JPH1194654A - Calorimetry for fuel gas, and air-fuel ratio control system using the same - Google Patents

Calorimetry for fuel gas, and air-fuel ratio control system using the same

Info

Publication number
JPH1194654A
JPH1194654A JP9255508A JP25550897A JPH1194654A JP H1194654 A JPH1194654 A JP H1194654A JP 9255508 A JP9255508 A JP 9255508A JP 25550897 A JP25550897 A JP 25550897A JP H1194654 A JPH1194654 A JP H1194654A
Authority
JP
Japan
Prior art keywords
gas
fuel gas
fuel
air
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9255508A
Other languages
Japanese (ja)
Inventor
Keizo Saito
敬三 斉藤
Hirohide Furuya
博秀 古谷
Akio Fujiwara
章男 藤原
Kanji Ohashi
勘司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokyo Gas Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP9255508A priority Critical patent/JPH1194654A/en
Publication of JPH1194654A publication Critical patent/JPH1194654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and inexpensively grasp calorific value of a fuel gas before preparing a gas miture, and to set the air-fuel ratio to a prescribed value before combustion, by inserting a light emitting material into the flame of fuel gas and by measuring a radiation energy quantity obtained by its light emission. SOLUTION: A mixed gas is prepared by operating regulating valves 2a, 2b for respective gases filled in a methane gas cylinder 1a and propane gas cylinder 1b while confirming respective flow rates by gas flow meters 3a, 3b to be supplied a burner 5 through a flow regulating valve 4. The flame of the fuel gas is injected from a mixed gas injection port 5c by an ignition device 6 to heat a light emitting material 7. Radiation energy of the resuling emission is converted into an electric signal by a light receiver 8, and its emission intensity is converted into a clorific value by a converter 9 to be stored by a recorder 10. A small temperature change of the flame by combustion is magnified as a large difference in the radiation energy to allow measurement of high resolution. An inexpensive small detector such as a photodiode is used for the detection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料ガスの熱量変化
により制御特性に著しい悪化をもたらす工業用燃焼器の
熱管理、CNG及びLPG自動車の空燃比制御、および
燃焼機器設計時における対象燃料ガスの熱量測定等に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thermal management of an industrial combustor, which significantly deteriorates control characteristics due to a change in calorific value of fuel gas, air-fuel ratio control of CNG and LPG vehicles, and control of fuel gas at the time of designing combustion equipment. It relates to calorimetry and the like.

【0002】[0002]

【従来の技術】本発明にも使用され、燃料ガスとして用
いられる都市ガス(12A、13Aガス)やLPガスな
どは、使用ガスにより発熱量が異なり、理論空燃比での
必要空気量が異なる(図1及び図2参照)。このため、
これらのガスを燃料とする燃焼装置ではガス性状、ガス
温度の変化に応じて燃料量の調整を行い空燃比を一定に
保つ必要がある。また、LPガスにおいても夏期、冬季
により性状を変えて供給されるため同様の制御が必要と
なる。
2. Description of the Related Art City gas (12A, 13A gas), LP gas, and the like, which are also used in the present invention and are used as fuel gas, have different calorific values depending on the gas used, and the required amount of air at the stoichiometric air-fuel ratio is different ( 1 and 2). For this reason,
In a combustion device using these gases as fuel, it is necessary to adjust the amount of fuel in accordance with changes in gas properties and gas temperature to keep the air-fuel ratio constant. In addition, since the LP gas is supplied with its properties changed in summer and winter, the same control is required.

【0003】そこで、従来より、燃料ガスの熱量測定方
法として、燃焼法、密度法、熱伝導率法など種々熱量計
が提案され実用に供されているが、何れも適用できるガ
ス性状、熱量範囲が限られるなどの欠点がある。また、
精度の高いものは価格が高いなどの問題もある。さら
に、その何れの方法も測定に際しては外部環境が大きく
影響するため、その変化分の補正に煩雑な作業が伴うな
ど問題を有していた。
Therefore, various calorimeters, such as a combustion method, a density method, and a thermal conductivity method, have been proposed and put into practical use as methods for measuring the calorific value of a fuel gas. There are disadvantages such as limited. Also,
There are also problems such as high accuracy with high price. In addition, any of these methods has a problem in that the external environment greatly affects the measurement, and the change is corrected by a complicated operation.

