the film parallels or intersects orthogonally with the absorption axis of the adjacent polarizing films. In the equations I, II, nx is the refractive index in the delay phase axis direction within the film plane, ny is the refractive index in the direction perpendicular to the delay phase axis direction within the film plane, nz is the refractive index in the thickness direction of the film, and d is the thickness of the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置に関
するものであり、中でも視野角特性の優れた垂直配向ネ
マチック型液晶表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display, and more particularly to a vertically aligned nematic liquid crystal display having excellent viewing angle characteristics.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】液晶
表示装置(以下、「LCD」と称する。)は、時計、電
卓に用いられる小型のものから大表示容量を必要とする
ラップトップ型ワープロ、パソコン等に用いられるもの
まで、平面表示装置として広く用いられるようになっ
た。この様なLCDの中でも、高い表示品位が必要な用
途については、正の誘電率異方性を有するネマチック液
晶分子を用い、薄膜トタンジスタにより駆動する90度
ねじれネマチック型液晶表示装置(以下、「TFT−T
N−LCD」と称する。)が主に用いられている。しか
しながら、TFT−TN−LCDは正面から見た場合に
は優れた表示特性を有するものの、斜め方向から見た場
合にコントラストが低下したり、階調表示で明るさが逆
転する階調反転等が起こることにより表示特性が悪くな
るという視野角特性を有しており、この改良が強く要望
されている。
2. Description of the Related Art Liquid crystal display devices (hereinafter, referred to as "LCD") are used in watches and calculators, and are used in laptop word processors that require a large display capacity. Even those used in personal computers and the like have come to be widely used as flat display devices. Among such LCDs, for applications requiring high display quality, a nematic liquid crystal molecule having a positive dielectric anisotropy is used, and a 90-degree twisted nematic liquid crystal display device (hereinafter, referred to as “TFT”) driven by a thin film transistor is used. -T
N-LCD ". ) Is mainly used. However, although the TFT-TN-LCD has excellent display characteristics when viewed from the front, contrast decreases when viewed from an oblique direction, and grayscale inversion where brightness is reversed in grayscale display. It has a viewing angle characteristic that the display characteristic deteriorates when it occurs, and this improvement is strongly demanded.

【0003】近年この視野角特性を改良するLCDの方
式として、負の誘電率異方性を有するネマチック液晶分
子を用い、電圧を印加しない状態で液晶分子の長軸を基
板に略垂直な方向に配向させ、これを薄膜トランジスタ
により駆動する垂直配向ネマチック型液晶表示装置(以
下、「TFT−VAN−LCD」と称する。)が提案さ
れている(特開平2−176625号公報)。このTF
T−VAN−LCDは、正面から見た場合の表示特性が
TFT−TN−LCDと同様に優れているのみならず、
視野角補償用位相差フィルムを適用することで広い視野
角特性を発現する。TFT−VAN−LCDは、SID
97 DIGEST 845頁〜848頁に記載され
ている様に、フィルム面に垂直な方向に光学軸を有する
負の一軸性位相差フィルムを2枚液晶セルの上下に用い
ることでより広い視野角特性を得ることができ、このL
CDに更に面内のレターデーション値が50nmである
正の屈折率異方性を有する一軸配向性位相差フィルムを
用いることで更により広い視野角を特性を実現できるこ
とも知られている。
In recent years, as a method of LCD for improving the viewing angle characteristics, a nematic liquid crystal molecule having a negative dielectric anisotropy is used, and the major axis of the liquid crystal molecule is set in a direction substantially perpendicular to the substrate without applying a voltage. A vertically aligned nematic liquid crystal display device (hereinafter, referred to as "TFT-VAN-LCD") in which alignment is performed and driven by a thin film transistor has been proposed (JP-A-2-176625). This TF
The T-VAN-LCD has not only excellent display characteristics when viewed from the front as well as the TFT-TN-LCD,
A wide viewing angle characteristic is exhibited by applying the viewing angle compensating retardation film. TFT-VAN-LCD has SID
97 DIGEST, pages 845 to 848, a wider viewing angle characteristic can be obtained by using two negative uniaxial retardation films having an optical axis in a direction perpendicular to the film surface above and below the liquid crystal cell. You can get this L
It is also known that a wider viewing angle can be achieved by using a uniaxially oriented retardation film having a positive refractive index anisotropy with a 50 nm in-plane retardation value for a CD.

【0004】しかしながら、SID 97 DIGES
T 845頁〜848頁に記載されているように3枚の
位相差フィルムを用いることは生産コストの上昇を伴う
だけでなく、多数のフィルムを張り合わせるために歩留
まりの低下を引き起こすなどの問題がある。
However, SID 97 DIGES
Use of three retardation films as described on pages 845 to 848 does not only increase the production cost but also causes a problem such as lowering the yield due to laminating a large number of films. is there.

【0005】本発明者らは、上記問題を解決するために
鋭意検討した結果、1枚または2枚の位相差フィルムか
らなり必要な光学特性を満足する視野角補償用位相差フ
ィルムを用いることで視野角特性に優れるTFT−VA
N−LCDを得ることができること、およびこれらの視
野角補償用位相差フィルムの特性を見い出し、本発明を
完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have been able to use a viewing angle compensating retardation film comprising one or two retardation films and satisfying required optical characteristics. TFT-VA with excellent viewing angle characteristics
The present inventors have found that an N-LCD can be obtained and the characteristics of these viewing angle compensating retardation films, and have completed the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、透
明基板上に透明電極が形成され、該透明電極上に垂直配
向膜が設けられた一対の透明基板が、該透明電極が向か
い合うように一定の距離をおいて配置され、この間隙に
負の誘電率異方性を有するネマチック液晶が挟持されて
おり、電圧を印加しない状態で液晶分子長軸が透明基板
に略垂直な方向に配向した構造を有する液晶セルと、該
液晶セルの上下に相互の吸収軸が直交するように配置さ
れた一対の偏光フィルムと、該液晶セルと該偏光フィル
ムとの少なくとも一方の間に1枚または2枚の位相差フ
ィルムから構成される視野角補償用位相差フィルムが配
置されてなる垂直配向ネマチック型液晶表示装置であっ
て、視野角補償用位相差フィルムが、式(1)で示され
るフィルム面内のレターデーション(R)値が0nmを
越え100nm以下であり、かつ式(2)で示されるフ
ィルム厚み方向のレターデーション(R’)値が100
nm以上である位相差フィルムであって、フィルム面内
の遅相軸が隣接する偏光フィルムの吸収軸に対して平行
または直交していることを特徴とする液晶表示装置を提
供するものである。 R =(nX−nY)×d (1) R’=[(nX+nY)/2−nZ]×d (2) nX:フィルム面内の遅相軸方向の屈折率 nY:フィルム面内でnXと垂直方向の屈折率 nZ:フィルムの厚み方向の屈折率 d :フィルムの厚み
That is, the present invention is directed to a pair of transparent substrates in which a transparent electrode is formed on a transparent substrate and a vertical alignment film is provided on the transparent electrode so that the transparent electrodes face each other. Nematic liquid crystal having negative dielectric anisotropy is sandwiched in this gap at a fixed distance, and the long axis of the liquid crystal molecule is oriented in a direction substantially perpendicular to the transparent substrate without applying voltage. A liquid crystal cell having a structure, a pair of polarizing films disposed above and below the liquid crystal cell so that their absorption axes are orthogonal to each other, and one or two sheets between at least one of the liquid crystal cell and the polarizing film. A vertically aligned nematic liquid crystal display device comprising a viewing angle compensating retardation film composed of the above retardation film, wherein the viewing angle compensating retardation film has an in-plane film represented by the formula (1): of Tha retardation (R) value is equal to or less than 100nm exceed 0 nm, and a film thickness direction retardation (R ') value of the formula (2) is 100
A liquid crystal display device comprising a retardation film having a thickness of at least nm and a slow axis in a film plane being parallel or orthogonal to an absorption axis of an adjacent polarizing film. R = (n X -n Y) × d (1) R '= [(n X + n Y) / 2-n Z] × d (2) n X: refractive index in a slow axis direction of the film plane n Y: the refractive index of the n X and the vertical direction within the film plane n Z: refractive index in the film thickness direction d: film thickness

【0007】本発明に用いられるTFT−VAN−LC
D用の液晶セルは、透明基板上に透明電極が形成され、
この透明電極上に垂直配向膜が設けられた一対の透明基
板が、透明電極が向かい合うように一定の距離をおいて
配置されており、この間隙に負の誘電率異方性を有する
ネマチック液晶が挟持され、電圧を印加しない状態で液
晶分子長軸が透明基板に略垂直な方向に配向した構造を
有するものである。
[0007] TFT-VAN-LC used in the present invention
In the liquid crystal cell for D, a transparent electrode is formed on a transparent substrate,
A pair of transparent substrates provided with a vertical alignment film on the transparent electrode are arranged at a fixed distance so that the transparent electrodes face each other, and a nematic liquid crystal having a negative dielectric anisotropy is provided in the gap. It has a structure in which the long axes of liquid crystal molecules are oriented in a direction substantially perpendicular to the transparent substrate in a state of being sandwiched and no voltage is applied.

【0008】液晶セルにおけるネマチック液晶の屈折率
異方性(以下、「ΔnLC」と称する。)とガラス基板間
の距離(以下、「dLC」と称する。)との積(ΔnLC
LC)は通常0.2μm〜0.4μm程度となるように
設定される。このような液晶セルとしては透明電極の一
方に各画素を駆動するための薄膜トランジスタからなる
駆動素子が形成された液晶セル(特開平2−17662
5号公報)の他、各画素の周囲に高分子からなる隔壁を
設けた構造(SID 96 DIGEST 630頁〜
633頁)に垂直配向したネマチック液晶を挟持した液
晶セル、駆動方法として囲い電極電界制御法〔第19回
液晶討論会予稿集308頁〜309頁(1993年)〕
やプラズマアドレス方式(日経マイクロデバイス199
5年8月号163頁〜166頁)を用いて垂直配向した
ネマチック液晶を駆動する方式の液晶セルなども例示さ
れる。
In the liquid crystal cell, the product of the refractive index anisotropy of the nematic liquid crystal (hereinafter, referred to as “Δn LC ”) and the distance between the glass substrates (hereinafter, referred to as “d LC ”) (Δn LC・).
d LC) is set to be usually about 0.2Myuemu~0.4Myuemu. As such a liquid crystal cell, a liquid crystal cell in which a driving element composed of a thin film transistor for driving each pixel is formed on one of the transparent electrodes (Japanese Patent Laid-Open No. 17662/1990).
No. 5), and a structure in which a partition made of a polymer is provided around each pixel (SID 96 DIgest 630 pages)
633), a liquid crystal cell sandwiching a vertically aligned nematic liquid crystal, and an electric field control method for an enclosure electrode as a driving method [Preprints of the 19th Liquid Crystal Symposium, pp. 308-309 (1993)]
Or plasma address method (Nikkei Microdevice 199
A liquid crystal cell of a type in which a vertically aligned nematic liquid crystal is driven using August, 5th, pp. 163 to 166 is also exemplified.

【0009】また、垂直配向膜は、電圧を印加した時に
液晶の複屈折により光が効率良く透過するように液晶が
傾いて配向するようにできるものでのあれば特に制限は
なく、ポリイミドからなる配向膜をラビング処理して電
圧印加時に液晶分子が一方向にそろって傾くようにした
ものや、ポリビニルシンナメイト等の光反応性高分子に
偏光紫外線を照射して電圧印加時に液晶分子が一方向に
そろって傾くかまたは複数の制御された方向に傾くよう
にしたものなどが例示される。このような液晶セルの上
下に一対の偏光フィルムが相互の吸収軸が直交するよう
に、かつ液晶セルに対して吸収軸方向が電圧印加時に光
が効率的に透過するような角度となるように配置されて
いる。例えば、配向膜が電圧印加時に液晶分子が一方向
にそろって傾くようにしたポリイミドをラビング処理し
たものの場合、偏光フィルムの吸収軸は液晶分子の傾斜
方向に対して通常45度となるように設定される。
The vertical alignment film is not particularly limited as long as the liquid crystal can be tilted and aligned so that light is efficiently transmitted by birefringence of the liquid crystal when a voltage is applied, and is made of polyimide. The alignment film is rubbed so that the liquid crystal molecules are aligned and tilted in one direction when a voltage is applied, or a photoreactive polymer such as polyvinyl cinnamate is irradiated with polarized ultraviolet rays so that the liquid crystal molecules are unidirectional when a voltage is applied. Or a plurality of controlled directions. A pair of polarizing films above and below such a liquid crystal cell are arranged such that their absorption axes are orthogonal to each other, and the direction of the absorption axis with respect to the liquid crystal cell is such that light is efficiently transmitted when voltage is applied. Are located. For example, when the alignment film is a rubbed polyimide film in which the liquid crystal molecules are inclined in one direction when a voltage is applied, the absorption axis of the polarizing film is set to be normally 45 degrees with respect to the inclination direction of the liquid crystal molecules. Is done.

【0010】さらに、液晶セルと偏光フィルムの間の少
なくとも一方には視野角補償用位相差フィルムが配置さ
れている。視野角補償用位相差フィルムのR値は0nm
を越え100nm以下であり、好ましくは30nm〜8
0nmである。また、R’値は100nm以上であり、
好ましくは用いる液晶セルのΔnLC・dLCと略同じ値で
あるが、実際のTFT−VAN−LCDでは液晶セルの
ΔnLC・dLCより約100nm小さい100nm〜30
0nmに設定することが好ましく、より好ましくは15
0nm〜250nmである。実際のTFT−VAN−L
CDでは、上下に配置される一対の偏光フィルムとして
最も一般的に用いられる偏光フィルムは、その保護膜で
あるトリアセチルセルロース(以下「TAC」と称す
る。)のフィルムが若干面内配向しており、TACフィ
ルム1枚でR’値として約50nm、液晶セルの上下に
2枚用いる偏光フィルムのR’値の合計として約100
nmに相当する特性を有しているためである。また、位
相差フィルムのR値とR’値とのバランスとしては、
R’/Rが2以上6以下であることが好ましい。かかる
位相差フィルムは、TFT−VAN−LCDの視覚特性
を特に有効に向上するものであって、TFT−VAN−
LCD用の視覚補償用フィルムとして最適であり、これ
を用いることによって、本発明のTFT−VAN−LC
Dは優れた視覚特性を有することが可能となる。
Further, a viewing angle compensating retardation film is disposed on at least one of the liquid crystal cell and the polarizing film. The R value of the viewing angle compensating retardation film is 0 nm.
Over 100 nm, preferably 30 nm to 8
0 nm. Further, the R ′ value is 100 nm or more,
Preferably, the value is approximately the same as the Δn LC · d LC of the liquid crystal cell used. However, in an actual TFT-VAN-LCD, 100 nm to 30 nm which is approximately 100 nm smaller than Δn LC · d LC of the liquid crystal cell
It is preferably set to 0 nm, more preferably 15 nm.
0 nm to 250 nm. Actual TFT-VAN-L
In a CD, the most commonly used polarizing film as a pair of polarizing films disposed above and below is a protective film of triacetyl cellulose (hereinafter referred to as "TAC"), which is slightly in-plane oriented. , A single TAC film has an R ′ value of about 50 nm, and a total of R ′ values of two polarizing films used above and below the liquid crystal cell is about 100 nm.
This is because it has characteristics equivalent to nm. The balance between the R value and the R ′ value of the retardation film is as follows:
R ′ / R is preferably 2 or more and 6 or less. Such a retardation film particularly effectively improves the visual characteristics of a TFT-VAN-LCD,
It is most suitable as a film for visual compensation for LCD, and by using this, the TFT-VAN-LC of the present invention can be used.
D can have excellent visual properties.

【0011】この様な視野角補償用位相差フィルムは、
例えば熱可塑性高分子からなるフィルムを一軸延伸等の
方法により二軸配向させることで得ることができる。二
軸配向性を得るための原反フィルムは、熱可塑性高分子
を適当な溶剤に溶解し、この溶液をステンレス製のベル
ト、ドラムまたは離型PET上に流延して、乾燥後ベル
ト、ドラムまたは離型PETから剥離する溶剤キャスト
法により製膜することが、均一性に優れたフィルムを得
ることができるため好ましい。
Such a viewing angle compensating retardation film is
For example, it can be obtained by biaxially orienting a film made of a thermoplastic polymer by a method such as uniaxial stretching. The raw film for obtaining biaxial orientation is obtained by dissolving a thermoplastic polymer in an appropriate solvent, casting this solution on a stainless steel belt, drum or release PET, and drying the belt or drum. Alternatively, it is preferable to form a film by a solvent casting method in which the film is separated from the release PET because a film having excellent uniformity can be obtained.

【0012】用いる高分子としては、均一な二軸配向が
達成でき、正の屈折率異方性を有する高分子であれば特
に制限はないが、本発明で規定するR’値が得やすい点
からポリカーボネート系高分子、ポリアリレート系高分
子、ポリエステル系高分子、ポリサルフォン等の芳香族
系高分子が例示される。これらの芳香族系高分子は屈折
率異方性が発現しやすいため、溶剤キャスト法での製膜
時に高分子鎖がフィルム面に平行にかつフィルム面内で
はランダムに配向する面配向性により、Rが概ね0nm
であるのに対して容易にR’を100nm以上とするこ
とができる。
The polymer to be used is not particularly limited as long as it can achieve uniform biaxial orientation and has a positive refractive index anisotropy, but it is easy to obtain the R ′ value specified in the present invention. And aromatic polymers such as polycarbonate polymers, polyarylate polymers, polyester polymers, and polysulfone. Because these aromatic polymers easily develop refractive index anisotropy, the polymer chains are oriented parallel to the film surface and randomly oriented within the film surface during film formation by the solvent casting method, R is approximately 0 nm
In contrast, R ′ can be easily set to 100 nm or more.