【0004】また、空燃比(空気と燃料の重量比)を一
定に保つ必要のある燃焼装置(エンジンなど)におい
て、燃料の発熱量が何らかの要因で変化する場合、例え
ば、燃料として都市ガスを使用する天然ガスエンジンで
あれば、12A地区から13A地区に移動するとか、L
Pガス燃料であれば冬期と夏期で供給される発熱量が異
なる場合など、発熱量によって必要空気量が異なってく
るため、そのままでは最初に設定した空燃比がずれてし
まい、その結果として異常燃焼、排ガスの成分の悪化な
どの原因となることがある。
Further, in a combustion apparatus (engine or the like) which needs to maintain a constant air-fuel ratio (weight ratio of air to fuel), if the calorific value of fuel changes for some reason, for example, city gas is used as fuel. A natural gas engine that moves from 12A to 13A,
In the case of P gas fuel, the required amount of air differs depending on the calorific value, such as when the calorific value supplied between winter and summer differs. As a result, the initially set air-fuel ratio is shifted, and as a result, abnormal combustion occurs This may cause deterioration of components of the exhaust gas.

【0005】従って、事前に燃料の発熱量の変化を察知
して、空燃比制御にフィードバックする必要がある。そ
のためには、燃焼装置の作動状態下で燃料の発熱量を測
定することの出来る簡便で精度のよい熱量測定方法が必
要である。
Therefore, it is necessary to detect a change in the calorific value of the fuel in advance and feed it back to the air-fuel ratio control. For that purpose, a simple and accurate calorimetric method capable of measuring the calorific value of the fuel under the operating state of the combustion device is required.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、燃料ガ
スの熱量は、燃焼時のガスの温度を測定しその値を換算
して求めることができる。しかし、ガス温度を直接測定
する方法は火炎の揺らぎ等により正確な測定が困難であ
ることから、熱量の見積もりに大きな誤差を生じる可能
性がある。即ち、燃料ガスの温度を直接測定する従来の
方法においては、燃料ガスの熱量変化に起因する燃料ガ
スの温度の変化が小さく分解能が悪く、しかも燃料ガス
の温度は火炎の揺らぎ等により変化するため正確な温度
測定が難しいなどの問題点が指摘されている。以上の理
由から、このような僅かな温度差を精度良く測定するた
めの何らかの方法が必要とされていた。
However, the calorific value of the fuel gas can be obtained by measuring the temperature of the gas during combustion and converting the value. However, in the method of directly measuring the gas temperature, since accurate measurement is difficult due to fluctuations of the flame or the like, a large error may occur in the estimation of the calorific value. That is, in the conventional method of directly measuring the temperature of the fuel gas, the change in the temperature of the fuel gas due to the change in the calorific value of the fuel gas is small, the resolution is poor, and the temperature of the fuel gas changes due to the fluctuation of the flame. Problems such as difficulty in accurate temperature measurement have been pointed out. For the above reasons, some method for accurately measuring such a small temperature difference has been required.

【0007】[0007]

【課題を解決するための手段】本発明は上記従来の欠点
に鑑み提案されたもので、燃料ガスの火炎中に、該燃料
ガスの燃焼温度に従って、放射エネルギー量の変化する
発光材を挿入し、該発光材の発光によって得られる上記
放射エネルギー量を計測することによって、上記燃料ガ
スの熱量を測定する燃料ガスの熱量測定方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned conventional disadvantages, and includes a method of inserting a luminous material whose radiant energy varies according to a combustion temperature of a fuel gas into a flame of the fuel gas. Another object of the present invention is to provide a method for measuring the calorific value of the fuel gas by measuring the calorific value of the fuel gas by measuring the radiant energy amount obtained by the light emission of the luminescent material.

【0008】本発明は、上記放射エネルギーが主に選択
放射である燃料ガスの熱量測定方法を提供するものであ
る。
The present invention provides a method for measuring the calorific value of a fuel gas whose radiant energy is mainly selective radiation.

【0009】本発明は、上記燃料ガスの供給量を上記燃
料ガスの燃焼前の温度に従って可変する燃料ガス流量調
整弁を設けた燃料ガスの熱量測定方法を提供するもので
ある。
The present invention provides a method for measuring the calorific value of a fuel gas provided with a fuel gas flow control valve which varies the supply amount of the fuel gas according to the temperature of the fuel gas before combustion.