【0013】このような溶剤キャストフィルムを一軸延
伸して面配向性を打ち消して一軸配向性とした場合には
R’が概ねR/2となり目的とする光学特性を得ること
ができない。R’が100nm以上を保ったまま延伸し
て特定のR値を得るには、この面配向性を保持したまま
一軸延伸して二軸配向性とすることが必要である。一軸
延伸して二軸配向性を得る方法としてはテンターを用い
た横延伸法が知られているが、これらの高分子は延伸に
よりR値が発現しやすいため、テンター横延伸法でRを
100nm以下とするには、均一性を得る最適な条件よ
りも低倍率での延伸や高温での延伸が必要となる。しか
し、このような延伸条件においてはR値およびR’値の
均一性やフィルム面内の遅相軸の方向の均一性を確保す
ることが難しい。このため、溶剤キャスト法における製
膜時にベルト、ドラムまたは離型PETから剥離する時
に若干の応力を加えてフィルム流れ方向に一軸延伸する
方法が好ましく用いられる。
When such a solvent cast film is uniaxially stretched to cancel the plane orientation to make it uniaxial, R ′ becomes approximately R / 2, and the desired optical characteristics cannot be obtained. In order to obtain a specific R value by stretching while maintaining R ′ at 100 nm or more, it is necessary to uniaxially stretch while maintaining this plane orientation to obtain biaxial orientation. As a method of obtaining biaxial orientation by uniaxial stretching, a transverse stretching method using a tenter is known. However, since these polymers easily develop an R value by stretching, R is set to 100 nm by a tenter transverse stretching method. In order to achieve the following, stretching at a lower magnification or stretching at a higher temperature than the optimal conditions for obtaining uniformity is required. However, under such stretching conditions, it is difficult to ensure the uniformity of the R value and R 'value and the uniformity in the direction of the slow axis in the film plane. For this reason, a method of uniaxially stretching in the film flow direction by applying a slight stress when peeling from the belt, drum or release PET during film formation in the solvent casting method is preferably used.

【0014】ポリカーボネート系高分子、ポリアリレー
ト系高分子、ポリエステル系高分子、ポリサルフォン等
の芳香族系高分子は屈折率異方性が発現しやすいために
上記のように好ましい点もあるが、一方で光弾性係数が
大きいために応力に対するレターデーション値の変化が
大きく、粘着剤を用いて液晶セルと偏光フィルムの間に
貼合配置された状態で高温に曝された場合に熱のために
発生する応力によりレターデーション値がズレたり、透
過型液晶表示装置の場合にはバックライトの熱のために
発生する応力のムラによりレターデーション値のムラが
発生したりして、コントラストの低下や表示のムラを引
き起こすこともある。
Aromatic polymers such as polycarbonate polymers, polyarylate polymers, polyester polymers, and polysulfone are preferable as described above because they easily exhibit refractive index anisotropy. Large change in retardation value due to stress due to large photoelastic coefficient, caused by heat when exposed to high temperature in the state of being stuck between liquid crystal cell and polarizing film using adhesive In the case of a transmissive liquid crystal display device, the retardation value is deviated due to the unevenness of the stress generated due to the heat of the backlight. It may cause unevenness.

【0015】このような応力がかかる使用条件下で用い
られる場合には、レターデーション値の均一性の低下が
発生しないように、光弾性係数の絶対値が小さな高分子
を用いることもできる。具体的には光弾性係数の絶対値
が10×10-13cm2/dyne以下である高分子が好
ましい。なお、ビスフェノールAからのポリカーボネー
トは光弾性係数の絶対値が約100×10-13cm2/d
yneである。このような光弾性係数の絶対値が小さな
高分子としては、例えばアクリル系の高分子や環状オレ
フィン系の高分子などが挙げられるが、正の屈折異方性
を有し、かつ耐熱性に優れる環状オレフィン系高分子が
好ましく用いられる。環状オレフィン系高分子として
は、ノルボルネン系高分子が耐熱性に優れるため好まし
く用いられる。
When used under such use conditions in which such a stress is applied, a polymer having a small absolute value of the photoelastic coefficient can be used so that the uniformity of the retardation value does not decrease. Specifically, a polymer having an absolute value of the photoelastic coefficient of 10 × 10 −13 cm 2 / dyne or less is preferable. Incidentally, the polycarbonate from bisphenol A has an absolute value of the photoelastic coefficient of about 100 × 10 −13 cm 2 / d.
yne. Such a polymer having a small absolute value of the photoelastic coefficient includes, for example, an acrylic polymer and a cyclic olefin polymer, and has a positive refractive anisotropy and is excellent in heat resistance. A cyclic olefin polymer is preferably used. As the cyclic olefin polymer, a norbornene polymer is preferably used because of its excellent heat resistance.

【0016】ノルボルネン系高分子の例としては一般式
(I) (式中、aは0または正の整数を示し、bおよびcはそ
れぞれ正の整数を示し、R1、R2、R3、R4はそれぞれ
独立に水素原子、炭化水素残基、フェニル基または極性
基を示す。)で示される構成単位を有する高分子を挙げ
ることができる。ここで、極性基としてはニトリル基な
どが例示される。
Examples of the norbornene-based polymer are represented by the general formula (I) (In the formula, a represents 0 or a positive integer, b and c each represent a positive integer, and R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a hydrocarbon residue, or a phenyl group. Or a polar group.). Here, a nitrile group etc. are illustrated as a polar group.

【0017】ノルボルネン系高分子を位相差フィルムに
適用することは、特開平6−59121号公報に記載さ
れている。特開平6−59121号公報では超ねじれネ
マチック液晶表示装置用の位相差フィルムに適した高分
子構造を開示しているが、aが大きくなると負の屈折率
異方性を発現するようになる。このため、TFT−VA
N−LCD用の視野角改良用位相差フィルムに用いる高
分子としては、正の屈折率異方性を発現するように、一
般式(I)におけるaが0または1であることが好まし
い。
Application of a norbornene-based polymer to a retardation film is described in JP-A-6-59121. Japanese Patent Application Laid-Open No. 6-59121 discloses a polymer structure suitable for a retardation film for a super-twisted nematic liquid crystal display device. However, when a is increased, a negative refractive index anisotropy is developed. Therefore, the TFT-VA
As the polymer used for the viewing angle improving retardation film for N-LCD, it is preferable that a in the general formula (I) is 0 or 1 so as to exhibit a positive refractive index anisotropy.

【0018】また、環状オレフィン系の高分子は、屈折
率異方性の発現性が芳香族系の高分子よりも小さいた
め、本発明で規定するR値が0nmを越え100nm以
下であり、かつR’値が100nm以上である位相差フ
ィルムを溶剤キャスト法による製膜時の一軸延伸で得る
ことが難しいこともある。この場合には溶剤キャスト法
により製膜したフィルムをテンター横延伸法などにより
一軸延伸することで目的の位相差フィルムを得ることが
できる。環状オレフィン系高分子の場合は、芳香族系高
分子と異なりR値が発現しにくいため、延伸倍率を小さ
くしたり延伸温度を高くしたりせずに均一な光学特性を
確保できる条件で延伸することができる。
Further, since the cyclic olefin-based polymer has smaller refractive index anisotropy than the aromatic polymer, the R value defined in the present invention is more than 0 nm and 100 nm or less; It may be difficult to obtain a retardation film having an R ′ value of 100 nm or more by uniaxial stretching during film formation by a solvent casting method. In this case, the target retardation film can be obtained by uniaxially stretching the film formed by the solvent casting method by a tenter transverse stretching method or the like. In the case of the cyclic olefin polymer, unlike the aromatic polymer, the R value is hardly developed, and therefore, the film is stretched under conditions that can ensure uniform optical characteristics without reducing the stretching ratio or increasing the stretching temperature. be able to.

【0019】しかしながら、テンター横一軸延伸法にお
いて均一な光学特性を得る条件範囲ではR’値が小さ
く、R値が0nmを越え100nm以下であり、R’値
が100nm以上であり、かつR’/Rが2〜6である
位相差フィルムを得ることができない場合もある。この
ようにR’値が小さく二軸配向性が不十分な場合、ある
いは通常の一軸配向性の位相差フィルムを用いる場合に
は、R値をほとんど変化させずにR’値を増加させて必
要な特性範囲とするために、R値が10nm以下であり
R’が特定の値である光学軸が略フィルム法線方向にあ
る負の一軸性位相差フィルム1枚を、遅相軸が平行かま
たは直交するように積層する。これにより、積層した状
態でR値が0nmを越え100nm以下であり、R’値
が100nm以上であり、かつR’/Rが2〜6である
光学特性を実現することもできる。ここで積層した状態
でのR値は、2枚のフィルムの遅相軸が平行の場合には
それぞれのR値の和となり、遅相軸が直交の場合にはそ
れぞれのR値の差となる。また、R’値は平行、直交い
ずれの場合にもそれぞれのR’値の和である。
However, in the range of conditions for obtaining uniform optical properties in the tenter transverse uniaxial stretching method, the R ′ value is small, the R value is more than 0 nm and 100 nm or less, the R ′ value is 100 nm or more, and R ′ / In some cases, a retardation film having R of 2 to 6 cannot be obtained. When the R ′ value is small and the biaxial orientation is insufficient, or when a normal uniaxially oriented retardation film is used, it is necessary to increase the R ′ value without substantially changing the R value. In order to obtain a characteristic range, one negative uniaxial retardation film having an R value of 10 nm or less and an optical axis having a specific value of R ′ substantially in the normal direction of the film, and having a slow axis parallel to the film. Alternatively, they are laminated so as to be orthogonal. This makes it possible to realize optical characteristics in which the R value is more than 0 nm and not more than 100 nm, the R ′ value is not less than 100 nm, and R ′ / R is 2 to 6 in the stacked state. Here, the R value in the laminated state is the sum of the respective R values when the slow axes of the two films are parallel, and is the difference between the respective R values when the slow axes are orthogonal. . The R 'value is the sum of the respective R' values in both the parallel and orthogonal cases.

【0020】R値が10nm以下でありかつR’値が1
00nm以上である光学軸が略フィルム法線方向にある
負の一軸性位相差フィルムとしては、ポリイミドの面配
向フィルム(POLYMER 第7巻 23号 532
1頁)、無機層状化合物を用いた位相差フィルム(特開
平5−196819号公報)などを例示することができ
る。
When the R value is 10 nm or less and the R 'value is 1
As a negative uniaxial retardation film having an optical axis of not less than 00 nm substantially in the normal direction of the film, a polyimide plane orientation film (POLYMER Vol. 7, No. 23, 532)
1) and a retardation film using an inorganic layered compound (JP-A-5-196819).

【0021】無機層状化合物を用いた位相差フィルムと
しては、生産性や耐久性の点から、例えば膨潤性粘度鉱
物を用いた位相差フィルム、具体的には有機粘土複合体
と疎水性樹脂とからなる層を少なくとも1層有する位相
差フィルムを用いることもできる。有機粘土複合体とし
ては、例えば層状構造を有する粘土鉱物と有機化合物を
複合化した化合物などが挙げられる。
As the retardation film using the inorganic layered compound, from the viewpoint of productivity and durability, for example, a retardation film using a swellable viscosity mineral, specifically, an organic clay composite and a hydrophobic resin are used. It is also possible to use a retardation film having at least one layer having the following structure. As the organic clay complex, for example, a compound obtained by compounding a clay mineral having a layered structure with an organic compound can be used.

【0022】層状構造を有する粘土鉱物としては、例え
ばスメクタイト族や膨潤性雲母などが挙げられる。スメ
クタイト族に属するものとしてはヘクトライト、モンモ
リロナイト、ベントナイトなどや、これらの置換体、誘
導体および混合物などが例示できる。これらの中でも、
化学合成されたスメクタイト族が不純物が少なく透明性
に優れるなどの点から位相差フィルムに好ましく用いら
れる。特に粒径を小さく制御した合成ヘクトライトを用
いることもできる。
Examples of the clay mineral having a layered structure include smectites and swelling mica. Examples of those belonging to the smectite group include hectorite, montmorillonite, bentonite, and the like, substituted substances, derivatives and mixtures thereof. Among these,
A chemically synthesized smectite group is preferably used for a retardation film because it has few impurities and is excellent in transparency. In particular, synthetic hectorite having a controlled particle size can be used.

【0023】有機化合物としては、例えば粘土鉱物の酸
素原子や水酸基と反応できる化合物、粘度鉱物に含まれ
る交換性陽イオン、例えばNa+、K+などのアルカリ金
属イオン、Ca2+、Mg2+などのアルカリ土類金属イオ
ン、Al3+などの金属イオンと交換可能なイオン性の化
合物などが用いられ、例えばアミン化合物などが挙げら
れる。アミン化合物としては、例えば4級アンモニウム
化合物、尿素、ヒドラジン、ドジテルピリジニウムなど
が挙げられるが、交換性陽イオンとの交換が容易である
ことなどから4級アンモニウム化合物が好ましく用いら
れる。4級アンモニウム化合物は通常、陽イオンとして
導入され、このような陽イオンとしては、ジメチル・ジ
オクタデシル・アンモニウムイオン、ジメチル・ベンジ
ル・オクタデシル・アンモニウムイオン、トリオクチル
・メチル・アンモニウムイオンなどのようにアルキル基
やベンジル基を有したものや、メチル・ジエチル・ポリ
オキシプロピレン(重合度:25)・アンモニウムイオ
ンなどのように長鎖の置換基を有したものなどが例示さ
れる。これらの有機化合物は、粘土鉱物の陽イオン交換
容量に対して当量用いることが望ましいが、製造に際し
ては陽イオン交換容量に対して0.5〜1.5倍量の範
囲で添加しても構わない。
As the organic compound, for example, a compound capable of reacting with an oxygen atom or a hydroxyl group of a clay mineral, an exchangeable cation contained in a clay mineral, for example, an alkali metal ion such as Na + and K + , Ca 2+ , Mg 2+ For example, an ionic compound which can be exchanged with an alkaline earth metal ion such as Al 3+ and a metal ion such as Al 3+ is used, and examples thereof include an amine compound. Examples of the amine compound include a quaternary ammonium compound, urea, hydrazine, doditerpyridinium and the like, but a quaternary ammonium compound is preferably used because of easy exchange with exchangeable cations. The quaternary ammonium compound is usually introduced as a cation. Examples of the cation include an alkyl group such as dimethyl dioctadecyl ammonium ion, dimethyl benzyl octadecyl ammonium ion, and trioctyl methyl ammonium ion. And those having a long-chain substituent such as methyl / diethyl / polyoxypropylene (degree of polymerization: 25) / ammonium ion. These organic compounds are desirably used in an equivalent amount to the cation exchange capacity of the clay mineral, but may be added in the range of 0.5 to 1.5 times the cation exchange capacity during production. Absent.

【0024】かかる有機粘土複合体は、用いる有機化合
物を適当に選択することによりベンゼン、トルエン、キ
シレンなどの低極性の芳香族炭化水素類、アセトン、メ
チルエチルケトン、メチルイソブチルケトンなどのケト
ン類、メタノール、エタノール、プロパノールなどの低
級アルコール類、四塩化炭素、クロロホルム、ジクロロ
メタン、ジクロロエタンなどのハロゲン化炭化水素類な
どの高極性の溶媒など各種有機溶媒に容易に分散可能と
することができる。このようにして得られた有機溶剤に
分散可能な有機粘土複合体は通常、疎水性であり、有機
溶媒中で分散するとコロイド状を呈するまで単位結晶層
を膨潤させることができるので、これを適当な疎水性樹
脂と混合し、適当な基板上に塗布して乾燥させて製膜す
ることで有機粘土複合体の単位結晶層を配向させること
ができて、位相差フィルムとして用いることができるよ
うになる。
Such an organoclay composite can be prepared by appropriately selecting an organic compound to be used, such as low-polarity aromatic hydrocarbons such as benzene, toluene and xylene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; It can be easily dispersed in various organic solvents such as high-polarity solvents such as lower alcohols such as ethanol and propanol, and halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, and dichloroethane. The organic clay complex dispersible in the organic solvent thus obtained is usually hydrophobic, and when dispersed in the organic solvent, the unit crystal layer can be swollen until it becomes colloidal. Mixed with a suitable hydrophobic resin, coated on a suitable substrate, dried and formed into a film, so that the unit crystal layer of the organoclay composite can be oriented and used as a retardation film. Become.

【0025】疎水性樹脂としては、例えばポリビニルブ
チラールポリビニルホルマールなどのポリビニルアセタ
ール樹脂、セルロースアセテートブチレートなどのセル
ロース系樹脂などが挙げられる。
Examples of the hydrophobic resin include polyvinyl acetal resins such as polyvinyl butyral polyvinyl formal, and cellulose resins such as cellulose acetate butyrate.

【0026】有機粘土複合体と疎水性樹脂とからなる層
を基板上に製膜する際の分散液中の有機粘土複合体の濃
度は、なるべく高い方が層の厚みを大きくできるため好
ましいが、高濃度になりすぎるとゲル化などが発生し製
膜性が悪くなるため、通常は有機粘土複合体と疎水性樹
脂の組成比が重量比で1:2〜10:1の範囲で、合計
の固形分濃度が3〜15重量%の範囲で用いられる。更
に、これらの有機粘土複合体の複数を混合して用いるこ
ともできる。位相差フィルムとしては、製膜した基板か
ら剥離して単独のフィルムとして用いることができる
が、透明基板を用いて透明基板上に製膜した状態のまま
で用いることもできる。製膜する基板が平板状の場合、
有機粘土複合体の単位結晶層はその層状構造を平板面に
平行にかつ面内の向きはランダムに配向する。したがっ
て、フィルム面内の屈折率がフィルム厚み方向の屈折率
よりも大きい屈折率構造を示すようになる。この屈折率
異方性により、R値が10nm以下でありかつR’値が
100nm以上である光学軸が略フィルム法線方向にあ
る負の一軸性位相差フィルムとして用いることができ
る。
The concentration of the organoclay composite in the dispersion when the layer comprising the organoclay composite and the hydrophobic resin is formed on the substrate is preferably as high as possible because the thickness of the layer can be increased. If the concentration is too high, gelation or the like occurs and the film-forming property deteriorates. Therefore, the composition ratio of the organoclay composite and the hydrophobic resin is usually 1: 2 to 10: 1 by weight, and the total The solid content is used in the range of 3 to 15% by weight. Further, a plurality of these organic clay composites may be used in combination. The retardation film can be used as a single film after being peeled from the formed substrate, but can also be used as it is formed on the transparent substrate using a transparent substrate. When the substrate to be formed is flat,
The unit crystal layer of the organoclay composite has its layered structure oriented parallel to the flat plate surface and randomly in-plane. Accordingly, a refractive index structure in which the refractive index in the film plane is larger than the refractive index in the film thickness direction is exhibited. Due to the refractive index anisotropy, the film can be used as a negative uniaxial retardation film having an R value of 10 nm or less and an R 'value of 100 nm or more, whose optical axis is substantially in the normal direction of the film.

【0027】上記のような2枚の位相差フィルムをTF
T−VAN−LCDに用いる場合には、2枚を積層して
上下いずれかの偏光フィルムと液晶セルの間に配置して
もよく、または2枚を上下の偏光フィルムと液晶セルの
間にそれぞれ配置してもよい。
The two retardation films as described above are placed in TF
When used in a T-VAN-LCD, two sheets may be stacked and placed between the upper and lower polarizing films and the liquid crystal cell, or two sheets may be placed between the upper and lower polarizing films and the liquid crystal cell, respectively. It may be arranged.