【0010】本発明は、上記燃料ガスが都市ガス12A
・13A及びLPガス(JIS K2240)1号乃至
4号である燃料ガスの熱量測定方法を提供するものであ
る。
In the present invention, the fuel gas is a city gas 12A.
13A and LP gas (JIS K2240) Nos. 1 to 4 provide a method for measuring the calorific value of fuel gas.

【0011】本発明は、また、燃料ガスの熱量測定方法
を用いた空燃比制御システムであって、燃焼器に上記燃
料ガスと空気を供給する燃料流量調整装置を備えた混合
器において、上記燃料ガスの流量を、既に測定された上
記燃料ガスの上記熱量に基づいて制御する空燃比制御手
段を設けた空燃比制御システムを提供するものである。
The present invention also provides an air-fuel ratio control system using a method for measuring the calorific value of a fuel gas, wherein the mixer includes a fuel flow rate adjusting device for supplying the fuel gas and air to a combustor. It is an object of the present invention to provide an air-fuel ratio control system provided with air-fuel ratio control means for controlling the flow rate of gas based on the calorific value of the fuel gas which has already been measured.

【0012】本発明は、上記燃焼器がエンジンである空
燃比制御システムを提供するものである。
The present invention provides an air-fuel ratio control system in which the combustor is an engine.

【0013】[0013]

【発明の実施の形態】一般に、黒体から発生する放射エ
ネルギーと温度との関係は、Eb=δT4 となるので、
この放射エネルギー量を測定することにより分解能の高
い温度測定が可能となる。しかしながら、黒体の全スペ
クトルのエネルギー量を検出する検出器は非常に高価で
あり、しかも、検出器の環境整備も必要となるので、手
軽には使用できない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, the relation between the radiant energy generated from a black body and the temperature is Eb = δT 4 ,
By measuring the amount of radiant energy, temperature measurement with high resolution becomes possible. However, a detector for detecting the energy content of the whole spectrum of a black body is very expensive, and furthermore, it is necessary to improve the environment of the detector, so that it cannot be used easily.

【0014】そのため、燃料ガスが燃焼する際の温度範
囲で可視光域のスペクトルを選択放射する材料を燃焼火
炎中に置き、そのスペクトルエネルギー量を測定し検出
器出力より発熱量に換算する方式とした。また、発熱量
変化流量調整弁はガス噴口(供給口)間近に設け、発熱
量が高くなった場合はガス流量を減少するように、低い
場合は増量するように作動する構造とする。
For this reason, a method is employed in which a material that selectively emits a spectrum in the visible light range in a temperature range in which fuel gas is burned is placed in a combustion flame, the spectrum energy is measured, and the amount of heat is converted from the output of the detector into a calorific value. did. Further, the heat generation amount change flow control valve is provided near the gas injection port (supply port), and operates so as to decrease the gas flow rate when the heat generation amount is high and to increase the gas flow amount when the heat generation amount is low.

【0015】本発明では、分解能向上の方法として、上
記の放射エネルギーが温度の4乗で変化する原理を利用
し、放射エネルギー量からガス温度を推定しその値を基
に燃料ガスの熱量を計測する手法を提案する。但し、黒
体の放射エネルギーは波長の長い方に偏在しているた
め、放射エネルギーの測定のためには広い波長範囲のエ
ネルギー量を測定する必要があること、また燃料中の炭
素成分比の小さなガスではその予混合火炎が透明に近く
遊離炭素からの輝炎が期待できないため、この場合にも
同じく放射エネルギーの測定が困難となる。
In the present invention, as a method of improving the resolution, the above-mentioned principle that the radiant energy changes with the fourth power of the temperature is used, the gas temperature is estimated from the radiant energy amount, and the calorific value of the fuel gas is measured based on the value. We propose a method to do this. However, since the radiation energy of the black body is unevenly distributed in the longer wavelength, it is necessary to measure the energy amount in a wide wavelength range in order to measure the radiation energy. Since the premixed flame of the gas is so transparent that a bright flame from free carbon cannot be expected, the measurement of radiant energy is also difficult in this case.