【0028】[0028]

【発明の効果】本発明のTFT−VAN−LCDは、視
野角特性に優れている。
The TFT-VAN-LCD of the present invention has excellent viewing angle characteristics.

【0029】[0029]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はこれに限定されるものではない。なお、評
価は以下の方法により実施した。 (1)フィルム面内のレターデーション(R)値 測定器:偏光顕微鏡[(株)ニコン製、オプチフォト−
ポル]波長546nmの単色光で常法により測定した。 (2)フィルム厚み方向のレターデーション(R’)値 R、R40(遅相軸を傾斜軸として40度傾斜して測定し
たレターデーション値)、d(位相差フィルムの厚み)
および位相差フィルムの平均屈折率(n0)を用いて、
以下の式(3)〜(6)からコンピュータ数値計算によ
りnX、nY、n Zを求め、次いで式(4)によりR’を
計算した。 R=(nX−nY)×d (3) R40=(nX−nY’)×d/cos(φ) (4) (nX+nY+nZ)/3=n0 (5) R’=[(nX+nY)/2−nZ]×d (6) ここで、φおよびnY’はそれぞれ以下の式(7)、
(8)で示される。 φ =sin-1[sin(40°)/n0] (7) nY’=nY×nZ/[nY 2×sin2(φ)+nZ 2×cos2(φ)]1/2 (8)
The present invention will be described below in detail with reference to examples.
However, the present invention is not limited to this. In addition,
The value was determined by the following method. (1) In-plane retardation (R) value Measurement device: Polarizing microscope [Nikon Corporation, Optiphoto-
Pol] monochromatic light having a wavelength of 546 nm was measured by an ordinary method. (2) Retardation (R ') value in the film thickness direction R, R40(Measured at a 40 degree angle with the slow axis as the tilt axis.
Retardation value), d (thickness of retardation film)
And the average refractive index of the retardation film (n0)Using,
From the following equations (3) to (6),
RX, NY, N Z, And R ′ is calculated according to equation (4).
Calculated. R = (nX-NY) × d (3) R40= (NX-NY′) × d / cos (φ) (4) (nX+ NY+ NZ) / 3 = n0 (5) R '= [(nX+ NY) / 2-nZ] × d (6) where φ and nY’Is the following equation (7),
This is indicated by (8). φ = sin-1[Sin (40 °) / n0] (7) nY’= NY× nZ/ [NY Two× sinTwo(Φ) + nZ Two× cosTwo(Φ)]1/2(8)

【0030】実施例1 ビスフェノールAからなるポリカーボネート〔平均屈折
率n0=1.59、ポリスチレン換算での数平均分子量
が約70000〕の塩化メチレン23%溶液を800m
m巾で約24m長のステンレスベルト上に流延して乾燥
し、残留溶剤が約20%の状態でベルトからの引き剥が
し応力を小さくしてフィルムの流れ方向に一軸延伸しな
がら剥離し、さらに残留溶剤を低減するために乾燥炉を
通過させて残留溶剤が1%以下である幅700mmのT
FT−VAN−LCD用の視野角補償用位相差フィルム
(厚み140μm)を得た。このフィルムの光学特性は
幅方向に200mm間隔で採取した3点の平均で、R=
55.5nmであり、R40=90.2nmであった。こ
れらの値からの計算値としてR’=193nmであり、
R’/R=3.5あった。
Example 1 A 23% methylene chloride solution of a polycarbonate composed of bisphenol A (average refractive index n 0 = 1.59, number average molecular weight in terms of polystyrene of about 70,000) was dissolved in 800 m.
It is cast on a stainless steel belt of about 24 m length by about 24 m length and dried, and the residual solvent is about 20%, the peeling stress from the belt is reduced, and the film is peeled off while being uniaxially stretched in the film flow direction. To reduce the residual solvent, 700mm wide T
A viewing angle compensating retardation film (140 μm thick) for FT-VAN-LCD was obtained. The optical characteristics of this film are represented by an average of three points taken at intervals of 200 mm in the width direction.
55.5 nm, and R 40 = 90.2 nm. R ′ = 193 nm as a calculated value from these values,
R ′ / R = 3.5.

【0031】実施例2 ステンレスベルトからの引き剥がし応力を実施例1の場
合よりも小さくしてフィルム流れ方向に一軸延伸した以
外は実施例1と同様にしてTFT−VAN−LCD用の
視野角補償用位相差フィルムを得た。このフィルムの光
学特性は幅方向に200mm間隔で採取した3点の平均
で、R=42.9nmであり、R40=71.2nmであ
った。これらの値からの計算値としてR’=158nm
であり、R’/R=3.7であった。
Example 2 A viewing angle compensation for a TFT-VAN-LCD was performed in the same manner as in Example 1 except that the peeling stress from the stainless steel belt was made smaller than that in Example 1 and the film was uniaxially stretched in the film flow direction. Retardation film was obtained. The optical characteristics of this film were R = 42.9 nm and R 40 = 71.2 nm on average at three points sampled at 200 mm intervals in the width direction. R ′ = 158 nm as a calculated value from these values
And R ′ / R = 3.7.

【0032】実施例3 平均屈折率n0=1.51であり、厚み100μmであ
り、光弾性率の絶対値が4.1×10-13cm2/dyn
eであるノルボルネン系高分子の溶剤キャストフィルム
〔ARTONフィルム 日本合成ゴム(株)製〕は、R
=6.3nmであり、R40=13.6nmであった。こ
れらの値からの計算値としてR’=36nmであった。
このフィルムを200℃で1.2倍に一軸延伸して位相
差フィルムを得た。このフィルムは、厚み95μmであ
り、R=51.5nmであり、R 40=56.4nmであ
った。これらの値からの計算値としてR’=23nmで
あった。疎水性樹脂(商品名 デンカブチラール#30
00−K 電気化学工業(株)製)を1.75重量%、
有機粘土複合体1〔商品名 ルーセンタイトSTN コ
ープケミカル(株)製〕を3.94重量%および有機粘
土複合体2〔商品名 ルーセンタイトSPN コープケ
ミカル(株)製〕を1.31重量%、トルエンを65.
1重量%、塩化メチレンを18.6重量%、アセトンを
9.3重量%含む有機溶剤分散液を、厚み80μmのト
リアセチルセルロースフィルム〔商品名フジタックSH
−80 富士写真フィルム(株)製〕の上にコンマコー
ターを用いて塗布し、85℃次いで105℃で乾燥して
フィルムを得た。このフィルムの厚みは3.7μm、有
効幅は400mmであった。このフィルムは、その光学
軸が略フィルム法線方向にある負の一軸性位相差フィル
ムであった。この位相差フィルムは、R=6.4nmで
あり、R40=24.8nmであった。平均屈折率n0
1.50として、これらの値からの計算値としてR’=
90nmであった。これら2枚の位相差フィルムを遅相
軸が直交するように粘着剤を用いて積層して、R=4
5.1nmであり、合計のR’=113nmであり、
R’/R=2.5であるTFT−VAN−LCD用の視
野角補償用位相差フィルムを得た。
Example 3 Average refractive index n0= 1.51 and a thickness of 100 μm
The absolute value of the photoelastic modulus is 4.1 × 10-13cmTwo/ Dyn
Solvent cast film of norbornene polymer as e
[ARTON film manufactured by Nippon Synthetic Rubber Co., Ltd.]
= 6.3 nm and R40= 13.6 nm. This
R ′ = 36 nm as a calculated value from these values.
This film is uniaxially stretched 1.2 times at 200 ° C.
A difference film was obtained. This film has a thickness of 95 μm.
R = 51.5 nm, and R 40= 56.4 nm
Was. As a calculated value from these values, R '= 23 nm
there were. Hydrophobic resin (trade name Denka Butyral # 30)
1.75% by weight of 00-K Denki Kagaku Kogyo Co., Ltd.)
Organic clay composite 1 [Product name Lucentite STN
3.94% by weight of organic chemicals
Soil complex 2 [trade name Lucentite SPN Coupke
Manufactured by Mical Co., Ltd.] and toluene at 65.
1% by weight, 18.6% by weight of methylene chloride, acetone
An organic solvent dispersion containing 9.3% by weight was
Reacetylcellulose film [Trade name: Fujitack SH
-80 Fuji Photo Film Co., Ltd.]
And then dried at 85 ° C and then at 105 ° C.
A film was obtained. The thickness of this film is 3.7 μm,
The working width was 400 mm. This film is
Negative uniaxial retardation film with axis approximately in the film normal direction
Was This retardation film has R = 6.4 nm.
Yes, R40= 24.8 nm. Average refractive index n0=
Assuming 1.50, a value calculated from these values is R '=
It was 90 nm. These two retardation films are retarded
Laminated using an adhesive so that the axes are orthogonal, and R = 4
5.1 nm, the total R '= 113 nm,
View for TFT-VAN-LCD where R '/ R = 2.5
A retardation film for field angle compensation was obtained.

【0033】実施例4 実施例3で用いたものと同じノルボルネン系高分子の溶
剤キャストフィルム〔ARTONフィルム〕を190℃
で1.2倍に一軸延伸した位相差フィルムは、厚み93
μmであり、R=80.0nmであり、R40=89.7
nmであった。これらの値からの計算値としてR’=4
7nmであった。また、実施例3と同様にして有機粘土
複合体と疎水性樹脂からなる塗布層の膜厚が14.6μ
mとなるようにして有効幅が約400mmである光学軸
が略フィルム法線方向にある負の一軸性位相差フィルム
を得た。この位相差フィルムは、R=5.5nmであ
り、R40=49nmであった。平均屈折率n0=1.5
0として、これらの値からの計算値としてR’=213
nmであった。これら2枚の位相差フィルムを遅相軸が
直交するように粘着剤を用いて積層することで、R=7
4.5nmであり、合計のR’=260nmであり、
R’/R=3.5であるTFT−VAN−LCD用の視
野角補償用位相差フィルムを得た。
Example 4 A solvent cast film (ARTON film) of the same norbornene polymer as used in Example 3 was used at 190 ° C.
The retardation film uniaxially stretched 1.2 times with a thickness of 93
μm, R = 80.0 nm, R 40 = 89.7
nm. R ′ = 4 as a calculated value from these values
7 nm. In the same manner as in Example 3, the thickness of the coating layer composed of the organic clay composite and the hydrophobic resin was 14.6 μm.
m to obtain a negative uniaxial retardation film having an effective width of about 400 mm and an optical axis substantially in the normal direction of the film. This retardation film had R = 5.5 nm and R 40 = 49 nm. Average refractive index n 0 = 1.5
As 0, R ′ = 213 as a calculated value from these values
nm. By laminating these two retardation films using an adhesive such that the slow axes are orthogonal to each other, R = 7
4.5 nm, the total R ′ = 260 nm,
A viewing angle compensating retardation film for TFT-VAN-LCD with R '/ R = 3.5 was obtained.

【0034】実施例5 TFT−VAN−LCDにおいて、負の誘電率異方性を
有する液晶の屈折率異方性(ΔnLC)とガラス基板間の
距離(dLC)との積が、ΔnLC・dLCが0.3μm程度
とした液晶セルと該直線偏光フィルムとの少なくとも一
方の間に実施例1〜4のTFT−VAN−LCD用の視
野角補償用位相差フィルムを1枚配置したTFT−VA
N−LCDは、より広い視野角特性を示す。
Embodiment 5 In a TFT-VAN-LCD, the product of the refractive index anisotropy (Δn LC ) of the liquid crystal having negative dielectric anisotropy and the distance (d LC ) between the glass substrates is Δn LC TFT in which one viewing angle compensating retardation film for TFT-VAN-LCD of Examples 1 to 4 is arranged between at least one of a liquid crystal cell having d LC of about 0.3 μm and the linear polarizing film. -VA
N-LCDs exhibit wider viewing angle characteristics.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に透明電極が形成され、該透明
電極上に垂直配向膜が設けられた一対の透明基板が、該
透明電極が向かい合うように一定の距離をおいて配置さ
れ、この間隙に負の誘電率異方性を有するネマチック液
晶が挟持されており、電圧を印加しない状態で液晶分子
長軸が透明基板に略垂直な方向に配向した構造を有する
液晶セルと、該液晶セルの上下に相互の吸収軸が直交す
るように配置された一対の偏光フィルムと、該液晶セル
と該偏光フィルムとの少なくとも一方の間に1枚または
2枚の位相差フィルムから構成される視野角補償用位相
差フィルムが配置されてなる垂直配向ネマチック型液晶
表示装置であって、視野角補償用位相差フィルムが、式
(1)で示されるフィルム面内のレターデーション
(R)値が0nmを越え100nm以下であり、かつ式
(2)で示されるフィルム厚み方向のレターデーション
(R’)値が100nm以上である位相差フィルムであ
って、フィルム面内の遅相軸が隣接する偏光フィルムの
吸収軸に対して平行または直交していることを特徴とす
る液晶表示装置。 R =(nX−nY)×d (1) R’=[(nX+nY)/2−nZ]×d (2) nX:フィルム面内の遅相軸方向の屈折率 nY:フィルム面内でnXと垂直方向の屈折率 nZ:フィルムの厚み方向の屈折率 d :フィルムの厚み
A transparent electrode is formed on a transparent substrate, and a pair of transparent substrates provided with a vertical alignment film on the transparent electrode are arranged at a fixed distance so that the transparent electrodes face each other. A liquid crystal cell having a structure in which a nematic liquid crystal having a negative dielectric anisotropy is sandwiched in a gap, and a long axis of liquid crystal molecules is aligned in a direction substantially perpendicular to a transparent substrate in a state where no voltage is applied; and A viewing angle composed of a pair of polarizing films disposed so that their absorption axes are perpendicular to each other above and below, and one or two retardation films between at least one of the liquid crystal cell and the polarizing film. A vertically aligned nematic liquid crystal display device comprising a compensation retardation film, wherein the viewing angle compensation retardation film has an in-plane retardation (R) value of 0 nm represented by the formula (1). Yue A retardation film having a retardation (R ') value of 100 nm or less and a retardation (R') in the film thickness direction represented by the formula (2) of 100 nm or more, wherein the absorption of a polarizing film having an adjacent in-plane slow axis is A liquid crystal display device characterized by being parallel or orthogonal to an axis. R = (n X -n Y) × d (1) R '= [(n X + n Y) / 2-n Z] × d (2) n X: refractive index in a slow axis direction of the film plane n Y: the refractive index of the n X and the vertical direction within the film plane n Z: refractive index in the film thickness direction d: film thickness
【請求項2】視野角補償用位相差フィルムが、フィルム
面内のレターデーション(R)値が30nm〜80nm
であり、かつフィルム厚み方向のレターデーション
(R’)値が150nm〜250nmであることを特徴
とする請求項1に記載の液晶表示装置。
2. A retardation film for viewing angle compensation, wherein the in-plane retardation (R) value is 30 nm to 80 nm.
The liquid crystal display device according to claim 1, wherein a retardation (R ') value in a film thickness direction is from 150 nm to 250 nm.
【請求項3】フィルム面内のレターデーション(R)値
とフィルム厚み方向のレターデーション(R’)値との
比R’/Rが2〜6であることを特徴とする請求項1ま
たは請求項2に記載の液晶表示装置。
3. The film according to claim 1, wherein the ratio R ′ / R of the in-plane retardation (R) value to the retardation (R ′) value in the film thickness direction is 2 to 6. Item 3. A liquid crystal display device according to item 2.
【請求項4】視野角補償用位相差フィルムが、正の屈折
率異方性を有する高分子からなる位相差フィルムを少な
くとも1枚用いたものであることを特徴とする請求項1
に記載の液晶表示装置。
4. A retardation film for compensating a viewing angle, wherein at least one retardation film made of a polymer having a positive refractive index anisotropy is used.
3. The liquid crystal display device according to 1.
【請求項5】位相差フィルムが、正の屈折率異方性を有
する高分子を溶剤キャスト法により製膜した後に一軸方
向に延伸して得られる位相差フィルムを少なくとも1枚
用いたものであることを特徴とする請求項4に記載の液
晶表示装置。
5. A retardation film comprising at least one retardation film obtained by forming a polymer having a positive refractive index anisotropy by a solvent casting method and then stretching the film in a uniaxial direction. The liquid crystal display device according to claim 4, wherein:
【請求項6】正の屈折率異方性を有する高分子が、ポリ
カーボネート系高分子、ポリアリレート系高分子、ポリ
エステル系高分子またはポリサルフォンのいずれかであ
ることを特徴とする請求項4に記載の液晶表示装置。
6. The polymer according to claim 4, wherein the polymer having a positive refractive index anisotropy is any one of a polycarbonate polymer, a polyarylate polymer, a polyester polymer and polysulfone. Liquid crystal display device.
【請求項7】正の屈折率異方性を有する高分子が光弾性
係数の絶対値が10×10-13cm2/dyne以下であ
る高分子であることを特徴とする請求項4に記載の液晶
表示装置。
7. The polymer according to claim 4, wherein the polymer having a positive refractive index anisotropy is a polymer having an absolute value of a photoelastic coefficient of 10 × 10 −13 cm 2 / dyne or less. Liquid crystal display device.
【請求項8】光弾性係数の絶対値が10×10-13cm2
/dyne以下である高分子が、環状オレフィン系高分
子であることを特徴とする請求項7に記載の液晶表示装
置。
8. absolute value of photoelastic coefficient of 10 × 10 -13 cm 2
The liquid crystal display device according to claim 7, wherein the polymer having a ratio of / dyne or less is a cyclic olefin polymer.
【請求項9】視野角補償用位相差フィルムが、環状オレ
フィン系高分子からなりR値が0nmを越え100nm
以下である一軸延伸フィルム1枚と、R値が10nm以
下であり光学軸が略フィルム法線方向にある負の一軸性
位相差フィルム1枚とを積層したものであって、積層し
た状態でのR値が30nm〜80nmであり、R’値の
合計が150nm〜250nmであり、かつR’/Rが
2〜6であることを特徴とする請求項8に記載の液晶表
示装置。
9. The viewing angle compensating retardation film is made of a cyclic olefin polymer and has an R value exceeding 0 nm and 100 nm.
A single uniaxially stretched film and a single negative uniaxial retardation film having an R value of 10 nm or less and an optical axis substantially in the normal direction of the film are laminated. The liquid crystal display device according to claim 8, wherein the R value is 30 nm to 80 nm, the total R 'value is 150 nm to 250 nm, and R' / R is 2 to 6.
【請求項10】R値が0nmを越え100nm以下であ
り、かつR’値が100nm以上である垂直配向ネマチ
ック型液晶表示装置視野角補償用位相差フィルム。
10. A viewing angle compensating retardation film having a vertical alignment nematic liquid crystal display device having an R value of more than 0 nm and not more than 100 nm and an R ′ value of not less than 100 nm.
【請求項11】位相差フィルム1枚からなることを特徴
とする請求項10に記載の垂直配向ネマチック型液晶表
示装置視野角補償用位相差フィルム。
11. The retardation film for compensating viewing angle of a vertically aligned nematic liquid crystal display device according to claim 10, comprising one retardation film.
【請求項12】ポリカーボネート系高分子、ポリアリレ
ート系高分子、ポリエステル系高分子またはポリサルフ
ォンのいずれかからなる高分子フィルムを一軸延伸して
得られる請求項10に記載の垂直配向ネマチック型液晶
表示装置視野角補償用位相差フィルム。
12. The vertical alignment nematic liquid crystal display device according to claim 10, which is obtained by uniaxially stretching a polymer film made of a polycarbonate polymer, a polyarylate polymer, a polyester polymer or polysulfone. A retardation film for viewing angle compensation.
【請求項13】R’/Rが2〜6であることを特徴とす
る請求項10に記載の垂直配向ネマチック型液晶表示装
置視野角補償用位相差フィルム。
13. The retardation film according to claim 10, wherein R ′ / R is 2 to 6.
【請求項14】環状オレフィン系高分子フィルムからな
りR値が100nm以下である一軸延伸フィルム1枚
と、R値が10nm以下であり光学軸が略フィルム法線
方向にある負の一軸性位相差フィルム1枚とを積層した
ものであって、積層した状態でのR値が30nm〜80
nmであり、R’値の合計が150nm〜250nmで
あり、かつR’/Rが2〜6であることを特徴とする垂
直配向ネマチック型液晶表示装置視野角補償用位相差フ
ィルム。
14. A uniaxially stretched film composed of a cyclic olefin polymer film and having an R value of 100 nm or less, and a negative uniaxial retardation having an R value of 10 nm or less and an optical axis substantially in the normal direction of the film. One film is laminated, and the R value in the laminated state is 30 nm to 80.
nm, the total R ′ value is 150 nm to 250 nm, and R ′ / R is 2 to 6. A retardation film for viewing angle compensation of a vertically aligned nematic liquid crystal display device.
【請求項15】R値が10nm以下であり光学軸が略フ
ィルム法線方向にある負の一軸性位相差フィルムが膨潤
性粘土鉱物を用いた位相差フィルムであることを特徴と
する請求項14に記載の垂直配向ネマチック型液晶表示
装置視野角補償用位相差フィルム。
15. A negative uniaxial retardation film having an R value of 10 nm or less and an optical axis substantially in the normal direction of the film is a retardation film using a swelling clay mineral. 4. The retardation film for viewing angle compensation of a vertically aligned nematic liquid crystal display device according to item 1.
JP25978097A 1997-09-25 1997-09-25 Liquid crystal display and viewing angle compensation film used therefor Expired - Fee Related JP3470567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25978097A JP3470567B2 (en) 1997-09-25 1997-09-25 Liquid crystal display and viewing angle compensation film used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25978097A JP3470567B2 (en) 1997-09-25 1997-09-25 Liquid crystal display and viewing angle compensation film used therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003177693A Division JP2004004905A (en) 2003-06-23 2003-06-23 Film for compensating angle of field and liquid crystal display using same