【0016】上記の理由に鑑み、本発明では、燃料ガス
が燃焼する際の温度範囲で選択性熱放射を行う発光材を
燃料ガス火炎中に挿入し、それからの放射エネルギー量
を測定することで燃料ガス温度即ち燃料ガスの熱量を測
定する原理を見出した。なお、図3に示すように当量比
が1.2前後で発光強度が最高になることから、以後、
実験の基準を当量比1.2と定めた。
In view of the above-mentioned reasons, in the present invention, a luminous material which emits selective heat in a temperature range in which the fuel gas burns is inserted into the fuel gas flame, and the amount of radiant energy from the luminous material is measured. The principle of measuring the fuel gas temperature, that is, the calorific value of the fuel gas, has been found. Note that, as shown in FIG. 3, since the emission intensity becomes maximum when the equivalent ratio is around 1.2,
The basis for the experiment was set at an equivalence ratio of 1.2.

【0017】図4は本発明の原理に基づいた燃焼式熱量
計測装置の第1の実施形態を示している。メタンガスボ
ンベ1aおよびプロパンガスボンベ1bに詰められたメ
タンガスおよびプロパンガスは、ガス流量計3a,3b
でそれぞれの流量を確認しながら調整弁2a,2bを操
作し、混合ガスを得て流量調整弁4を介してバーナー5
に供給する。なお、バーナー5には空気吸入口5a、燃
料ガス噴出口5b、混合気体噴出口5cが形成され、点
火装置6により混合気体噴出口5cから燃料ガスの炎が
噴出して発光材7を加熱する。
FIG. 4 shows a first embodiment of a combustion calorie measuring apparatus based on the principle of the present invention. The methane gas and propane gas packed in the methane gas cylinder 1a and the propane gas cylinder 1b are supplied to the gas flow meters 3a and 3b.
By operating the regulating valves 2a and 2b while checking the respective flow rates, a mixed gas is obtained, and the burner 5
To supply. The burner 5 has an air inlet 5a, a fuel gas outlet 5b, and a mixed gas outlet 5c, and the igniter 6 emits a fuel gas flame from the mixed gas outlet 5c to heat the luminescent material 7. .

【0018】発光材7としては、ガス灯で使用されてい
るマントル(木綿、ラミー、人絹などの織布に硝酸トリ
ウムや硝酸セリウムを含浸したもの)の材質を使用す
る。すなわち、硝酸トリウムや硝酸セリウム中の酸化ト
リウムや酸化セリウムが、炎中で選択放射して可視光域
であるほゞ0.45〜0.65μmの波長の範囲で高輝
度に発光するのである。したがって、その他にも本発明
における発光材7は、可視光域の範囲で輝度の大きい物
質であれば、何れも使用可能である。そして、その発光
による放射エネルギーを受光器8で電気信号に変換し、
更に、変換器9で発光強度を発熱量に変換して記録計1
0で記録する。なお、発光強度と発熱量との関係は図5
のようになる。
As the light-emitting material 7, a material of a mantle (a woven fabric of cotton, ramie, human silk or the like impregnated with thorium nitrate or cerium nitrate) used in a gas lamp is used. That is, thorium oxide or cerium oxide in thorium nitrate or cerium nitrate selectively emits light in a flame and emits light with high luminance in a visible light range of about 0.45 to 0.65 μm. Therefore, any other luminescent material 7 in the present invention can be used as long as it has a high luminance in the visible light range. Then, the radiant energy by the light emission is converted into an electric signal by the light receiver 8,
Further, the luminous intensity is converted into a calorific value by the converter 9 and the recorder 1
Record at 0. The relationship between the light emission intensity and the calorific value is shown in FIG.
become that way.

【0019】先に述べたように、燃焼による炎の小さな
温度変化が、照射エネルギーとしては大きな差になって
分解能の高い測定ができ、また、その放射エネルギー量
の検出にはフォトダイオードなどの安価で小型な検出器
が使用できる。
As described above, a small change in the temperature of the flame due to combustion results in a large difference in the irradiation energy, so that high-resolution measurement can be performed. And a small detector can be used.

【0020】また、使用する燃料ガスの発熱量の増減に
応じてそれを補償するため、燃料ガス流路系にガス燃料
の温度で伸縮するバイメタルなどが取付けられた流量調
節弁4を設け、燃料ガスの温度が低いときは流量を減ら
し、ガス温度が高いときは燃料ガスを多く流すようにす
る。
In order to compensate for the increase or decrease in the calorific value of the fuel gas used, a flow rate control valve 4 provided with a bimetal or the like which expands and contracts at the temperature of the gaseous fuel is provided in the fuel gas flow path system. When the gas temperature is low, the flow rate is reduced, and when the gas temperature is high, a large amount of fuel gas is made to flow.

【0021】つまり、供給ガスおよび空気の温度が変化
した場合、すなわち両者の温度が同じく変化し、温度が
上昇した場合、密度の低い同量のガス・空気が供給さ
れ、空気・燃料ガスの混合比は一定であるが、単位時間
に供給される熱量が低下し、輝度温度は低くなる。
That is, when the temperature of the supply gas and the air changes, that is, when both temperatures change and the temperature rises, the same amount of gas and air having a low density is supplied, and the mixing of air and fuel gas is performed. Although the ratio is constant, the amount of heat supplied per unit time decreases, and the luminance temperature decreases.

【0022】ガスバーナー5は燃料ガス噴出口5bから
のガス噴出により空気吸入口5aから空気が引き込まれ
て1次混合がなされる。従って、ガス流量が定められれ
ば自ずから空気量が定まる。なお、性状の異なるガスの
熱量は温度が高くなると同一容積であっても熱量が異な
る。すなわち、同等の熱量を確保するにはガス量を低下
分だけ増量しなければならない。
In the gas burner 5, air is drawn in from the air inlet 5a by gas ejection from the fuel gas outlet 5b, and primary mixing is performed. Therefore, if the gas flow rate is determined, the air amount is naturally determined. Note that the calorific value of the gas having different properties differs as the temperature increases, even if the gas has the same volume. That is, in order to secure the same amount of heat, the amount of gas must be increased by a reduced amount.

【0023】性状の異なるガスにより吸入する空気流量
が一定で、燃料ガスの発熱量だけが低いと、その分、ガ
ス量が不足し、混合比が希薄側にずれる。最適な空気・
燃料ガスの混合比を維持するためには、熱量の減少分だ
け燃料ガスの流量を増加させなければならない。燃料ガ
スは性状・温度変化により熱量が変化する。これはガス
性状(発熱量)が異なる場合は混合比が変化し、ガス温
度が高くなるとガス密度が小さくなり、その分熱量が小
さくなる。また温度が低くなればガス密度が高くなり、
単位容積当たりの熱量は大きくなる。
When the flow rate of air taken in by gases having different properties is constant and only the calorific value of the fuel gas is low, the amount of gas is insufficient and the mixture ratio shifts to the lean side. Optimal air
In order to maintain the mixing ratio of the fuel gas, the flow rate of the fuel gas must be increased by an amount corresponding to the decrease in the amount of heat. The amount of heat of the fuel gas changes depending on the property and temperature. This is because when the gas properties (calorific value) are different, the mixing ratio changes, and when the gas temperature increases, the gas density decreases and the calorific value decreases accordingly. Also, the lower the temperature, the higher the gas density,
The amount of heat per unit volume increases.

【0024】次に図6に本発明の第2の実施形態である
空燃比制御システムを示す。なお、この実施形態におい
ては、上記空燃比制御システムを燃焼器および自動車の
エンジンを例にして説明する。
FIG. 6 shows an air-fuel ratio control system according to a second embodiment of the present invention. In this embodiment, the air-fuel ratio control system will be described using a combustor and an automobile engine as examples.

【0025】まず、本実施形態の従来例を図7に基づき
説明する。燃料ガスは流量が固定された燃料流量調整装
置11を介して混合器12で吸気と混合し、更に、燃料
流量微調整装置13からの燃料ガスと混合して燃焼器か
若しくはエンジン14に吸入され燃焼する。この際に1
4が燃焼器の場合、燃焼器14内の温度を温度センサー
15で計測し、一方、14がエンジンの場合、排気ガス
の空燃比をO2 センサー16で検出して空燃比判別回路
17に入力し、燃料流量微調整装置13を制御すると共
に、排気ガスを三元触媒18で処理して排気する。この
ようにして燃焼器またはエンジン14の空燃比を制御し
ていたが、三元触媒18は空燃比が最適なときにしか作
用せず、燃料流量微調整装置13を制御するだけでは最
適な空燃比が得られなかった。
First, a conventional example of this embodiment will be described with reference to FIG. The fuel gas is mixed with the intake air through a mixer 12 via a fuel flow rate adjusting device 11 having a fixed flow rate, and further mixed with the fuel gas from a fuel flow rate fine adjusting device 13 to be sucked into a combustor or an engine 14. Burn. At this time 1
When 4 is a combustor, the temperature inside the combustor 14 is measured by a temperature sensor 15, while when 14 is an engine, the air-fuel ratio of exhaust gas is detected by an O 2 sensor 16 and input to an air-fuel ratio determination circuit 17. Then, while controlling the fuel flow rate fine adjustment device 13, the exhaust gas is processed by the three-way catalyst 18 and exhausted. Although the air-fuel ratio of the combustor or the engine 14 has been controlled in this manner, the three-way catalyst 18 operates only when the air-fuel ratio is optimal. The fuel ratio could not be obtained.

【0026】そこで、本実施形態では熱量計19を用い
て、あらかじめ、燃料ガスの温度を測定し、空燃比判別
回路17′によって燃料流量調整装置11′を制御する
ことによって、最良の空燃比を得て三元触媒18が有効
に機能するように構成するものである。
Therefore, in this embodiment, the best air-fuel ratio is obtained by measuring the temperature of the fuel gas in advance using the calorimeter 19 and controlling the fuel flow rate adjusting device 11 'by the air-fuel ratio discriminating circuit 17'. Then, the three-way catalyst 18 is configured to function effectively.

【0027】以上、本発明を図面に記載された実施形態
に基づいて説明したが、本発明は上記した実施形態だけ
ではなく、特許請求の範囲に記載した構成を変更しない
限りどのようにでも実施することができる。例えば、上
記実施形態においては、受光素子は可視光を対象にして
いるが、近赤外光などを対象として光の強度を測定して
もよい。
As described above, the present invention has been described based on the embodiments described in the drawings. However, the present invention is not limited to the above-described embodiments, but may be implemented in any manner unless the structure described in the claims is changed. can do. For example, in the above embodiment, the light receiving element targets visible light, but the light intensity may be measured for near infrared light or the like.

【0028】[0028]

【発明の効果】以上要するに、本発明によれば、燃料ガ
スの燃焼火炎中に置かれた発光材の発光エネルギーを測
定して、それを基に燃料ガスの発熱量を測定しているの
で、燃料ガスの熱量を混合気を作る前に簡便、小型、安
価に知ることができるため、定められた空燃比に燃焼前
に設定することが可能である。
In summary, according to the present invention, the luminous energy of the luminescent material placed in the combustion flame of the fuel gas is measured, and the calorific value of the fuel gas is measured based on the luminous energy. Since the calorific value of the fuel gas can be known easily, compactly, and inexpensively before the mixture is produced, it is possible to set a predetermined air-fuel ratio before combustion.

【0029】また、本発明は測定環境を選ばず環境温度
の影響を受けずに、しかも精度の高い測定値が得られる
等の利点がある他、可視光域のエネルギー量を測定する
ため、安価な検出器が使用できる。また、直接燃料ガス
を発光材に当てるため、測定時間が短く、サンプルガス
の消費が少ない。更に、小型軽量にできるため、燃料ガ
ス供給系の補機としての機能を有する等々の多くの特徴
を有すので、あらゆるガス燃焼器の空燃比制御装置のセ
ンサとして使用することが可能である。
Further, the present invention has the advantage that the measurement value can be obtained with high accuracy without being affected by the environmental temperature regardless of the measurement environment and the energy amount in the visible light range is measured. Detectors can be used. Further, since the fuel gas is directly applied to the luminescent material, the measurement time is short, and the consumption of the sample gas is small. Furthermore, since it can be made compact and lightweight, it has many features such as having a function as an auxiliary device of a fuel gas supply system. Therefore, it can be used as a sensor of an air-fuel ratio control device of any gas combustor.

【0030】特に、CNG自動車の場合はガス燃料の熱
量が変化すると運転時の空燃比が理論空燃比よりはず
れ、従って三元触媒の最適条件からずれて排ガス値が悪
化する場合があるが、本発明の作用により最適の空燃比
に制御して運転が可能となる。
In particular, in the case of a CNG vehicle, when the calorific value of the gas fuel changes, the air-fuel ratio during operation deviates from the stoichiometric air-fuel ratio, and thus deviates from the optimum condition of the three-way catalyst, and the exhaust gas value may deteriorate. According to the operation of the present invention, the operation can be performed while controlling the air-fuel ratio to the optimum value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】都市ガス12A・13Aの総発熱量と必要空気
量との関係を示した特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a total heat generation amount of city gases 12A and 13A and a required air amount.

【図2】LPガスの総発熱量と必要空気量との関係を示
した特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a total heat generation amount of LP gas and a required air amount.

【図3】当量比と発光強度の関係を示す特性図である。FIG. 3 is a characteristic diagram showing a relationship between an equivalent ratio and a light emission intensity.

【図4】本発明の第1の実施形態における燃焼式熱量計
測装置の構成を示すブロック図である。
FIG. 4 is a block diagram illustrating a configuration of a combustion-type calorimeter according to the first embodiment of the present invention.

【図5】発熱量と発光強度の関係を示す特性図である。FIG. 5 is a characteristic diagram showing a relationship between a calorific value and emission intensity.

【図6】本発明の第2の実施形態における空燃比制御シ
ステムの構成を示すブロック図である。
FIG. 6 is a block diagram illustrating a configuration of an air-fuel ratio control system according to a second embodiment of the present invention.

【図7】従来の空燃比制御システムの構成を示すブロッ
ク図である。
FIG. 7 is a block diagram showing a configuration of a conventional air-fuel ratio control system.

【符号の説明】[Explanation of symbols]

1a,1b ガスボンベ 2a,2b 調整弁 3a,3b ガス流量計 4 温度伸縮調整弁 5 バーナー 5a 空気吸入口 5b ガス噴射口 5c ガスの炎 6 点火装置 7 マントル 8 可視光受光器 9 変換器 10 記録計 11,11′ 燃料流量調整装置 12 混合器 13 燃料流量微調整装置 14 燃焼器またはエンジン 15 温度センサー 16 O2 センサー 17,17′ 空燃比判別回路 18 三元触媒 19 熱量計1a, 1b Gas cylinder 2a, 2b Regulator 3a, 3b Gas flow meter 4 Temperature expansion / contraction regulator 5 Burner 5a Air intake 5b Gas injection 5c Gas flame 6 Ignition device 7 Mantle 8 Visible light receiver 9 Transducer 10 Recorder 11, 11 'fuel flow regulator unit 12 mixer 13 fuel flow fine adjustment device 14 combustor or the engine 15 temperature sensor 16 O 2 sensors 17, 17' air discriminating circuit 18 the three-way catalyst 19 calorimeter

フロントページの続き (72)発明者 古谷 博秀 茨城県つくば市並木1丁目2番地 工業技 術院 機械技術研究所内 (72)発明者 藤原 章男 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内 (72)発明者 大橋 勘司 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内Continuing from the front page (72) Inventor Hirohide Furuya 1-2-2 Namiki, Tsukuba-shi, Ibaraki Industrial Technology Institute Machinery Research Institute (72) Inventor Akio Fujiwara 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas (72) Inventor Kanji Ohashi 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスの火炎中に、燃料ガスの燃焼温
度に従って放射エネルギー量の変化する発光材を挿入
し、該発光材の発光によって得られる上記放射エネルギ
ー量を計測することによって、上記燃料ガスの熱量を測
定することを特徴とする燃料ガスの熱量測定方法。
A luminous material whose radiant energy varies according to the combustion temperature of the fuel gas is inserted into a flame of the fuel gas, and the radiant energy obtained by the luminescence of the luminous material is measured to measure the amount of the radiant energy. A method for measuring the calorific value of a fuel gas, comprising measuring the calorific value of the gas.
【請求項2】 上記放射エネルギーは主に選択放射であ
ることを特徴とする請求項1に記載の燃料ガスの熱量測
定方法。
2. The method according to claim 1, wherein the radiant energy is mainly selective radiation.
【請求項3】 請求項1に記載の燃料ガスの熱量測定方
法において、上記燃料ガスの供給量を上記燃料ガスの燃
焼前の温度に従って可変する燃料ガス流量調整弁を設け
たことを特徴とする燃料ガスの熱量測定方法。
3. The method for measuring the calorific value of fuel gas according to claim 1, further comprising a fuel gas flow control valve that varies a supply amount of the fuel gas according to a temperature of the fuel gas before combustion. A method for measuring the calorific value of fuel gas.
【請求項4】 上記燃料ガスは都市ガス12A・13A
及びLPガス(JISK2240)1号乃至4号である
ことを特徴とする請求項1または請求項2の何れかに記
載の燃料ガスの熱量測定方法。
4. The fuel gas is city gas 12A or 13A.
The method for measuring the calorific value of a fuel gas according to claim 1, wherein the fuel gas is LP gas (JIS K2240) No. 1 to No. 4.
【請求項5】 請求項2に記載の燃料ガスの熱量測定方
法を用いた空燃比制御システムであって、燃焼器に上記
燃料ガスと空気を供給する燃料流量調整装置を備えた混
合器において、上記燃料ガスの流量を、既に測定された
上記燃料ガスの上記熱量に基づいて制御する空燃比制御
手段を設けたことを特徴とする空燃比制御システム。
5. An air-fuel ratio control system using the method for measuring calorific value of fuel gas according to claim 2, wherein the mixer includes a fuel flow rate adjusting device for supplying the fuel gas and air to a combustor. An air-fuel ratio control system comprising an air-fuel ratio control means for controlling a flow rate of the fuel gas based on the calorific value of the fuel gas already measured.
【請求項6】 上記燃焼器はエンジンであることを特徴
とする請求項4に記載の空燃比制御システム。
6. The air-fuel ratio control system according to claim 4, wherein said combustor is an engine.
JP9255508A 1997-09-19 1997-09-19 Calorimetry for fuel gas, and air-fuel ratio control system using the same Pending JPH1194654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9255508A JPH1194654A (en) 1997-09-19 1997-09-19 Calorimetry for fuel gas, and air-fuel ratio control system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9255508A JPH1194654A (en) 1997-09-19 1997-09-19 Calorimetry for fuel gas, and air-fuel ratio control system using the same

Publications (1)

Publication Number Publication Date
JPH1194654A true JPH1194654A (en) 1999-04-09

Family

ID=17279735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9255508A Pending JPH1194654A (en) 1997-09-19 1997-09-19 Calorimetry for fuel gas, and air-fuel ratio control system using the same

Country Status (1)

Country Link
JP (1) JPH1194654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234758A (en) * 2013-04-07 2013-08-07 浙江大学 Method and control device for simulating tail gas state of diesel engine
CN104406192A (en) * 2014-10-17 2015-03-11 浙江大学 Air supply device for combustor of divided-flow diesel exhaust simulation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234758A (en) * 2013-04-07 2013-08-07 浙江大学 Method and control device for simulating tail gas state of diesel engine
CN104406192A (en) * 2014-10-17 2015-03-11 浙江大学 Air supply device for combustor of divided-flow diesel exhaust simulation system

Similar Documents

Publication Publication Date Title
Docquier et al. Combustion control and sensors: a review
CA1168901A (en) Method and apparatus for determining the wobbe index of gaseous fuels
US9249737B2 (en) Methods and apparatus for rapid sensing of fuel wobbe index
US4659306A (en) Method of and system for determining the ratio between the oxygen-carrying gas content and the fuel content of a mixture
Ben et al. Influence of air/fuel ratio on cyclic variation and exhaust emission in natural gas SI engine
US20150011009A1 (en) Method and Apparatus For Determining A Calorific Value Parameter, As Well As A Gas-Powered System Comprising Such An Apparatus
US6540892B1 (en) Sensor for determining the concentration of gas components in a gas mixture
JPH1194654A (en) Calorimetry for fuel gas, and air-fuel ratio control system using the same
US4315430A (en) Gas calorific content analyzing apparatus
US4825683A (en) Apparatus for evaluating an oxygen sensor
NO179689B (en) Directly connected energy flow measuring device and method for measuring energy in a natural gas
JP2702272B2 (en) Gas detector
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
US4234257A (en) Flame photometric detector adapted for use in hydrocarbon streams
Blotevogel et al. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine
US5759862A (en) Measuring heating value using catalytic combustion
JPH0874651A (en) Detecting device for inner state of cylinder of internal combustion engine
Bethel et al. An Infrared Technique for Measuring Cycle-Resolved Transient Combustion-Chamber Surface Temperatures in a Fired Engine
Czerwinski et al. Sequential multipoint trans-valve-injection for natural gas engines
JP6386747B2 (en) Gas sensor
KR101605441B1 (en) Air fuel ratio control method and air fuel ratio control apparatus of lpg engine
US6314953B1 (en) Method and system for regulating the air/fuel stream fed to an internal-combustion engine
JP2616935B2 (en) Combustion flame detector for gaseous fuel
JP6948679B1 (en) Air ratio estimation system, air ratio estimation method and program
EP4102135A1 (en) Control mechanism for a gas boiler