Publications (2)

Publication Number Publication Date
JPH1195208A true JPH1195208A (en) 1999-04-09
JP3470567B2 JP3470567B2 (en) 2003-11-25

Family

ID=17338882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25978097A Expired - Fee Related JP3470567B2 (en) 1997-09-25 1997-09-25 Liquid crystal display and viewing angle compensation film used therefor

Country Status (1)

Country Link
JP (1) JP3470567B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049430A1 (en) * 1999-02-17 2000-08-24 Fuji Photo Film Co., Ltd. Optical compensation sheet having optical anisotropic layer formed from liquid crystal molecules
JP2002107733A (en) * 2000-09-29 2002-04-10 Sony Corp Liquid crystal display device
WO2003071319A1 (en) * 2002-02-19 2003-08-28 Nitto Denko Corporation Stacked phase shift sheet, stacked polarizing plate including the same and image display
WO2003077020A1 (en) * 2002-03-08 2003-09-18 Sharp Kabushiki Kaisha Liquid crystal display unit
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
JP2004004150A (en) * 2002-05-13 2004-01-08 Sumitomo Chem Co Ltd Laminated phase differential film and liquid crystal display device using the same
JP2004170760A (en) * 2002-11-21 2004-06-17 Konica Minolta Holdings Inc Phase difference film, its manufacturing method, and polarizing plate
US6853424B2 (en) 2002-08-02 2005-02-08 Eastman Kodak Company Liquid crystal cell with compensator layer and process
JP2005099236A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Liquid crystal display device
JP2005173567A (en) * 2003-11-18 2005-06-30 Fuji Photo Film Co Ltd Liquid crystal display
WO2006080635A1 (en) * 2004-09-24 2006-08-03 Lg Chem, Ltd. Optical compensator film for lcd via multilayer structure
JP2006268033A (en) * 2005-02-25 2006-10-05 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, and liquid crystal display
US7119866B2 (en) 2002-03-08 2006-10-10 Sharp Kabushiki Kaisha Liquid crystal display device
US7176999B2 (en) 2002-03-08 2007-02-13 Sharp Kabushiki Kaisha Liquid crystal display device
US7209205B2 (en) 2001-10-12 2007-04-24 Sharp Kabushiki Kaisha Liquid crystal display device
KR100750924B1 (en) * 2001-04-10 2007-08-22 삼성전자주식회사 liquid crystal display
JP2008513833A (en) * 2004-09-22 2008-05-01 エルジー・ケム・リミテッド Polyary-rate optical compensation film used for securing optical viewing angle of LCD and method for producing the same
CN100405168C (en) * 2005-04-25 2008-07-23 日东电工株式会社 Liquid crystal panel and liquid crystal display apparatus
CN100422773C (en) * 2002-02-19 2008-10-01 日东电工株式会社 Stacked retardation plate, stacked polarizing plate including the same and image display
JP2008262198A (en) * 1999-10-21 2008-10-30 Konica Minolta Holdings Inc Vertical alignment liquid crystal display
US7480021B2 (en) 2005-12-29 2009-01-20 Nitto Denko Corporation Optical films having reverse dispersion
US7532286B2 (en) 2005-08-17 2009-05-12 Fujifilm Corporation Optical resin film and polarizing film and liquid crystal display device using the same
US7538841B2 (en) 2005-05-25 2009-05-26 Nitto Denko Corporation Optical film, liquid crystal panel, and liquid crystal display apparatus
JP2009116346A (en) * 2008-12-24 2009-05-28 Fujifilm Corp Optical compensation sheet, polarizing plate and liquid crystal display
JP2009116347A (en) * 2008-12-24 2009-05-28 Fujifilm Corp Optical compensation sheet, polarizing plate, elliptically polarizing plate and liquid crystal display device
JP2009145902A (en) * 2009-01-27 2009-07-02 Fujifilm Corp Optical compensation sheet, polarizing plate and liquid crystal display device
JP2009244890A (en) * 1999-12-16 2009-10-22 Fujifilm Corp Retardation plate, method of manufacturing the same, plate for circularly polarizing light using the same, half-wave plate and reflection type liquid crystal display
US7639329B2 (en) 2007-05-01 2009-12-29 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
JP2010009056A (en) * 2000-04-06 2010-01-14 Sharp Corp Viewing angle compensation film and liquid crystal display
US7713595B2 (en) 2005-10-18 2010-05-11 Nitto Denko Corporation Optical compensation films produced by a carrier-web-casting process
US7732007B2 (en) 2005-12-19 2010-06-08 Eastman Kodak Company Method of making a polarizer plate
US7746435B2 (en) 2006-05-24 2010-06-29 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
US7755730B2 (en) 2004-02-09 2010-07-13 Fujifilm Corporation Optical compensation film and liquid crystal display having the same
US7760293B2 (en) 2005-08-22 2010-07-20 Fujifilm Corporation Optically compensatory film and polarizing plate and liquid crystal display using same
KR101008243B1 (en) 2002-12-24 2011-01-17 스미또모 가가꾸 가부시끼가이샤 Optical compensation plate and project type liquid crystal display device using the same
US7876502B2 (en) 2005-04-22 2011-01-25 Fujifilm Corporation Optical film, polarizing plate and liquid crystal display
JP2011034107A (en) * 2010-11-02 2011-02-17 Fujifilm Corp Optical compensator sheet, polarizing plate and liquid crystal display device
JP2011059712A (en) * 2010-11-15 2011-03-24 Fujifilm Corp Optical compensator sheet, polarizing plate, and liquid crystal display device
US8031309B2 (en) 2005-12-14 2011-10-04 Fujifilm Corporation Liquid crystal display device having retardation film on inside of substrate compensating for light of a particular wavelength
US8125596B2 (en) 2004-11-09 2012-02-28 Nitto Denko Corporation Liquid crystal display apparatus
US8184244B2 (en) 2005-01-25 2012-05-22 Nitto Denko Corporation Liquid crystal display apparatus
US8194204B2 (en) 2005-05-11 2012-06-05 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus using the same
US8199289B2 (en) 2005-04-26 2012-06-12 Nitto Denko Corporation Optical film, liquid crystal panel, and liquid crystal display apparatus
TWI392907B (en) * 2004-09-22 2013-04-11 Fujifilm Corp Liquid crystal display device
US9465253B2 (en) 2005-11-15 2016-10-11 Nitto Denko Corporation Liquid crystal display apparatus having excellent viewing angle compensation

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
WO2000049430A1 (en) * 1999-02-17 2000-08-24 Fuji Photo Film Co., Ltd. Optical compensation sheet having optical anisotropic layer formed from liquid crystal molecules
JP2008262198A (en) * 1999-10-21 2008-10-30 Konica Minolta Holdings Inc Vertical alignment liquid crystal display
JP4665988B2 (en) * 1999-10-21 2011-04-06 コニカミノルタホールディングス株式会社 Vertical alignment type LCD
JP2010002940A (en) * 1999-12-16 2010-01-07 Fujifilm Corp Fabrication method of retardation plate
JP2009244890A (en) * 1999-12-16 2009-10-22 Fujifilm Corp Retardation plate, method of manufacturing the same, plate for circularly polarizing light using the same, half-wave plate and reflection type liquid crystal display
JP2010009056A (en) * 2000-04-06 2010-01-14 Sharp Corp Viewing angle compensation film and liquid crystal display
JP2002107733A (en) * 2000-09-29 2002-04-10 Sony Corp Liquid crystal display device
KR100750924B1 (en) * 2001-04-10 2007-08-22 삼성전자주식회사 liquid crystal display
US8294860B2 (en) 2001-10-12 2012-10-23 Sharp Kabushiki Kaisha Liquid crystal display device
US8638403B2 (en) 2001-10-12 2014-01-28 Sharp Kabushiki Kaisha Liquid crystal display device
US7999879B2 (en) 2001-10-12 2011-08-16 Sharp Kabushiki Kaisha Liquid crystal display device
US7209205B2 (en) 2001-10-12 2007-04-24 Sharp Kabushiki Kaisha Liquid crystal display device
WO2003071319A1 (en) * 2002-02-19 2003-08-28 Nitto Denko Corporation Stacked phase shift sheet, stacked polarizing plate including the same and image display
CN1304891C (en) * 2002-02-19 2007-03-14 日东电工株式会社 Stacked phase shift sheet, stacked polarizing plate including the same and image display
CN100422773C (en) * 2002-02-19 2008-10-01 日东电工株式会社 Stacked retardation plate, stacked polarizing plate including the same and image display
US7119866B2 (en) 2002-03-08 2006-10-10 Sharp Kabushiki Kaisha Liquid crystal display device
US7176999B2 (en) 2002-03-08 2007-02-13 Sharp Kabushiki Kaisha Liquid crystal display device
US7095467B2 (en) 2002-03-08 2006-08-22 Sharp Kabushiki Kaisha Liquid crystal display device
US6885421B2 (en) 2002-03-08 2005-04-26 Sharp Kabushiki Kaisha Liquid crystal display device
WO2003077020A1 (en) * 2002-03-08 2003-09-18 Sharp Kabushiki Kaisha Liquid crystal display unit
CN100368896C (en) * 2002-03-08 2008-02-13 夏普株式会社 Liquid crystal display unit
US7247380B2 (en) 2002-05-13 2007-07-24 Sumitomo Chemical Company, Limited Laminated phase retarder film and a liquid crystal display using the same
JP2004004150A (en) * 2002-05-13 2004-01-08 Sumitomo Chem Co Ltd Laminated phase differential film and liquid crystal display device using the same
US6853424B2 (en) 2002-08-02 2005-02-08 Eastman Kodak Company Liquid crystal cell with compensator layer and process
JP2004170760A (en) * 2002-11-21 2004-06-17 Konica Minolta Holdings Inc Phase difference film, its manufacturing method, and polarizing plate
KR101008243B1 (en) 2002-12-24 2011-01-17 스미또모 가가꾸 가부시끼가이샤 Optical compensation plate and project type liquid crystal display device using the same
JP2005099236A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Liquid crystal display device
JP2005173567A (en) * 2003-11-18 2005-06-30 Fuji Photo Film Co Ltd Liquid crystal display
US7755730B2 (en) 2004-02-09 2010-07-13 Fujifilm Corporation Optical compensation film and liquid crystal display having the same
TWI392907B (en) * 2004-09-22 2013-04-11 Fujifilm Corp Liquid crystal display device
JP2008513833A (en) * 2004-09-22 2008-05-01 エルジー・ケム・リミテッド Polyary-rate optical compensation film used for securing optical viewing angle of LCD and method for producing the same
WO2006080635A1 (en) * 2004-09-24 2006-08-03 Lg Chem, Ltd. Optical compensator film for lcd via multilayer structure
US8125596B2 (en) 2004-11-09 2012-02-28 Nitto Denko Corporation Liquid crystal display apparatus
US8184244B2 (en) 2005-01-25 2012-05-22 Nitto Denko Corporation Liquid crystal display apparatus
JP2006268033A (en) * 2005-02-25 2006-10-05 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, and liquid crystal display
US7876502B2 (en) 2005-04-22 2011-01-25 Fujifilm Corporation Optical film, polarizing plate and liquid crystal display
CN100405168C (en) * 2005-04-25 2008-07-23 日东电工株式会社 Liquid crystal panel and liquid crystal display apparatus
US8199289B2 (en) 2005-04-26 2012-06-12 Nitto Denko Corporation Optical film, liquid crystal panel, and liquid crystal display apparatus
US8194204B2 (en) 2005-05-11 2012-06-05 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus using the same
US7538841B2 (en) 2005-05-25 2009-05-26 Nitto Denko Corporation Optical film, liquid crystal panel, and liquid crystal display apparatus
US7532286B2 (en) 2005-08-17 2009-05-12 Fujifilm Corporation Optical resin film and polarizing film and liquid crystal display device using the same
US7760293B2 (en) 2005-08-22 2010-07-20 Fujifilm Corporation Optically compensatory film and polarizing plate and liquid crystal display using same
US7713595B2 (en) 2005-10-18 2010-05-11 Nitto Denko Corporation Optical compensation films produced by a carrier-web-casting process
US9465253B2 (en) 2005-11-15 2016-10-11 Nitto Denko Corporation Liquid crystal display apparatus having excellent viewing angle compensation
US8031309B2 (en) 2005-12-14 2011-10-04 Fujifilm Corporation Liquid crystal display device having retardation film on inside of substrate compensating for light of a particular wavelength
US7732007B2 (en) 2005-12-19 2010-06-08 Eastman Kodak Company Method of making a polarizer plate
US7480021B2 (en) 2005-12-29 2009-01-20 Nitto Denko Corporation Optical films having reverse dispersion
US7746435B2 (en) 2006-05-24 2010-06-29 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
US7639329B2 (en) 2007-05-01 2009-12-29 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
JP2009116347A (en) * 2008-12-24 2009-05-28 Fujifilm Corp Optical compensation sheet, polarizing plate, elliptically polarizing plate and liquid crystal display device
JP2009116346A (en) * 2008-12-24 2009-05-28 Fujifilm Corp Optical compensation sheet, polarizing plate and liquid crystal display
JP4512656B2 (en) * 2008-12-24 2010-07-28 富士フイルム株式会社 Optical compensation sheet for VA liquid crystal display device and VA liquid crystal display device
JP2009145902A (en) * 2009-01-27 2009-07-02 Fujifilm Corp Optical compensation sheet, polarizing plate and liquid crystal display device
JP2011034107A (en) * 2010-11-02 2011-02-17 Fujifilm Corp Optical compensator sheet, polarizing plate and liquid crystal display device
JP2011059712A (en) * 2010-11-15 2011-03-24 Fujifilm Corp Optical compensator sheet, polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
JP3470567B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP3470567B2 (en) Liquid crystal display and viewing angle compensation film used therefor
US7247380B2 (en) Laminated phase retarder film and a liquid crystal display using the same
EP0864906B1 (en) Optical compensatory sheet for liquid crystal displays
US7318951B2 (en) Retardation film, producing process thereof and liquid crystal display utilizing the same
JPH07333597A (en) Liquid crystal display device
JP4882375B2 (en) Liquid crystal display
KR20010102246A (en) Optical compensation sheet having optical anisotropic layer formed from liquid crystal molecules
JP2005070096A (en) Retardation plate integrated polarizing plate, method for manufacturing same, and liquid crystal display device
US20040252264A1 (en) Polarizer having retarder and liquid crystal display apparatus comprising the same
JP4094792B2 (en) Optical compensation sheet, elliptically polarizing plate, and liquid crystal display device
JP3924955B2 (en) Liquid crystal display device in which retardation film is arranged
US20050157234A1 (en) LCD employing coated compensate film and fabrication method thereof
JP4882376B2 (en) Liquid crystal display
JP2003015134A (en) Liquid crystal display device
JPH0915586A (en) Liquid crystal display device
JP2004004905A (en) Film for compensating angle of field and liquid crystal display using same
JP2009098642A (en) Laminated optical film, polarizing plate and liquid crystal display device
JP2573383B2 (en) Liquid crystal display
JP2009098633A (en) Laminated optical film, polarizing plate and liquid crystal display device
JP3206132B2 (en) Liquid crystal display
JP2009098643A (en) Laminated optical film, polarizing plate and liquid crystal display device
JP2005242345A (en) Liquid crystal display device
JP4363005B2 (en) Liquid crystal display device, optical compensation sheet, polarizing plate
JP4796107B2 (en) Optical compensation sheet manufacturing method
JP2002174730A (en) Optical compensation film and liquid crystal display element

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees