JPH1193999A - Elasto-plastic damper and its maintenance method - Google Patents

Elasto-plastic damper and its maintenance method

Info

Publication number
JPH1193999A
JPH1193999A JP25495697A JP25495697A JPH1193999A JP H1193999 A JPH1193999 A JP H1193999A JP 25495697 A JP25495697 A JP 25495697A JP 25495697 A JP25495697 A JP 25495697A JP H1193999 A JPH1193999 A JP H1193999A
Authority
JP
Japan
Prior art keywords
elasto
connecting means
plastic
index
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25495697A
Other languages
Japanese (ja)
Inventor
Naotomo Maruyama
直伴 丸山
Yoshirou Namita
芳郎 浪田
Masanori Nakagawa
正紀 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25495697A priority Critical patent/JPH1193999A/en
Publication of JPH1193999A publication Critical patent/JPH1193999A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipe Accessories (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely estimate the period to perform a maintenance with a simple method by including one index connecting means for taking the broken state as the index for remaining life of the other connecting means. SOLUTION: When a piping system is vibrated to the wall surface of a building or a fixed structure by an earthquake, the relative displacement is transmitted to elasto-plastic members 6a, 6b through first and second connecting means 4, 5, and the elasto-plastic members 6a, 6b are elasto-plastically deformed to absorb the vibration energy of the piping system, whereby the vibration of the piping system is suppressed. Since the elasto-plastic members 6a, 6b have the property of being fatigue broken and ruptured when the elasto-plastic deformation is repeated, it is necessary to perform a maintenance before all the elasto-plastic members 6a, 6b are ruptured. In an elasto-plastic damper 3, all the elasto-plastic members 6 are replaced when the rupture of the index elasto- plastic member 6a is found, so that the maintenance time of the whole damper can be precisely estimated with a simple method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属等からなる弾
塑性部材の弾塑性特性を利用して振動エネルギを吸収す
る弾塑性ダンパ及びそのメンテナンス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elasto-plastic damper that absorbs vibration energy by utilizing elasto-plastic characteristics of an elasto-plastic member made of metal or the like, and a maintenance method thereof.

【0002】[0002]

【従来の技術】例えば地震発生時等に発生する振動エネ
ルギに対し、これを吸収し振動を抑制するために、従
来、材料の弾塑性特性、粘弾性特性、塑性流動特性、あ
るいは部材間の摩擦等を利用した種々のダンパが提案さ
れている。
2. Description of the Related Art Conventionally, in order to absorb vibration energy generated at the time of an earthquake or the like and suppress vibration, conventionally, elasto-plastic characteristics, visco-elastic characteristics, plastic flow characteristics, or friction between members of materials have been conventionally used. Various dampers utilizing such methods have been proposed.

【0003】これらのうち、弾塑性ダンパは、金属等か
らなる弾塑性部材の弾塑性特性を利用するものであり、
この弾塑性部材を相対変位する2つの部材間に配設し、
その相対変位に対応し変形させることによって振動エネ
ルギを吸収する。この弾塑性ダンパに関する公知技術と
しては、例えば、特開平7−279477号公報、特開
平6−17557号公報、特開平5−93475号公報
等がある。
[0003] Among them, the elasto-plastic damper utilizes the elasto-plastic characteristic of an elasto-plastic member made of metal or the like.
This elasto-plastic member is disposed between two members that are relatively displaced,
Vibration energy is absorbed by deforming according to the relative displacement. Known techniques relating to the elasto-plastic damper include, for example, JP-A-7-279777, JP-A-6-17557, and JP-A-5-93475.

【0004】まず、特開平7−279477号公報及び
特開平6−17557号公報には、振動吸収特性の異な
る2つの弾塑性ダンパを組み合わせて1つのダンパ装置
を構成することにより、装置全体の振動吸収特性を適宜
調整する技術思想が開示されている。特開平7−279
477号公報には、低い応力で降伏する一方の弾塑性ダ
ンパ(鉛ダンパ)と、それより高い応力で降伏する他方
の弾塑性ダンパ(板状の鋼材ダンパ)の2つのダンパを
用い、構造部材の相対変位が生じたときにまず鋼材ダン
パが弾性変形のまま鉛ダンパを降伏させ、さらにその降
伏応力を超えるせん断力の作用時に鋼材ダンパが降伏さ
せ、これによって低レベルから高レベルまで広範囲の外
力に対する応答低減を図る概念が開示されている。特開
平6−17557号公報には、上記同様の概念を構造物
用耐震壁に適用したものが開示されている。すなわち、
低い応力で降伏する一方の弾塑性ダンパ(低降伏点鋼
板)と、それより高い応力で降伏する他方の弾塑性ダン
パ(高降伏点鋼板)とを、同一垂直面上において並べて
接合するか若しくは重ねて接合して構造物用の鋼製耐震
壁を形成し、この鋼製耐震壁の周囲を構造物の鉄骨骨組
に固定することにより、耐震壁の耐久性及び制振性を向
上させる概念が開示されている。
First, JP-A-7-279777 and JP-A-6-17557 disclose that a single damper device is formed by combining two elasto-plastic dampers having different vibration absorption characteristics. A technical idea for appropriately adjusting the absorption characteristics is disclosed. JP-A-7-279
No. 477 discloses a structural member using two dampers, one elasto-plastic damper (lead damper) that yields with a low stress and the other elasto-plastic damper (plate-shaped steel damper) yielding with a higher stress. When the relative displacement of the steel damper occurs, the steel damper yields while the elastic damping of the lead damper occurs, and furthermore, the steel damper yields when a shear force exceeding the yield stress is applied, thereby causing a wide range of external forces from a low level to a high level. There is disclosed a concept for reducing the response to the problem. Japanese Patent Application Laid-Open No. Hei 6-17557 discloses a concept in which the same concept as described above is applied to a structural earthquake-resistant wall. That is,
One elasto-plastic damper yielding at low stress (low yield point steel plate) and the other elasto-plastic damper yielding at higher stress (high yield point steel plate) are joined side by side or overlapped on the same vertical plane Disclosed the concept of improving the durability and vibration damping properties of the earthquake-resistant wall by forming a steel earthquake-resistant wall for the structure by joining together and fixing the periphery of the steel earthquake-resistant wall to the steel frame of the structure. Have been.

【0005】一方、特開平5−93475号公報には、
1つの弾塑性ダンパの振動吸収特性を調整する技術思想
が開示されている。すなわち、1つの弾塑性ダンパを、
相対変位する2つの部材にそれぞれ接続される2つのベ
ースプレートと、これらベースプレートの間に差し抜き
自在に装着され複数個の弾塑性部材(エネルギ吸収体)
とによって構成するとともに、各弾塑性部材の形状を、
上下方向中央部の板幅が上下方向端部よりも小さな形状
とする。そして、各弾塑性部材の上下方向中央部の板幅
を適宜調整し各弾塑性部材の剛性を調整することによ
り、弾塑性ダンパの振動吸収特性を調整する。
On the other hand, JP-A-5-93475 discloses that
A technical idea for adjusting the vibration absorption characteristics of one elasto-plastic damper is disclosed. That is, one elasto-plastic damper is
Two base plates respectively connected to the two members which are relatively displaced, and a plurality of elasto-plastic members (energy absorbers) which are detachably mounted between these base plates.
And the shape of each elastic-plastic member,
The width of the plate at the center in the vertical direction is smaller than that at the end in the vertical direction. Then, the vibration absorption characteristics of the elasto-plastic damper are adjusted by appropriately adjusting the plate width at the center in the vertical direction of each elasto-plastic member and adjusting the rigidity of each elasto-plastic member.

【0006】[0006]

【発明が解決しようとする課題】前述したように、弾塑
性ダンパは、金属等からなる弾塑性部材の弾塑性特性を
利用するものであるが、弾塑性挙動をある所定の回数繰
り返すと、弾塑性部材が順次疲労破壊していく。そのた
め、弾塑性ダンパ全体が破壊する前に、弾塑性ダンパの
全弾塑性部材を取り替える等のメンテナンスを施さなけ
ればならない。このとき、例えば複数の弾塑性ダンパが
同じ構造物の中に設けられている場合でも、各弾塑性ダ
ンパに加わった振動の態様・規模等によって各弾塑性ダ
ンパにおける弾塑性部材の疲労状態が異なり、メンテナ
ンスすべき時期も各弾塑性ダンパごとに異なる。そのた
め、無駄な部品交換をなくしコスト低減を図るために
は、各弾塑性ダンパのメンテナンスすべき時期を精度よ
く見積もることが必要となる。
As described above, the elasto-plastic damper utilizes the elasto-plastic characteristics of an elasto-plastic member made of metal or the like. The plastic members are sequentially fractured by fatigue. Therefore, before the entire elasto-plastic damper is destroyed, maintenance such as replacing all elasto-plastic members of the elasto-plastic damper must be performed. At this time, for example, even when a plurality of elasto-plastic dampers are provided in the same structure, the fatigue state of the elasto-plastic member in each elasto-plastic damper differs depending on the mode and scale of vibration applied to each elasto-plastic damper. Also, the maintenance time is different for each elasto-plastic damper. Therefore, in order to eliminate unnecessary parts replacement and reduce costs, it is necessary to accurately estimate the maintenance time of each elasto-plastic damper.

【0007】しかしながら、2つの弾塑性ダンパを用い
る上記特開平7−279477号公報及び特開平6−1
7557号公報の概念では、各弾塑性ダンパのメンテナ
ンスすべき時期の見積もりについて特に配慮されておら
ず、メンテナンスすべき時期を見積るためには、各弾塑
性ダンパの弾塑性挙動の履歴を変位計等で常に監視した
り、各弾塑性ダンパの弾塑性部材のき裂等を測定すると
いった煩雑な方法にならざるを得ない。また、特開平5
−93475号公報でも、上記同様、弾塑性ダンパのメ
ンテナンスすべき時期の見積もりについて特に配慮され
ていない。また各弾塑性部材の剛性に差を設けるという
概念は開示されているが、これを弾塑性ダンパのメンテ
ナンスすべき時期の見積もりに利用する可能性の示唆も
ない。
[0007] However, Japanese Patent Application Laid-Open Nos. Hei 7-279777 and Hei 6-1 using two elasto-plastic dampers.
In the concept of JP-A No. 7557, no particular consideration is given to the estimation of the maintenance time of each elasto-plastic damper, and in order to estimate the maintenance time, the history of the elasto-plastic behavior of each elasto-plastic damper is measured by a displacement meter or the like. Therefore, it is inevitably a complicated method of constantly monitoring or measuring a crack or the like of the elasto-plastic member of each elasto-plastic damper. Also, Japanese Patent Application Laid-Open
In JP-A-93475, similar to the above, no particular consideration is given to the estimation of the maintenance time of the elasto-plastic damper. Although the concept of providing a difference in the rigidity of each elasto-plastic member is disclosed, there is no suggestion that the concept may be used for estimating the time when the elasto-plastic damper should be maintained.

【0008】本発明の目的は、メンテナンスすべき時期
を簡易な方法でかつ精度よく見積もることができる弾塑
性ダンパ及びそのメンテナンス方法を提供することであ
る。
An object of the present invention is to provide an elasto-plastic damper capable of accurately estimating a time to be maintained by a simple method and with high accuracy, and a maintenance method thereof.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1)上記目的を達成するために、本発明は、互いに相
対変位する2つの部材にそれぞれ接続される第1の接続
手段及び第2の接続手段と、これら第1の接続手段と第
2接続手段との間を連結し、前記2つの部材間の相対変
位に応じて弾塑性変形する複数の連結手段とを備えた弾
塑性ダンパにおいて、前記複数の連結手段は、疲労破壊
するときの破断までの繰り返し数が他の連結手段よりも
少なくなるように構成され、破壊状況を該他の連結手段
の余寿命の指標とするための少なくとも1つの指標用連
結手段を含む。2つの部材が互いに相対変位したとき、
この相対変位は第1及び第2の接続手段を介して複数の
連結手段に伝えられ、複数の連結手段がそれぞれ弾塑性
変形する。これら複数の連結手段は、弾塑性変形をある
所定の回数繰り返すと疲労破壊して破断するが、本発明
においては、指標用連結手段の破断までの繰り返し数が
他の連結手段よりも少なくなるように構成されている。
これにより、指標用連結手段が他の連結手段よりも先に
疲労破壊し破断することとなるので、少なくとも指標用
連結手段が破断するまでは他の連結手段は破断すること
はない。したがって、指標用連結手段の破断したかどう
かを他の連結手段の余寿命の指標とし、その余寿命を推
定してメンテナンスすべき時期を推定することができ
る。このようにして、弾塑性ダンパ全体のメンテナンス
すべき時期を簡易な方法でかつ精度よく見積もることが
できる。またこのとき、指標用連結手段の破断後に他の
連結手段が吸収可能なエネルギ量を予め適宜設定すれ
ば、さらに精度よくメンテナンスすべき時期を見積もる
こともできる。
(1) In order to achieve the above object, the present invention provides a first connecting means and a second connecting means which are respectively connected to two members which are displaced relative to each other, and the first connecting means and the second connecting means. A plurality of connecting means for connecting between means and elastically and plastically deforming in accordance with the relative displacement between the two members, wherein the plurality of connecting means are ruptured when fatigue fracture occurs. And the number of repetitions is smaller than that of the other connecting means, and includes at least one indicator connecting means for setting the broken state as an indicator of the remaining life of the other connecting means. When the two members are displaced relative to each other,
This relative displacement is transmitted to the plurality of connecting means via the first and second connecting means, and each of the plurality of connecting means undergoes elasto-plastic deformation. These plurality of connecting means are fatigue-ruptured and broken when elasto-plastic deformation is repeated a predetermined number of times, but in the present invention, the number of repetitions until breakage of the indicator connecting means is smaller than other connecting means. Is configured.
As a result, the index connecting means breaks down due to fatigue before the other connecting means, so that the other connecting means does not break at least until the index connecting means breaks. Therefore, whether or not the indicator connecting means has been broken can be used as an indicator of the remaining life of the other connecting means, and the remaining life can be estimated to estimate the time for maintenance. In this way, it is possible to estimate the time for maintenance of the entire elastic-plastic damper with a simple method and with high accuracy. Further, at this time, if the amount of energy that can be absorbed by the other connecting means after the breakage of the index connecting means is appropriately set in advance, it is possible to estimate the timing of maintenance with higher accuracy.

【0010】(2)上記(1)において、好ましくは、
前記指標用連結手段は、前記2つの部材が互いに相対変
位したときその変位に対応する変形で発生する最大応力
が他の連結手段より大きくなるように構成されている。
一般に、同一性状の材料が弾塑性変形するときには、そ
れに加わる応力が大きいほど疲労破壊における破断まで
の繰り返し数が小さくなる。そこで、指標用連結手段に
発生する最大応力が他の連結手段よりも大きくなるよう
に構成することにより、指標用連結手段の破断までの繰
り返し数を他の連結手段よりも少なくすることができ
る。
(2) In the above (1), preferably,
The indicator connecting means is configured such that when the two members are displaced relative to each other, the maximum stress generated by deformation corresponding to the displacement is greater than that of the other connecting means.
Generally, when a material having the same property undergoes elasto-plastic deformation, the greater the stress applied thereto, the smaller the number of repetitions until fracture in fatigue fracture. Therefore, by configuring the maximum stress generated in the indicator connecting means to be larger than that of the other connecting means, the number of repetitions until the indicator connecting means is broken can be made smaller than that of the other connecting means.

【0011】(3)上記(1)において、また好ましく
は、前記指標用連結手段は、前記他の連結手段より粗い
表面粗さ、前記他の連結手段より大きい事前変形量、前
記他の連結手段より小さい降伏力、及び前記他の連結手
段より小さい疲労限度のうちすくなくとも1つを備えて
いる。一般に、同一性状の材料が弾塑性変形するときの
特性は1本の疲労曲線で表され、材料に加わる応力が小
さくなるにつれて疲労破壊における破断までの繰り返し
数が次第に大きくなる。そして、応力がある程度小さく
なって疲労限度となると、破断までの繰り返し数はほぼ
無限回となり、有限回の弾塑性変形ではほぼ破断しなく
なる。このとき、材料の表面粗さが粗くなったり、材料
に予め事前に所定の変形量が付与されていたり、材料の
降伏力が小さくなったり、材料の疲労限度が小さくなっ
たりすると、この疲労曲線のうち少なくとも疲労限度と
なる前の部分が低応力側にシフトする。すなわち、破断
までの繰り返し数を同一値に維持するためには加える応
力を小さくしなければならなくなり、同一の応力が加わ
る場合には破断までの繰り返し数が少なくなる。そこ
で、他の連結手段よりも指標用連結手段の表面粗さを粗
くしたり、事前に与える変形量を大きくしたり、降伏力
を小さくしたり、疲労限度を小さくしたりすることによ
り、指標用連結手段の破断までの繰り返し数を他の連結
手段よりも少なくすることができる。
(3) In (1) above, preferably, the indicator connecting means has a rougher surface roughness than the other connecting means, a pre-deformation larger than the other connecting means, and the other connecting means. At least one of a lower yield force and a lower fatigue limit than said other coupling means. In general, the characteristics of a material having the same properties when it undergoes elasto-plastic deformation are represented by a single fatigue curve. As the stress applied to the material decreases, the number of repetitions until fracture in fatigue fracture increases. When the stress is reduced to some extent and the fatigue limit is reached, the number of repetitions up to the fracture becomes almost infinite, and the fracture is hardly caused by the finite number of elastic-plastic deformations. At this time, when the surface roughness of the material becomes rough, a predetermined amount of deformation is given to the material in advance, the yield force of the material becomes small, or the fatigue limit of the material becomes small, the fatigue curve becomes smaller. At least the portion before the fatigue limit is shifted to the low stress side. That is, in order to maintain the same number of repetitions until breakage, the applied stress must be reduced, and when the same stress is applied, the number of repetitions until breakage decreases. Therefore, by increasing the surface roughness of the connecting means for the indicator, increasing the amount of deformation given in advance, reducing the yield force, and reducing the fatigue limit than other connecting means, The number of repetitions until the connection means is broken can be smaller than that of other connection means.

【0012】(4)また上記目的を達成するために、本
発明は、互いに相対変位する2つの部材にそれぞれ接続
される第1の接続手段及び第2の接続手段と、これら第
1の接続手段と第2接続手段との間を連結し、前記2つ
の部材間の相対変位に応じて弾塑性変形する複数の連結
手段とを備えた弾塑性ダンパにおいて、前記複数の連結
手段のうち、一部の連結手段のみが、他の大部分の連結
手段よりも所定期間だけ先に疲労破壊して破断するよう
に構成する。
(4) In order to achieve the above object, the present invention provides a first connecting means and a second connecting means which are respectively connected to two members which are displaced relative to each other, and the first connecting means. And a second connecting means, and a plurality of connecting means for performing elasto-plastic deformation in accordance with a relative displacement between the two members, wherein a part of the plurality of connecting means Only the connecting means is configured to be fractured by fatigue before the most other connecting means for a predetermined period.

【0013】(5)さらに上記目的を達成するために、
本発明は、互いに相対変位する2つの部材にそれぞれ接
続される第1の接続手段及び第2の接続手段と、これら
第1の接続手段と第2接続手段との間を連結し、前記2
つの部材間の相対変位に応じて弾塑性変形する複数の連
結手段とを備えた弾塑性ダンパのメンテナンス方法にお
いて、前記複数の連結手段のうち、一部の連結手段のみ
を、他の大部分の連結手段よりも所定期間だけ先に疲労
破壊して破断するように構成しておき、前記一部の連結
手段の破断が見つかった場合には、破断していない前記
大部分の連結手段を含むすべての連結手段を交換する。
(5) In order to further achieve the above object,
The present invention relates to a first connecting means and a second connecting means which are respectively connected to two members which are displaced relative to each other, and to connect between the first connecting means and the second connecting means,
A maintenance method for an elasto-plastic damper comprising a plurality of coupling means that undergoes elasto-plastic deformation in accordance with the relative displacement between the two members, wherein, of the plurality of coupling means, only a part of the The connection means is configured to be broken by fatigue failure only for a predetermined period of time before the connection means, and if a breakage of the part of the connection means is found, all of the connection means including most of the connection means which has not been broken Replace the connecting means.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しつつ説明する。以下説明する実施形態は、発電プ
ラントや化学プラント等の配管系を支持する弾塑性ダン
パの実施形態である。本発明の第1の実施形態を図1〜
図9により説明する。本実施形態による弾塑性ダンパが
配置される発電プラントや化学プラント等の配管系の一
例を表す概略配置図を図2に示す。
Embodiments of the present invention will be described below with reference to the drawings. The embodiment described below is an embodiment of an elasto-plastic damper that supports a piping system of a power plant or a chemical plant. FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG. FIG. 2 is a schematic layout diagram illustrating an example of a piping system of a power plant, a chemical plant, or the like in which the elasto-plastic damper according to the present embodiment is arranged.

【0015】図2において、プラント内の所定のプロセ
スのための配管系1が引き回されており、この配管系1
は、支持装置2a〜eを介しそれぞれ建屋の壁面や固定
構造物等(ともに図示せず)に対して支持されている。
このとき、これら支持装置2a〜eは、配管系1の自重
を単純に支える機能や、あるいは地震時等の配管の振動
を拘束することで振動を抑制する機能を備えており、プ
ラント内の設備の配置及び配管系1の引き回し態様等の
レイアウト上の都合によって適宜設置されるようになっ
ている。
In FIG. 2, a piping system 1 for a predetermined process in a plant is routed.
Are supported on the wall surfaces of the building, fixed structures, and the like (both are not shown) via the supporting devices 2a to 2e.
At this time, these support devices 2a to 2e have a function of simply supporting the own weight of the piping system 1 or a function of restraining vibration by restraining the vibration of the piping during an earthquake or the like. And the layout of the piping system 1 in accordance with the layout and the like.

【0016】また配管系1は、上記支持装置2a〜2e
のほかに、例えば地震発生時等に発生する振動エネルギ
を吸収し振動を抑制するために弾塑性ダンパ3,3によ
って図示しない壁面や固定構造物等に対して支持されて
いる。
The piping system 1 is provided with the support devices 2a to 2e.
In addition, for example, in order to absorb vibration energy generated at the time of an earthquake or the like and to suppress vibration, it is supported by elastic-plastic dampers 3 and 3 against a wall surface or a fixed structure (not shown).

【0017】本実施形態はこの弾塑性ダンパ3の構造に
関するものである。本実施形態による弾塑性ダンパ3の
全体構造を表す斜視図を図1に、図1中指標弾塑性部材
6a(後述)の詳細構造を表す斜視図を図3に、図1中
弾塑性部材6b(後述)の詳細構造を表す斜視図を図4
に示す。図1において、本実施形態による弾塑性ダンパ
3は、互いに相対変位する2つの部材、この場合上記配
管系1及び上記壁面・固定構造物等にそれぞれ固定され
た継手接続部材7a,7b(図2参照)に接続される第
1の接続手段4及び第2の接続手段5と、これら第1の
接続手段4と第2接続手段5との間を連結し、上記2つ
の部材間の相対変位に応じて弾塑性変形する複数の連結
手段6とを備えている。
The present embodiment relates to the structure of the elastic-plastic damper 3. FIG. 1 is a perspective view showing the entire structure of the elasto-plastic damper 3 according to the present embodiment, FIG. 3 is a perspective view showing the detailed structure of an index elasto-plastic member 6a (described later) in FIG. 1, and FIG. FIG. 4 is a perspective view showing the detailed structure of (described later).
Shown in In FIG. 1, an elasto-plastic damper 3 according to the present embodiment includes two members that are relatively displaced from each other, in this case, joint connection members 7a and 7b (FIG. 2) fixed to the piping system 1 and the wall / fixed structure, respectively. ) Connected to the first connection means 4 and the second connection means 5 and connected between the first connection means 4 and the second connection means 5 so that the relative displacement between the two members can be reduced. And a plurality of connecting means 6 that undergo elasto-plastic deformation in response.

【0018】第1の接続手段4は、球面継手8、長さ調
節部材9、締結部材10、接続部材11、すきま部材1
2、接続部材13、及び破断防止部材14から構成され
ており、第2の接続手段は、球面継手15、長さ調節部
材16、締結部材18、接続部材19、すきま部材2
0、接続部材21、及び破断防止部材22から構成され
ている。また連結手段6は、指標用連結手段としての指
標弾塑性部材6aと、これ以外の弾塑性部材6bとから
構成されており、それぞれの形状は図3及び図4に示す
ようになっている。またこれら弾塑性部材6a,6bは
同一の材料によって構成されている。
The first connecting means 4 includes a spherical joint 8, a length adjusting member 9, a fastening member 10, a connecting member 11, and a clearance member 1.
2, a connection member 13, and a break prevention member 14. The second connection means includes a spherical joint 15, a length adjustment member 16, a fastening member 18, a connection member 19, and a clearance member 2.
0, a connection member 21 and a break prevention member 22. The connecting means 6 includes an index elastic-plastic member 6a as an index connecting means and an elastic-plastic member 6b other than the index elastic-plastic member, and their respective shapes are as shown in FIGS. These elastic-plastic members 6a and 6b are made of the same material.

【0019】第1の接続手段4において、球面継手8
は、軸方向長さが伸縮可能な長さ調節部材9に回動可能
に接続されており、長さ調節部材9の球面継手8と反対
側の部分は、接続部材11の板状部分11aに固定され
ている。接続部材11のブロック状部分11b、3つの
すきま部材12、及び反対側の接続部材13のブロック
状部分13bには、締結部材10を通すための貫通穴
(図示せず)がそれぞれ形成されており、また弾塑性部
材6a,6bの上部にも図3及び図4に示すように締結
部材10を通すための貫通穴6aa,6baがそれぞれ
形成されている。これらは、図1に示されるように、ブ
ロック状部分11b、弾塑性部材6b、すきま部材1
2、弾塑性部材6b、すきま部材12、指標弾塑性部材
6a、すきま部材12、弾塑性部材6b、反対側の接続
部材13のブロック状部分13bの順で締結部材10,
10によって串刺しにされ、締結部材10,10が締結
されることで互いに強固に固定されている。
In the first connection means 4, the spherical joint 8
Is rotatably connected to a length adjusting member 9 whose axial length can be extended and contracted. A portion of the length adjusting member 9 opposite to the spherical joint 8 is connected to a plate-like portion 11 a of the connecting member 11. Fixed. Through holes (not shown) for passing the fastening members 10 are formed in the block-shaped portion 11b of the connection member 11, the three clearance members 12, and the block-shaped portion 13b of the opposite connection member 13, respectively. 3 and 4, through holes 6aa and 6ba for passing the fastening member 10 are formed in the upper portions of the elasto-plastic members 6a and 6b, respectively. These are, as shown in FIG. 1, a block-shaped portion 11b, an elasto-plastic member 6b, and a clearance member 1b.
2, the elasto-plastic member 6b, the clearance member 12, the index elasto-plastic member 6a, the clearance member 12, the elasto-plastic member 6b, and the fastening member 10,
10 skewers, and the fastening members 10 and 10 are firmly fixed to each other by being fastened.

【0020】一方、第2の接続手段5もほぼ第1の接続
手段と同様の構成であり、接続部材19の板状部分19
aに固定された長さ調節部材16に球面継手15が回動
可能に接続されており、弾塑性部材6a,6bの下部に
図3及び図4に示すように締結部材18を通すための貫
通穴6ab,6bbがそれぞれ形成されており、接続部
材19のブロック状部分19b、弾塑性部材6b、すき
ま部材20、指標弾塑性部材6a、すきま部材20、弾
塑性部材6b、すきま部材20、弾塑性部材6b、反対
側の接続部材13のブロック状部分21bの順で締結部
材18,18によって串刺しにされ、互いに強固に固定
されている。
On the other hand, the second connecting means 5 has substantially the same configuration as that of the first connecting means.
The spherical joint 15 is rotatably connected to the length adjusting member 16 fixed to the lower end of the elastic member 6a, 6b. Holes 6ab and 6bb are formed respectively, and the block-shaped portion 19b of the connecting member 19, the elasto-plastic member 6b, the clearance member 20, the index elasto-plastic member 6a, the clearance member 20, the elasto-plastic member 6b, the clearance member 20, the elasto-plastic The member 6b and the block-shaped portion 21b of the connecting member 13 on the opposite side are skewered by the fastening members 18 and 18 and are firmly fixed to each other.

【0021】そして、このような第1及び第2の接続手
段4,5において、第1の接続手段4の接続部材13の
板状部分13a,13aと、第2の接続手段5の接続部
材19の板状部分19aには破断防止部材14が貫通す
る貫通穴(図示せず)が形成されており、これらの貫通
穴に破断防止部材14が通されることによってこれら板
状部分13a,13aと板状部分19aとが係合してい
る。但しこのとき、板状部分19aの貫通穴の大きさは
破断防止部材14の径よりも大きく、破断防止部材14
との間には隙間が形成されている。これにより、板状部
分19aと板状部分13aとの相対変位がこの隙間より
小さい場合には破断防止部材14はその相対変位に影響
は与えないが、相対変位がこの隙間より大きくなる場合
には破断防止部材14がその貫通穴の縁にあたり、相対
変位を制限するようになっている。これは、弾塑性部材
6a,6bが全て破断する状況を仮に想定した場合であ
っても、弾塑性ダンパ3が二つに分離しないように万全
を期すためのものである。また同様に、第2の接続手段
5の接続部材21の板状部分21a,21aと、第1の
接続手段4の接続部材11の板状部分11aにも破断防
止部材22が貫通する貫通穴(図示せず)が形成され、
これら板状部分21a,21aと板状部分21bとが係
合している。このような構造により、概略的に言うと、
弾塑性部材6a,6bのくびれ部分6ac,6bcを境
にした図1中上側の部材と図1中左側の部材とが、継手
接続部材7aを介して接続された配管系1と振動する一
方、弾塑性部材6a,6bのくびれ部分6ac,6bc
を境にした図1中下側の部材と図1中右側の部材とが、
継手接続部材7bを介して接続された壁面・固定構造物
等にとともに振動するようになっている。
In the first and second connecting means 4 and 5, the plate-like portions 13 a and 13 a of the connecting member 13 of the first connecting means 4 and the connecting member 19 of the second connecting means 5 are connected. Are formed with through holes (not shown) through which the break prevention member 14 penetrates, and the break prevention members 14 are passed through these through holes to form the plate portions 13a and 13a. The plate-shaped portion 19a is engaged. However, at this time, the size of the through hole of the plate portion 19a is larger than the diameter of the break prevention member 14,
Is formed between them. Thereby, when the relative displacement between the plate-shaped portion 19a and the plate-shaped portion 13a is smaller than the gap, the break prevention member 14 does not affect the relative displacement, but when the relative displacement is larger than the gap. The break prevention member 14 hits the edge of the through hole and limits the relative displacement. This is to ensure that the elasto-plastic damper 3 does not separate into two even if it is supposed that all the elasto-plastic members 6a and 6b break. Similarly, through-holes through which the break prevention member 22 penetrates also into the plate-like portions 21a of the connection member 21 of the second connection means 5 and the plate-like portion 11a of the connection member 11 of the first connection means 4 are provided. (Not shown) is formed,
These plate-like portions 21a, 21a are engaged with the plate-like portion 21b. With such a structure, roughly speaking,
While the upper member in FIG. 1 and the left member in FIG. 1 border on the constricted portions 6ac and 6bc of the elasto-plastic members 6a and 6b, vibrate with the piping system 1 connected via the joint connecting member 7a, Constricted portions 6ac, 6bc of elasto-plastic members 6a, 6b
The lower member in FIG. 1 and the right member in FIG.
It vibrates together with a wall surface, a fixed structure, and the like connected via the joint connection member 7b.

【0022】ここで、本実施形態の要部は、指標用連結
手段である指標弾塑性部材6aを、疲労破壊するときの
破断までの繰り返し数が他の連結手段である弾塑性部材
6bよりも少なくなるように構成したことにある。すな
わち、図3と図4とを比較して分かるように、指標弾塑
性部材6aと弾塑性部材6bとの差異は、建屋の壁面や
固定構造物等と配管系1とが相対変位に応じて変形する
主要部である指標弾塑性部材6aのくびれ部分6acに
おいて、その下部に穴6adが形成されていることのみ
である。この穴6adが開けてあることにより、配管系
1と壁面・固定構造物等との間がある量だけ相対変位し
たとき、その変位に対応する変形によって指標弾塑性部
材6aに発生する最大応力が、弾塑性部材6bに発生す
る最大応力よりも大きくなるようになっている。なお、
この穴6adは指標弾塑性部材6aに貫通していても貫
通していなくてもどちらでもよい。
Here, the main part of this embodiment is that the index elasto-plastic member 6a, which is the index connecting means, has a larger number of repetitions until rupture at the time of fatigue failure than the elasto-plastic member 6b, which is another connecting means. That is, it is configured to reduce the number. That is, as can be seen by comparing FIGS. 3 and 4, the difference between the index elasto-plastic member 6a and the elasto-plastic member 6b is due to the relative displacement between the piping system 1 and the wall or fixed structure of the building. The only difference is that a hole 6ad is formed in the lower part of the constricted portion 6ac of the index elastic-plastic member 6a, which is the main part to be deformed. When the hole 6ad is formed, when the piping system 1 is relatively displaced by a certain amount between the piping system 1 and the wall / fixed structure, etc., the maximum stress generated in the index elastic-plastic member 6a by the deformation corresponding to the displacement is increased. And the maximum stress generated in the elastic-plastic member 6b. In addition,
The hole 6ad may or may not penetrate the index elastic-plastic member 6a.

【0023】次に、上記構成による本実施形態の動作及
び作用を説明する。地震等によって建屋の壁面や固定構
造物等に対し配管系1が振動したとき、その相対変位が
第1及び第2の接続手段4,5を介して弾塑性部材6
a,6bに伝えられ、弾塑性部材6a,6bがそれぞれ
弾塑性変形し、配管系1の振動エネルギを吸収して配管
系1の振動を抑制する。しかし、これら弾塑性部材6
a,6bは、弾塑性変形をある所定の回数繰り返すと疲
労破壊して破断する性質を備えているため、すべての弾
塑性部材6a,6bが破断する前にメンテナンスを施さ
なければならない。
Next, the operation and operation of the present embodiment having the above configuration will be described. When the piping system 1 vibrates with respect to a building wall or a fixed structure due to an earthquake or the like, the relative displacement of the piping system 1 is changed via the first and second connection means 4 and 5 to the elasto-plastic member 6.
a, 6b, the elasto-plastic members 6a, 6b undergo elasto-plastic deformation, respectively, and absorb the vibration energy of the piping system 1 to suppress the vibration of the piping system 1. However, these elasto-plastic members 6
Since a and 6b have the property of being fractured by fatigue when they undergo elastoplastic deformation a predetermined number of times, maintenance must be performed before all the elastoplastic members 6a and 6b break.

【0024】ここで一般に、同一性状の材料が弾塑性変
形するときには、それに加わる応力と疲労破壊における
破断までの繰り返し数が1本の疲労曲線で表される。弾
塑性部材6a,6bを構成する材料に関する疲労曲線イ
を図5に示す。図5に示されるように、材料に加わる応
力σが小さくなるにつれて破断までの繰り返し数nが次
第に大きくなる。そして、応力σがある程度小さくなっ
て疲労限度となると、破断までの繰り返し数nはほぼ無
限回となり、有限回の弾塑性変形ではほぼ破断しなくな
る。
In general, when a material having the same properties undergoes elasto-plastic deformation, the stress applied thereto and the number of repetitions up to the fracture in fatigue fracture are represented by one fatigue curve. FIG. 5 shows a fatigue curve a for the material constituting the elasto-plastic members 6a and 6b. As shown in FIG. 5, as the stress σ applied to the material decreases, the number of repetitions n until fracture increases. Then, when the stress σ is reduced to some extent and reaches the fatigue limit, the number of repetitions n until the fracture becomes almost infinite, and the fracture is hardly caused by the finite number of elastic-plastic deformations.

【0025】ここで、本実施形態においては、弾塑性部
材6a,6bのうち指標用連結手段としての指標弾塑性
部材6aのみに穴6adを形成し応力を集中させること
により、同等の変形条件であっても、指標弾塑性部材6
aの最大応力σa1(=穴6adのまわりに発生する応
力)を他の弾塑性部材6bの最大応力σb1よりも大きく
している。これにより、指標弾塑性部材6aの破断まで
の繰り返し数na1は他の弾塑性部材6bの繰り返し数n
b1よりも少なくなるため、両者が経験する変形履歴が同
じであれば指標弾塑性部材6aは他の弾塑性部材6bよ
りも必ず先に疲労破壊し破断することとなる。そのた
め、少なくとも指標弾塑性部材6aが破断するまでは他
の弾塑性部材6bは破断することはないので、指標弾塑
性部材6aが破断するまでは弾塑性ダンパ3の機能は最
低でも保証されるとともに、指標弾塑性部材6aが破断
したかどうかを他の弾塑性部材6bの余寿命の指標とす
ることができる。したがって、指標弾塑性部材6aが破
断したかどうかの監視のみを常時行い、指標弾塑性部材
6aの破断が見つかったときは他の弾塑性部材6bの余
寿命も長くなくメンテナンスすべき時期も遠くはないと
推定することができるので、破断していない他の弾塑性
部材6bを含めてすべての弾塑性部材6を交換すればよ
い。ここで、このときの指標弾塑性部材6aの破断は目
視で確認してもよいが、電気的検出手段を用いてもよ
い。この電気的検出手段による検出を図6に示す。すな
わち、図6に示すように、指標弾塑性部材6aの側面
に、指標弾塑性部材6aとともに変形するような導線2
3を固定し、この導線23の抵抗を電気抵抗測定装置2
4により測定する。指標弾塑性部材6aが破断すると同
時に導線23が破断し、電気抵抗測定装置24による抵
抗測定値が無限大となる。これにより、離れた場所から
も指標弾塑性部材6aの破断を確認することができる。
従って、この電気抵抗測定装置24の測定値が無限大を
示した時に、すべての弾塑性部材6の交換を行えばよ
い。なお、この導線23及び電気抵抗測定装置24は指
標弾塑性部材6aの破断を検出する手段の一例であり、
他の電気的検出手段や、さらに電気的でない他の検出手
段を用いて指標弾塑性部材6aの破断を検出してもよ
い。なお、特開平5−93475号公報では、弾塑性ダ
ンパのメンテナンスすべき時期の見積もりについて特に
配慮されていないものの、各エネルギ吸収体の上下方向
中央部の板幅を適宜調整して各エネルギ吸収体の剛性を
調整する構成が開示されている。そこでこの構成を応用
し、その剛性の調整の際に、ある1つのエネルギ吸収体
だけ他の吸収体よりも剛性を小さくしておくという構成
が考えられないことはない。しかしながら、剛性と降伏
点は必ずしも明確に対応するものではなく、剛性を最も
弱くしたからといって最も最初に疲労破壊するとは限ら
ない。したがって、このように応用した構成であって
も、本実施形態のようにメンテナンスのための指標とす
ることはできず、本実施形態の上記のような作用を得る
ことはできない。
Here, in the present embodiment, the holes 6ad are formed only in the index elasto-plastic member 6a as the index connecting means of the elasto-plastic members 6a and 6b, and the stress is concentrated, so that the same deformation condition is obtained. Even if there is, the index elastic-plastic member 6
The maximum stress σ a1 (= the stress generated around the hole 6ad) is larger than the maximum stress σ b1 of the other elasto-plastic member 6b. As a result, the number of repetitions n a1 until fracture of the index elasto-plastic member 6a is equal to the number of repetitions n of the other elasto-plastic member 6b.
Since it is less than b1 , if the deformation history experienced by both is the same, the index elasto-plastic member 6a will necessarily fail and break before the other elasto-plastic members 6b. Therefore, at least until the index elasto-plastic member 6a breaks, the other elasto-plastic members 6b do not break, and at least the function of the elasto-plastic damper 3 is guaranteed until the index elasto-plastic member 6a breaks. Whether or not the index elastic-plastic member 6a has broken can be used as an index of the remaining life of the other elastic-plastic member 6b. Therefore, only monitoring whether or not the index elasto-plastic member 6a is broken is performed at all times. When the index elasto-plastic member 6a is found to be broken, the remaining life of the other elasto-plastic members 6b is not long and the time for maintenance should be long. Since it can be estimated that there is no elasto-plastic member 6b, all the elasto-plastic members 6 including the other elasto-plastic member 6b that has not been broken may be replaced. Here, the breakage of the index elasto-plastic member 6a at this time may be confirmed visually, but an electrical detection means may be used. FIG. 6 shows the detection by this electrical detection means. That is, as shown in FIG. 6, a conductive wire 2 deforming together with the index elasto-plastic member 6 a is provided on the side surface of the index elasto-plastic member 6 a.
3 is fixed, and the resistance of the conductor 23 is measured by the electric resistance measuring device 2.
Measure according to 4. At the same time that the index elastic-plastic member 6a breaks, the conductor 23 breaks, and the resistance measured by the electric resistance measuring device 24 becomes infinite. Thereby, the fracture of the index elastic-plastic member 6a can be confirmed even from a distant place.
Therefore, when the measured value of the electric resistance measuring device 24 indicates infinity, all the elasto-plastic members 6 may be replaced. Note that the conductor 23 and the electric resistance measuring device 24 are an example of a unit for detecting the breakage of the index elastic-plastic member 6a,
The breakage of the index elastic-plastic member 6a may be detected by using another electric detection unit or another non-electrical detection unit. In Japanese Unexamined Patent Publication No. Hei 5-93475, although no particular consideration is given to the estimation of the time at which the elasto-plastic damper should be maintained, the width of the central portion of each energy absorber in the vertical direction is appropriately adjusted to adjust each energy absorber. There is disclosed a configuration for adjusting the rigidity. Therefore, it is not impossible to consider a configuration in which this configuration is applied and the rigidity of one energy absorber is made smaller than that of the other energy absorber when the rigidity is adjusted. However, the stiffness and the yield point do not always correspond clearly, and the weakest stiffness does not always result in the first fatigue failure. Therefore, even with the configuration applied in this way, it cannot be used as an index for maintenance as in the present embodiment, and the above-described operation of the present embodiment cannot be obtained.

【0026】ここで、指標弾塑性部材6aの穴6adの
形状及び位置を適宜設定することにより、さらに精度よ
くメンテナンスすべき時期を見積もることができる。こ
れを以下に説明する。すなわち、本実施形態において
は、穴6adの有無によって指標弾塑性部材6aに応力
集中を引き起こし、これによって指標弾塑性部材6a及
び弾塑性部材6bの破断しやすさに差をつけているが、
指標弾塑性部材6aの穴6adの形状及び位置を適宜設
定することにより、応力集中の程度や最大応力値を制御
して、破断しやすさの差を調整することができる。この
ことは、この穴6adに関する設定によって、指標弾塑
性部材6aが破断するときの他の弾塑性部材6bの疲労
状態を予め設定できることを意味することから、言い換
えれば、指標弾塑性部材6aが破断した後に弾塑性部材
6bが吸収できる振動エネルギ量を予め設定することが
できることになる。これにより、指標弾塑性部材6aが
破断したかどうかの監視のみを常時行い、指標弾塑性部
材6aの破断が見つかったときは、他の弾塑性部材6b
がこれ以降吸収できる振動エネルギが既に明確になって
いることから、その振動エネルギを超える外乱が発生す
ると思われるまでの期間を他の弾塑性部材6bの余寿命
とすることができる。したがって、指標弾塑性部材6a
が破断した後、メンテナンスすべき時期までの期間長さ
をより精度よく見積もることができる。
Here, by appropriately setting the shape and position of the hole 6ad of the index elasto-plastic member 6a, it is possible to more accurately estimate the time for maintenance. This will be described below. That is, in the present embodiment, the presence or absence of the hole 6ad causes stress concentration in the index elasto-plastic member 6a, thereby making the index elasto-plastic member 6a and the elasto-plastic member 6b different easily.
By appropriately setting the shape and position of the hole 6ad of the index elasto-plastic member 6a, the degree of stress concentration and the maximum stress value can be controlled to adjust the difference in rupture easiness. This means that by setting the hole 6ad, the fatigue state of the other elastoplastic member 6b when the index elastoplastic member 6a breaks can be set in advance. In other words, the index elastoplastic member 6a breaks. After this, the amount of vibration energy that can be absorbed by the elastic-plastic member 6b can be set in advance. Thus, only monitoring whether or not the index elasto-plastic member 6a has broken is performed, and when a rupture of the index elasto-plastic member 6a is found, the other elasto-plastic member 6b
Since the vibration energy that can be absorbed thereafter has already been clarified, the period until it is considered that disturbance exceeding the vibration energy is generated can be set as the remaining life of the other elasto-plastic member 6b. Therefore, the index elastic-plastic member 6a
It is possible to more accurately estimate the length of the period until the time when maintenance is required after the fracture.

【0027】また、この設定する振動エネルギ量を破断
点検を行う周期との関係に基づいて設定すれば、さらに
合理的なメンテナンスを行うことができる。これを以下
に説明する。すなわち、指標弾塑性部材6aの破断後に
弾塑性部材6bが吸収できる振動エネルギ量を、指標弾
塑性部材6aの破断点検を行う周期において考えうる地
震等の振動外乱で発生する最大振動エネルギ量より大き
く設定すればよい。このようにすれば、仮に前回点検直
後に指標弾塑性部材6aが破断し、今回点検までその破
断状態のままであったとしても、破断していない残りの
弾塑性部材6bはこの間に生じ得る最大振動エネルギ量
を吸収可能であるため、弾塑性ダンパ3の機能は維持さ
れている。したがって、その点検周期ごとに指標弾塑性
部材6aが破断しているかどうかのみをチェックし、破
断が見つかったときにすべての弾塑性部材6a,6bを
交換するようにすれば、弾塑性ダンパ3の機能は常に維
持できることになる。これにより、指標弾塑性部材6a
の穴6adによって、弾塑性ダンパ3の点検時期及びメ
ンテナンスを行う時期の管理を併せて行うことができ
る。
Further, if the vibration energy to be set is set on the basis of the relationship with the cycle at which the fracture inspection is performed, more reasonable maintenance can be performed. This will be described below. That is, the amount of vibration energy that can be absorbed by the elasto-plastic member 6b after the rupture of the index elasto-plastic member 6a is larger than the maximum amount of vibration energy generated by a vibration disturbance such as an earthquake that can be considered in a cycle of performing the rupture inspection of the index elasto-plastic member 6a. Just set it. In this way, even if the index elasto-plastic member 6a breaks immediately after the previous inspection and remains in the broken state until the current inspection, the remaining elasto-plastic member 6b that has not broken remains the maximum Since the vibration energy can be absorbed, the function of the elasto-plastic damper 3 is maintained. Therefore, it is only necessary to check whether or not the index elasto-plastic member 6a is broken at each inspection cycle, and to replace all the elasto-plastic members 6a and 6b when a break is found. Function will always be maintained. Thereby, the index elastic-plastic member 6a
With the hole 6ad, it is possible to simultaneously control the inspection time and the maintenance time of the elasto-plastic damper 3.

【0028】以上説明したように、本実施形態によれ
ば、指標弾塑性部材6aの破断が見つかったときにすべ
ての弾塑性部材6を交換するようにするので、従来より
簡易な方法でかつ精度よく弾塑性ダンパ3全体のメンテ
ナンスすべき時期を見積もることができる。したがっ
て、無駄な部品交換をなくしコスト低減を図ることがで
きる。
As described above, according to the present embodiment, all elasto-plastic members 6 are replaced when a breakage of the index elasto-plastic member 6a is found. The maintenance time of the entire elasto-plastic damper 3 can be well estimated. Therefore, it is possible to eliminate unnecessary component replacement and reduce costs.

【0029】なお、上記第1の実施形態においては、指
標弾塑性部材6aに穴6adを設けることにより応力集
中を発生させたが、このような構造に限られるものでは
ない。すなわち、配管系1及び壁面・固定構造物等の相
対変位に対応した変形が生じる部分の形状を、指標弾塑
性部材6aに発生する最大応力が弾塑性部材6bに発生
する最大応力よりも大きくなるように構成すれば足り
る。このような変形例を以下順次説明する。 (1)溝又は凹部による応力集中を利用する場合 すなわち、図7及び図8に示すように、指標弾塑性部材
6aのくびれ部分6acに穴6adではなく溝6aeあ
るいは溝6afを形成する。このような構造であって
も、これら溝6aeあるいは溝6afに応力集中が生
じ、最大応力が他の弾塑性部材6bよりも大きくなるの
で、上記第1の実施形態と同様の効果を得る。なお、溝
は図7及び図8のように深さが一定であったり、直線形
状である必要はなく、深さがだんだん深くなる形状であ
ったり、曲線形状であってもよい。また、図7では溝6
aeがくびれ部分6acの側面を幅方向に横断するよう
に設けられ、図8では溝6afがくびれ部分6acの正
面を幅方向に横断するように設けられているが、このよ
うにある面を横断するように形成するのにも限られず、
ある面の一部にみ(例えば一方の端面から所定長さの切
り込み状に)設けてもよい。また、溝は、必ずしもくび
れ部分6acに形成する必要もなく、配管系1及び壁面
・固定構造物等の相対変位に対応した変形が生じる部分
の表面であれば、どの面に形成してもよい。これらの場
合も、溝がない場合よりは最大応力が大きくなるため、
同様の効果を得る。さらに、必ずしも溝を形成しなくて
もよい。すなわち、溝を形成しなくても、応力集中が生
じる凹な部分に関し、変形が生じる指標弾塑性部材6a
の凹な部分の最小曲率を、弾塑性部材6bの同様の凹な
部分の最小曲率よりも小さくすればよい。これらの場合
も、最大応力は指標弾塑性部材6aのほうが大きくなる
ため、同様の効果を得る。
In the first embodiment, the stress concentration is generated by providing the hole 6ad in the index elastic-plastic member 6a. However, the present invention is not limited to such a structure. That is, the maximum stress generated in the index elasto-plastic member 6a is larger than the maximum stress generated in the elasto-plastic member 6b in the shape of the portion where the deformation corresponding to the relative displacement of the piping system 1 and the wall / fixed structure is generated. It suffices if it is configured as follows. Such modifications will be sequentially described below. (1) When Using Stress Concentration Due to Grooves or Recesses That is, as shown in FIGS. 7 and 8, not the hole 6ad but the groove 6ae or the groove 6af is formed in the narrow portion 6ac of the index elastic-plastic member 6a. Even with such a structure, stress concentration occurs in the groove 6ae or the groove 6af, and the maximum stress is larger than that of the other elasto-plastic member 6b. Therefore, the same effect as in the first embodiment is obtained. The grooves do not have to have a constant depth as shown in FIGS. 7 and 8 or have a linear shape, and may have a shape in which the depth is gradually increased or a curved shape. Also, in FIG.
ae is provided so as to cross the side surface of the constricted portion 6ac in the width direction, and in FIG. 8, the groove 6af is provided so as to cross the front surface of the constricted portion 6ac in the width direction. It is not limited to forming to
It may be provided only on a part of a certain surface (for example, in a cut shape of a predetermined length from one end surface). Further, the groove does not necessarily need to be formed in the constricted portion 6ac, and may be formed on any surface as long as the surface of the piping system 1, the wall surface, the fixed structure, and the like is deformed according to the relative displacement. . In these cases as well, the maximum stress is greater than without grooves,
A similar effect is obtained. Further, the grooves need not necessarily be formed. That is, even if the groove is not formed, the index elasto-plastic member 6a is deformed with respect to the concave portion where the stress concentration occurs.
May be smaller than the minimum curvature of a similar concave portion of the elasto-plastic member 6b. Also in these cases, the same effect is obtained because the maximum stress of the index elastic-plastic member 6a is larger than that of the index elastic-plastic member 6a.

【0030】(2)曲げ変形における内側・外側の応力
差を利用する方法 すなわち、図9に示すように、指標用連結手段として穴
や溝等を設けない指標弾塑性部材6aA(すなわち事実
上図4の弾塑性部材6bと同じもの)を用い、他の連結
手段として図4の弾塑性部材6bよりもやや厚い弾塑性
部材6bAを用い、2枚の指標弾塑性部材6aAで1枚
の弾塑性部材6bAを挟む構造とする。この場合、配管
系1及び壁面・固定構造物等の相対変位に対応した曲げ
変形が生じると、部材の外側の方が応力が大きくなるこ
とから、一方(つまり曲げ方向の外側)の指標弾塑性部
材6aAの最大応力が弾塑性部材6bAの最大応力より
も大きくなり、その指標弾塑性部材6aAが早く破断す
る。これにより、上記第1の実施形態と同様の効果を得
ることができる。
(2) Method using inner / outer stress difference in bending deformation In other words, as shown in FIG. 9, an index elasto-plastic member 6aA having no holes or grooves as index connecting means (ie, FIG. The same elastic-plastic member 6b as that of FIG. 4) is used, and another elastic member 6bA that is slightly thicker than the elastic-plastic member 6b of FIG. 4 is used as another connecting means. The structure sandwiches the member 6bA. In this case, when bending deformation corresponding to the relative displacement of the piping system 1 and the wall surface / fixed structure, etc. occurs, the stress becomes larger on the outside of the member. The maximum stress of the member 6aA becomes larger than the maximum stress of the elasto-plastic member 6bA, and the index elasto-plastic member 6aA is quickly broken. Thereby, the same effect as in the first embodiment can be obtained.

【0031】なお、図9においては、最大応力の差をよ
り多くするために、弾塑性部材6bAの厚さを、指標弾
塑性部材6aAの厚さより厚くしたが、これは必ずしも
必要でなく、同厚でもよい。
In FIG. 9, the thickness of the elasto-plastic member 6bA is made larger than the thickness of the index elasto-plastic member 6aA in order to increase the difference between the maximum stresses. However, this is not always necessary. It may be thick.

【0032】また、この図9における指標用連結手段と
しての指標弾塑性部材6aAを、薄膜状、例えば金属メ
ッキ等に置き換えた構造としてもよい。この場合は、以
下のような効果がある。すなわち、上記第1の実施形態
等においては、指標用連結手段である指標弾塑性部材6
aや6aAが弾塑性ダンパ3全体に剛性をもたせる1つ
の支持構造を構成しているため、指標弾塑性部材6aが
破断した後には弾塑性ダンパ3全体の剛性はその分低下
する。したがって、当初設計時に、指標弾塑性部材6a
が破断する前の全体剛性と、破断後の全体剛性との両方
を算出し、破断後にも配管系1の振動特性に悪影響を及
ぼさないように検討する必要がある。これに対して、指
標用連結手段を薄膜とする場合には、もともと剛性に寄
与しない構造となるので、破断した場合であっても、弾
塑性ダンパ3全体の剛性が破断前とほとんど変わらず、
破断後の配管系1の振動特性が変化しない。したがっ
て、当初設計時に、指標弾塑性部材6aが破断する前の
全体剛性のみを算出し検討すれば足りるので、その分設
計が容易になる。
The index elastic-plastic member 6aA as the index connecting means in FIG. 9 may be replaced by a thin film, for example, a metal plating. In this case, the following effects are obtained. That is, in the first embodiment and the like, the index elastic-plastic member 6 serving as the index connecting means is used.
Since a and 6aA constitute one support structure that provides rigidity to the entire elasto-plastic damper 3, after the index elasto-plastic member 6a breaks, the stiffness of the entire elasto-plastic damper 3 decreases accordingly. Therefore, at the time of initial design, the index elasto-plastic member 6a
It is necessary to calculate both the total stiffness before the rupture and the total stiffness after the rupture, and to study so that the vibration characteristics of the piping system 1 are not adversely affected even after the rupture. On the other hand, when the connecting means for index is a thin film, the rigidity of the entire elasto-plastic damper 3 is almost the same as before the fracture even if the fracture occurs, since the structure does not originally contribute to the rigidity.
The vibration characteristics of the piping system 1 after breakage do not change. Therefore, at the time of initial design, it is sufficient to calculate and study only the overall stiffness before the index elastic-plastic member 6a breaks, which facilitates the design.

【0033】(3)その他 その他、上記(1)(2)以外にも、単純に弾塑性部材
の厚さを異ならせる方法等がある。すなわちこの場合
は、指標用連結手段として、穴や溝等を設けない指標弾
塑性部材6aA(すなわち事実上図4の弾塑性部材6b
と同じもの)を用い、他の連結手段として、図4の弾塑
性部材6bよりもやや厚い弾塑性部材6bAを用い、こ
れらを図1のように配置する方法である。
(3) Others In addition to the above (1) and (2), there is a method of simply varying the thickness of the elasto-plastic member. That is, in this case, as the index connecting means, the index elasto-plastic member 6aA having no holes or grooves (that is, the elasto-plastic member 6b in FIG.
This is a method in which an elastic-plastic member 6bA slightly thicker than the elastic-plastic member 6b in FIG. 4 is used as another connecting means, and these are arranged as shown in FIG.

【0034】本発明の第2の実施形態を図10〜図14
により説明する。本実施形態は、弾塑性ダンパに備えら
れる指標連結手段としての指標弾塑性部材206aとそ
の他の連結手段としての弾塑性部材206bとの間にお
いて、疲労曲線をシフトさせることにより疲労破壊する
ときの破断までの繰り返し数に差をつける実施形態であ
る。
FIGS. 10 to 14 show a second embodiment of the present invention.
This will be described below. In the present embodiment, the fracture at the time of fatigue failure by shifting the fatigue curve between the index elastic-plastic member 206a as the index coupling means provided in the elastic-plastic damper and the elastic-plastic member 206b as the other coupling means is described. This is an embodiment in which the number of repetitions up to is different.

【0035】本実施形態の要部である指標弾塑性部材2
06aの詳細構造を表す斜視図を図10に示す。この図
10において、指標弾塑性部材206aは材料及び外見
の形状は、図4に示した第1の実施形態の他の連結手段
としての弾塑性部材6bとほぼ同一である。すなわち、
指標弾塑性部材206aの上部には、締結部材10,1
0(図1参照)を通すための貫通穴206aa,206
baが形成されており、下部には、締結部材18,18
を通すための貫通穴206ab,206abが形成され
ており、上下方向中央部にはくびれ部分206acが形
成されている。但しこのとき、この指標弾塑性部材20
6aには、予め所定の曲げ応力を作用させてくびれ部分
206ac近傍を境に例えば略への字形状に変形させた
後、その曲げ応力を除去して再び元の形状に戻した点
が、第1の実施形態の弾塑性部材6bと異なる。その一
方、本実施形態の弾塑性ダンパに備えられるその他の連
結手段としての弾塑性部材206bは、第1の実施形態
の弾塑性部材6bと全く同一の構成であり、事前に変形
させていない。すなわち、これによって、指標弾塑性部
材206aの事前変形量を、弾塑性部材206bの事前
変形量より大きくしている。
The index elastic-plastic member 2 which is a main part of the present embodiment
FIG. 10 is a perspective view showing the detailed structure of the 06a. In FIG. 10, the index elasto-plastic member 206a is substantially the same in material and appearance as the elasto-plastic member 6b as another connecting means in the first embodiment shown in FIG. That is,
On the upper part of the index elastic-plastic member 206a, the fastening members 10, 1
0 (see FIG. 1) through holes 206aa, 206
ba is formed, and fastening members 18, 18
Through holes 206ab, 206ab are formed to pass through, and a constricted portion 206ac is formed at the center in the vertical direction. However, at this time, the index elastic-plastic member 20
6a, a point in which a predetermined bending stress is applied in advance and deformed into, for example, a substantially square shape around the constricted portion 206ac, and then the bending stress is removed to return to the original shape. This is different from the elasto-plastic member 6b of the first embodiment. On the other hand, the elasto-plastic member 206b as another connecting means provided in the elasto-plastic damper of the present embodiment has exactly the same configuration as the elasto-plastic member 6b of the first embodiment, and is not deformed in advance. That is, thereby, the pre-deformation amount of the index elastic-plastic member 206a is made larger than the pre-deformation amount of the elastic-plastic member 206b.

【0036】また、本実施形態による弾塑性ダンパのこ
れら指標弾塑性部材206a,206b以外の構造は、
第1の実施形態の弾塑性ダンパ3とほぼ同様である。
The structure of the elasto-plastic damper according to the present embodiment other than the index elasto-plastic members 206a and 206b is as follows.
This is almost the same as the elasto-plastic damper 3 of the first embodiment.

【0037】図5を用いて前述したように、一般に、同
一性状の材料が弾塑性変形するときの特性は1本の疲労
曲線で表され、材料に加わる応力が小さくなるにつれて
疲労破壊における破断までの繰り返し数が次第に大きく
なる。ところが、材料に予め事前に変形量が付与されて
いると、その変形量が大きいほど、その疲労曲線の疲労
限度となる前の部分が低応力側にシフトする。すなわ
ち、破断までの繰り返し数を同一値に維持するためには
加える応力を小さくしなければならなくなり、同一の応
力が加わる場合には破断までの繰り返し数が少なくな
る。ここで、本実施形態においては、他の連結手段であ
る弾塑性部材206bは事前変形量が0であるため図1
1に示すように第1の実施形態の疲労曲線イ(図5参
照)と同一の疲労曲線ロとなるが、その一方で、指標用
連結手段である指標弾塑性部材206aは事前変形量が
与えられているため、その疲労曲線ハは、疲労曲線ロよ
りも下方にシフトする。
As described above with reference to FIG. 5, in general, the characteristics when an identical material undergoes elasto-plastic deformation are represented by a single fatigue curve. The number of repetitions gradually increases. However, if the amount of deformation is previously given to the material, the larger the amount of deformation, the more the portion of the fatigue curve before the fatigue limit is shifted to a lower stress side. That is, in order to maintain the same number of repetitions until breakage, the applied stress must be reduced, and when the same stress is applied, the number of repetitions until breakage decreases. Here, in the present embodiment, since the pre-deformation amount of the elastic-plastic member 206b as another connecting means is 0, FIG.
As shown in FIG. 1, the fatigue curve B is the same as the fatigue curve A of the first embodiment (see FIG. 5), but the index elastic-plastic member 206a serving as the index connecting means is given a pre-deformation amount. Therefore, the fatigue curve C shifts downward from the fatigue curve B.

【0038】これにより、同等の変形条件であって、指
標弾塑性部材206aに発生する最大応力σa2と他の弾
塑性部材206bに発生する最大応力σb2とが等しくて
も、指標弾塑性部材206aの破断までの繰り返し数n
a2は他の弾塑性部材206bの繰り返し数nb2よりも少
なくなるため、第1の実施形態同様、両者が経験する変
形履歴が同じであれば指標弾塑性部材206aは他の弾
塑性部材206bよりも必ず先に疲労破壊し破断するこ
ととなる。そのため、少なくとも指標弾塑性部材206
aが破断するまでは他の弾塑性部材206bは破断する
ことはないので、指標弾塑性部材206aが破断するま
では弾塑性ダンパ3の機能は最低でも保証されるととも
に、指標弾塑性部材206aが破断したかどうかを他の
弾塑性部材206bの余寿命の指標とすることができ
る。したがって、第1の実施形態と同様、指標弾塑性部
材206aが破断したかどうかの監視のみを行い、指標
弾塑性部材206aの破断が見つかったときに、破断し
ていない他の弾塑性部材206bを含めてすべての弾塑
性部材206を交換すればよい。
Accordingly, even if the maximum stress σ a2 generated in the index elasto-plastic member 206a is equal to the maximum stress σ b2 generated in the other elasto-plastic member 206b under the same deformation condition, the index elasto-plastic member Number of repetitions n until breakage of 206a
Since a2 is smaller than the number of repetitions n b2 of the other elasto-plastic member 206b, the index elasto-plastic member 206a is larger than the other elasto-plastic member 206b if the deformation history experienced by both is the same as in the first embodiment. However, it also causes fatigue fracture and fracture first. Therefore, at least the index elastic-plastic member 206
Since the other elasto-plastic member 206b does not break until a breaks, the function of the elasto-plastic damper 3 is at least guaranteed until the index elasto-plastic member 206a breaks, and the index elasto-plastic member 206a is Whether the rupture has occurred can be used as an index of the remaining life of the other elastic-plastic member 206b. Therefore, as in the first embodiment, only monitoring whether or not the index elasto-plastic member 206a has broken is performed, and when a rupture of the index elasto-plastic member 206a is found, another elasto-plastic member 206b that has not broken is removed. All the elasto-plastic members 206 may be replaced.

【0039】すなわち、本実施形態によっても、第1の
実施形態と同様の効果を得ることができる。
That is, according to the present embodiment, the same effect as that of the first embodiment can be obtained.

【0040】なお、上記第1及び第2の実施形態におい
ては、弾塑性部材6a,6b等が略平板状であったが、
これに限られず、例えば厚さが一定でない部材、棒状部
材等であってもよい。
In the first and second embodiments, the elasto-plastic members 6a, 6b and the like are substantially flat.
The present invention is not limited to this, and may be, for example, a member having a non-uniform thickness, a rod-shaped member, or the like.

【0041】また、上記第1及び第2の実施形態を組み
合わせ、例えば、図3の指標弾塑性部材6aを配設する
前に予め変形させておく等を行ってもよいことは言うま
でもない。
It goes without saying that the first and second embodiments may be combined, for example, the index elasto-plastic member 6a shown in FIG. 3 may be deformed before being disposed.

【0042】さらに、上記第2の実施形態においては、
指標弾塑性部材206aには所定の変形量を事前付与す
る一方、弾塑性部材206bは事前変形させなかった
が、これに限られず、弾塑性部材206bも事前変形さ
せ、その変形量を指標弾塑性部材206aよりは小さく
するようにしてもよい。この場合も、同様の効果を得
る。
Further, in the second embodiment,
The index elasto-plastic member 206a was given a predetermined amount of deformation in advance, while the elasto-plastic member 206b was not pre-deformed. However, the present invention is not limited thereto. You may make it smaller than the member 206a. In this case, a similar effect is obtained.

【0043】また、上記第2の実施形態においては、事
前に変形量を付与することによって疲労曲線を下方にシ
フトさせたが、これに限られず、他の方法によっても疲
労曲線を下方にシフトでき、これによって同様の効果を
得ることができる。このような変形例を以下順次説明す
る。
In the second embodiment, the fatigue curve is shifted downward by giving a deformation amount in advance. However, the present invention is not limited to this, and the fatigue curve can be shifted downward by other methods. Thus, a similar effect can be obtained. Such modifications will be sequentially described below.

【0044】(A)表面粗さの違いを利用する方法 すなわち、上記第2の実施形態の指標弾塑性部材206
a及び弾塑性部材206bの代わりに、外径寸法がこれ
らとほぼ同じで表面粗さが比較的粗い指標弾塑性部材3
06aと、表面粗さが比較的細かい弾塑性部材306b
とを用いるものである。この場合、表面粗さが粗いほ
ど、その疲労曲線が全体的に低応力側にシフトするた
め、図12に示すように、指標弾塑性部材306aの疲
労曲線ニのほうが、弾塑性部材306bの疲労曲線ホよ
りも下方にシフトする。これにより、同等の変形条件で
あって、指標弾塑性部材306aに発生する最大応力σ
a3と他の弾塑性部材306bに発生する最大応力σb3
が等しくても、指標弾塑性部材306aの破断までの繰
り返し数na3は他の弾塑性部材306bの繰り返し数n
b3よりも少なくなるため、上記第2の実施形態同様、両
者が経験する変形履歴が同じであれば指標弾塑性部材3
06aは他の弾塑性部材306bよりも必ず先に疲労破
壊し破断することとなる。
(A) Method Utilizing Difference in Surface Roughness That is, the index elastic-plastic member 206 of the second embodiment is used.
a and the elasto-plastic member 206b are replaced with the index elasto-plastic member 3 having substantially the same outer diameter and relatively coarse surface roughness.
06a and an elasto-plastic member 306b having a relatively fine surface roughness
Is used. In this case, as the surface roughness increases, the fatigue curve shifts to a lower stress side as a whole. As shown in FIG. 12, the fatigue curve d of the index elasto-plastic member 306a is better than the fatigue curve of the elasto-plastic member 306b. It shifts below curve E. Accordingly, under the same deformation condition, the maximum stress σ generated in the index elastic-plastic member 306a
Even if a3 and the maximum stress σ b3 generated in the other elastoplastic member 306b are equal, the number of repetitions n a3 until the index elastoplastic member 306a breaks is the number of repetitions n of the other elastoplastic member 306b.
b3 , as in the second embodiment, if the deformation history experienced by both is the same, the index elastic-plastic member 3
06a always undergoes fatigue fracture and breaks before other elastoplastic members 306b.

【0045】したがって、本変形例によっても、上記第
2の実施形態と同様の効果を得る。
Therefore, according to the present modification, the same effect as in the second embodiment can be obtained.

【0046】なお、この表面粗さの異なる弾塑性部材の
製作方法は、特に、新たな製作工程を増やすことなく実
施することができる。すなわち、通常、この種の弾塑性
部材は、表面仕上げの工程において、表面粗さの粗い粗
削りから徐々に表面粗さを細かくしていき、複数の弾塑
性部材の表面粗さがほぼ一致するように製作する。これ
に対して、本変形例では、その工程の途中で指標弾塑性
部材306aの表面仕上げ作業を中止すれば足りる。そ
して、弾塑性部材306bについては、通常通り最後ま
で表面仕上げ作業を行えばよい。したがって、特に、新
たな製作工程を増やすことなく実施することができる。
The method of manufacturing the elasto-plastic member having the different surface roughness can be implemented without increasing the number of new manufacturing steps. That is, in general, this type of elasto-plastic member gradually reduces the surface roughness gradually from the rough cutting of the surface roughness in the surface finishing step, so that the surface roughness of the plurality of elasto-plastic members substantially match. To produce. On the other hand, in the present modified example, it suffices that the surface finishing operation of the index elastic-plastic member 306a is stopped during the process. Then, for the elasto-plastic member 306b, the surface finishing operation may be performed to the end as usual. Therefore, it can be implemented without increasing the number of new manufacturing steps.

【0047】(B)降伏力の違いを利用する方法 すなわち、上記第2の実施形態の指標弾塑性部材206
a及び弾塑性部材206bの代わりに、外径寸法がこれ
らとほぼ同じで降伏力が比較的小さい材料を選定して構
成した指標弾塑性部材406aと、降伏力が比較的大き
い材料を選定して構成した弾塑性部材406bとを用い
るものである。この場合も、上記(A)同様、降伏力が
小さい材料ほど、その疲労曲線が全体的に低応力側にシ
フトするため、図13に示すように、指標弾塑性部材4
06aの疲労曲線ヘのほうが、弾塑性部材406bの疲
労曲線トよりも下方にシフトする。これにより、同等の
変形条件であって、指標弾塑性部材406aに発生する
最大応力σa4と他の弾塑性部材406bに発生する最大
応力σb4とが等しくても、指標弾塑性部材406aの破
断までの繰り返し数na4は他の弾塑性部材406bの繰
り返し数nb4よりも少なくなるため、上記同様、指標弾
塑性部材406aは他の弾塑性部材406bよりも必ず
先に疲労破壊し破断することとなる。
(B) Method Utilizing Difference in Yield Force That is, the index elastic-plastic member 206 of the second embodiment is used.
Instead of a and the elasto-plastic member 206b, an index elasto-plastic member 406a formed by selecting a material having the same outer diameter and a relatively small yield force, and a material having a relatively large yield force are selected. The elasto-plastic member 406b thus configured is used. Also in this case, similarly to the above (A), as the material having a lower yield force shifts its fatigue curve to the lower stress side as a whole, as shown in FIG.
The fatigue curve of 06a shifts downward from the fatigue curve of the elasto-plastic member 406b. Thereby, even if the maximum stress σ a4 generated in the index elasto-plastic member 406a is equal to the maximum stress σ b4 generated in the other elasto-plastic members 406b under the same deformation condition, the fracture of the index elasto-plastic member 406a Since the number of repetitions n a4 up to is smaller than the number of repetitions n b4 of the other elasto-plastic member 406b, the index elasto-plastic member 406a must always be fatigue-ruptured and fractured earlier than the other elasto-plastic members 406b, as described above. Becomes

【0048】したがって、本変形例によっても同様の効
果を得る。
Therefore, a similar effect can be obtained by this modification.

【0049】なお、図13の2種類の疲労曲線ヘ,トは
降伏力も疲労限度も異なる材料を選定した場合の例であ
るが、これに限られず、降伏力は異なるが疲労限度は同
じ材料を選定してもよい。この場合、疲労曲線ヘ、トの
水平部分は一致することになるが、この場合も同様の効
果を得る。
The two types of fatigue curves shown in FIG. 13 are examples in which materials having different yield forces and different fatigue limits are selected. However, the present invention is not limited to this. Materials having different yield forces but the same fatigue limit are used. You may choose. In this case, the horizontal portion of the fatigue curve coincides with the fatigue curve, but the same effect is obtained in this case as well.

【0050】(C)疲労限度の違いを利用する方法 すなわち、上記第2の実施形態の指標弾塑性部材206
a及び弾塑性部材206bの代わりに、外径寸法がこれ
らとほぼ同じで疲労限度が比較的小さい材料を選定して
構成した指標弾塑性部材506aと、疲労限度が比較的
大きい材料を選定して構成した弾塑性部材506bとを
用いるものである。この場合も、上記(B)同様、疲労
限度が小さい材料ほど、その疲労曲線が全体的に低応力
側にシフトするため、図14に示すように、指標弾塑性
部材506aの疲労曲線チのほうが、弾塑性部材450
6bの疲労曲線リよりも下方にシフトする。これによ
り、同等の変形条件で指標弾塑性部材506a及び他の
弾塑性部材506bの最大応力σa5,σb5が等しくなっ
ても、指標弾塑性部材506a及び他の弾塑性部材50
6bの破断までの繰り返し数na5,nb5は、na5<nb5
となるため、上記同様、指標弾塑性部材506aは他の
弾塑性部材506bよりも必ず先に破断する。したがっ
て、本変形例によっても同様の効果を得る。
(C) Method Utilizing Difference in Fatigue Limit That is, the index elastic-plastic member 206 of the second embodiment is used.
Instead of a and the elasto-plastic member 206b, an index elasto-plastic member 506a formed by selecting a material having the same outer diameter and a relatively small fatigue limit, and a material having a relatively large fatigue limit are selected. And the configured elastic-plastic member 506b. Also in this case, similarly to the above (B), as the material having a smaller fatigue limit shifts its fatigue curve to a lower stress side as a whole, as shown in FIG. 14, the fatigue curve H of the index elasto-plastic member 506a is better. , Elasto-plastic member 450
The shift is lower than the fatigue curve 6b. Thereby, even if the maximum stresses σ a5 and σ b5 of the index elastic-plastic member 506a and the other elastic-plastic members 506b are equal under the same deformation condition, the index elastic-plastic member 506a and the other elastic-plastic members 50
The number of repetitions n a5 and n b5 until the break of 6b is given by n a5 <n b5
Therefore, as described above, the index elastic-plastic member 506a always breaks before the other elastic-plastic members 506b. Therefore, a similar effect can be obtained by this modification.

【0051】本発明の第3の実施形態を図15により説
明する。本実施形態は、複数の連結手段及びその周囲の
部材を一体成形した場合の実施形態である。
A third embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment in which a plurality of connecting means and members around the connecting means are integrally formed.

【0052】本実施形態の要部である弾塑性ユニット6
00の構造を表す斜視図を図15に示す。この図15に
おいて、弾塑性ユニット600は、第1の実施形態にお
ける接続部材11のブロック状部分11bと、接続部材
13のブロック状部分13bと、接続部材19のブロッ
ク状部分19bと、接続部材21のブロック状部分21
bと、3つのすきま部材12と、3つのすきま部材20
と、指標弾塑性部材6aと、3つの弾塑性部材6b(以
上、図1参照)とを一体成形構造としたものである。す
なわち、弾塑性ユニット600は、第1の実施形態にお
けるブロック状部分11b、3つのすきま部材12、及
びブロック状部分13bにほぼ相当しこれらと同等の機
能を果たす上部ブロック部分600aと、ブロック状部
分19b、3つのすきま部材20、及びブロック状部分
21bにほぼ相当しこれらと同等の機能を果たす下部ブ
ロック部分600bと、指標弾塑性部材6aにほぼ相当
しこれと同等の機能を果たす指標用連結手段としての指
標連結部600cと、弾塑性部材6bにほぼ相当しこれ
と同等の機能を果たす他の連結手段としての3つの連結
部600dとから構成される。
Elasto-plastic unit 6 which is a main part of this embodiment
FIG. 15 is a perspective view showing the structure of the 00. In FIG. 15, the elastic-plastic unit 600 includes a block-shaped portion 11b of the connection member 11, a block-shaped portion 13b of the connection member 13, a block-shaped portion 19b of the connection member 19, and a connection member 21 in the first embodiment. Block-shaped part 21 of
b, three clearance members 12 and three clearance members 20
And the index elastic-plastic member 6a and the three elastic-plastic members 6b (see FIG. 1) are integrally formed. That is, the elasto-plastic unit 600 is substantially equivalent to the block-shaped portion 11b, the three clearance members 12, and the block-shaped portion 13b in the first embodiment, and an upper block portion 600a that performs the same function as these, and a block-shaped portion. 19b, a lower block portion 600b substantially equivalent to the three clearance members 20 and the block-shaped portion 21b and performing the same function, and an index connecting means substantially corresponding to the index elasto-plastic member 6a and performing the same function. , And three connecting portions 600d as other connecting means which substantially correspond to the elasto-plastic member 6b and perform the same function as the index connecting portion 600c.

【0053】指標連結部600cには、第1の実施形態
の指標弾塑性部材6aの穴6adにほぼ相当し同等の機
能を果たす溝600caが形成されている。上部ブロッ
ク部分600aのうち、図示左手前側の端部600aa
は図示しない固定手段によって接続部材11の板状部分
11a(図1参照)に固定されており、図示右奥側の端
部600abも図示しない固定手段によって接続部材1
3の板状部分13a(同)に固定されている。また、下
部ブロック部分600bのうち、図示右奥側の端部60
0baは図示しない固定手段によって接続部材19の板
状部分19a(同)に固定されており、図示左手前側の
端部600bbも図示しない固定手段によって接続部材
21の板状部分21a(同)に固定されている。
The index connecting portion 600c has a groove 600ca substantially corresponding to the hole 6ad of the index elasto-plastic member 6a of the first embodiment and having the same function. Of the upper block portion 600a, an end portion 600aa on the left front side in the figure.
Are fixed to the plate-like portion 11a (see FIG. 1) of the connecting member 11 by fixing means (not shown), and the end 600ab on the right rear side in the drawing is also connected to the connecting member 1 by fixing means (not shown).
3 is fixed to the plate-shaped portion 13a (the same). Further, of the lower block portion 600b, an end portion 60 on the right rear side in the drawing is shown.
Oba is fixed to the plate-like portion 19a (same) of the connecting member 19 by fixing means (not shown), and the left end 600bb on the front left side of the drawing is also fixed to the plate-like portion 21a (same) of the connecting member 21 by fixing means (not shown). Have been.

【0054】上記以外の構成は、第1の実施形態の弾塑
性ダンパ3とほぼ同様である。
The structure other than the above is almost the same as the elastic-plastic damper 3 of the first embodiment.

【0055】なお、上記構成において、球面継手8、長
さ調節部材9、接続部材11の板状部分11a、及び上
部ブロック部分600aが第1の接続手段を構成し、球
面継手15、長さ調節部材16、接続部材19の板状部
分19a、及び下部ブロック部分600bが第2の接続
手段を構成する。
In the above configuration, the spherical joint 8, the length adjusting member 9, the plate-like portion 11a of the connecting member 11, and the upper block portion 600a constitute a first connecting means, and the spherical joint 15, the length adjusting member The member 16, the plate-like portion 19a of the connecting member 19, and the lower block portion 600b constitute a second connecting means.

【0056】以上のように構成した本実施形態において
は、上記に明らかにした機能的対応関係に基づき、第1
の実施形態とほぼ同様に動作する。すなわち、地震等に
よって建屋の壁面や固定構造物等に対し配管系1が振動
したとき、その相対変位が第1及び第2の接続手段を介
して指標連結部600c及び連結部600dに伝えら
れ、これらがそれぞれ弾塑性変形し、配管系1の振動エ
ネルギを吸収して配管系1の振動を抑制する。このと
き、指標連結部600cに溝600caを形成し応力を
集中させることにより、同等の変形条件であっても、指
標連結部600cの最大応力(=溝600caに発生す
る応力)が他の連結部600dの最大応力よりも大きく
なる。これにより、指標連結部600cの破断までの繰
り返し数は他の連結部600dの繰り返し数よりも少な
くなるため、両者が経験する変形履歴が同じであれば指
標連結部600cは他の連結部600dよりも必ず先に
疲労破壊し破断することとなる。そのため、少なくとも
指標連結部600cが破断するまでは他の連結部600
dは破断することはないので、指標連結部600cが破
断するまでは弾塑性ユニット600すなわち弾塑性ダン
パの機能は最低でも保証されるとともに、指標連結部6
00cが破断したかどうかを他の連結部600dの余寿
命の指標とすることができる。したがって、指標連結部
600cが破断したかどうかの監視のみを行い、指標連
結部600cの破断が見つかったときには、弾塑性ユニ
ット600ごと交換すればよい。
In this embodiment configured as described above, the first embodiment is performed based on the functional correspondence clarified above.
The operation is substantially the same as that of the embodiment. That is, when the piping system 1 vibrates with respect to the wall surface or the fixed structure of the building due to an earthquake or the like, the relative displacement is transmitted to the index connecting portion 600c and the connecting portion 600d via the first and second connecting means, Each of them undergoes elasto-plastic deformation, absorbs vibration energy of the piping system 1 and suppresses vibration of the piping system 1. At this time, by forming the groove 600ca in the index connecting portion 600c and concentrating the stress, even under the same deformation condition, the maximum stress of the index connecting portion 600c (= the stress generated in the groove 600ca) is changed to another connecting portion. It is larger than the maximum stress of 600d. As a result, the number of repetitions until breakage of the index connecting portion 600c is smaller than the number of repetitions of the other connecting portion 600d. Therefore, if the deformation history experienced by both is the same, the index connecting portion 600c is higher than the other connecting portion 600d. However, it also causes fatigue fracture and fracture first. Therefore, at least until the index connecting portion 600c breaks, the other connecting portions 600
Since d does not break, the function of the elasto-plastic unit 600, that is, the elasto-plastic damper is at least guaranteed until the index connecting portion 600c breaks, and the index connecting portion 6c is not broken.
Whether or not 00c is broken can be used as an index of the remaining life of the other connecting portion 600d. Therefore, it is only necessary to monitor whether or not the index connecting portion 600c is broken, and when the index connecting portion 600c is found to be broken, the entire elastic-plastic unit 600 may be replaced.

【0057】以上のようにして、本実施形態によって
も、第1及び第2の実施形態と同様、従来より簡易な方
法でかつ精度よく弾塑性ダンパ全体のメンテナンスすべ
き時期を見積もることができる。したがって、無駄な部
品交換をなくしコスト低減を図ることができる。
As described above, according to the present embodiment, similarly to the first and second embodiments, it is possible to estimate the time to perform the maintenance of the entire elasto-plastic damper with a simpler method and more accurately than in the past. Therefore, it is possible to eliminate unnecessary component replacement and reduce costs.

【0058】なお、上記第1〜第3の実施形態において
は、本発明を、発電プラントや化学プラント等の配管系
を支持する弾塑性ダンパに適用した場合を例にとって説
明したが、これに限られず、互いに相対変位する2つの
部材の間であれば適用可能であることは言うまでもな
い。
In the first to third embodiments, the case where the present invention is applied to an elasto-plastic damper for supporting a piping system of a power plant or a chemical plant is described as an example. However, the present invention is not limited to this. However, it is needless to say that the present invention can be applied between two members that are relatively displaced from each other.

【0059】[0059]

【発明の効果】本発明によれば、指標用連結手段の破断
したかどうかを他の連結手段の余寿命の指標とし、その
余寿命を推定してメンテナンスすべき時期を推定するこ
とができる。このようにして、弾塑性ダンパ全体のメン
テナンスすべき時期を簡易な方法でかつ精度よく見積も
ることができる。したがって、無駄な部品交換をなくし
コスト低減を図ることができる。
According to the present invention, whether or not the indicator connecting means has been broken can be used as an index of the remaining life of the other connecting means, and the remaining life can be estimated to estimate the time for maintenance. In this way, it is possible to estimate the time for maintenance of the entire elastic-plastic damper with a simple method and with high accuracy. Therefore, it is possible to eliminate unnecessary component replacement and reduce costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態による弾塑性ダンパの
全体構造を表す斜視図である。
FIG. 1 is a perspective view illustrating an entire structure of an elastic-plastic damper according to a first embodiment of the present invention.

【図2】図1の弾塑性ダンパが配置される発電プラント
や化学プラント等の配管系の一例を表す概略配置図であ
る。
FIG. 2 is a schematic layout diagram illustrating an example of a piping system of a power plant, a chemical plant, or the like in which the elasto-plastic damper of FIG. 1 is arranged.

【図3】図1中指標弾塑性部材の詳細構造を表す斜視図
である。
FIG. 3 is a perspective view illustrating a detailed structure of an index elastic-plastic member in FIG.

【図4】図1中指標弾塑性部材の詳細構造を表す斜視図
である。
FIG. 4 is a perspective view illustrating a detailed structure of an index elastic-plastic member in FIG.

【図5】弾塑性部材を構成する材料に関する疲労曲線を
示す図である。
FIG. 5 is a diagram showing a fatigue curve for a material constituting the elasto-plastic member.

【図6】電気的検出手段による検出を示す図である。FIG. 6 is a diagram illustrating detection by an electrical detection unit.

【図7】溝による応力集中を利用する変形例を示す図で
ある。
FIG. 7 is a view showing a modified example utilizing stress concentration by a groove.

【図8】溝による応力集中を利用する変形例を示す図で
ある。
FIG. 8 is a view showing a modified example utilizing stress concentration by a groove.

【図9】曲げ変形における内側・外側の応力差を利用す
る変形例を示す図である。
FIG. 9 is a diagram showing a modified example utilizing a difference in stress between inside and outside in bending deformation.

【図10】本発明の第2の実施形態の要部である指標弾
塑性部材の詳細構造を表す斜視図である。
FIG. 10 is a perspective view illustrating a detailed structure of an index elastic-plastic member that is a main part of a second embodiment of the present invention.

【図11】弾塑性部材に関する疲労曲線を示す図であ
る。
FIG. 11 is a diagram showing a fatigue curve for an elasto-plastic member.

【図12】表面粗さの違いを利用する変形例における疲
労曲線を示す図である。
FIG. 12 is a diagram showing a fatigue curve in a modified example utilizing a difference in surface roughness.

【図13】降伏力の違いを利用する変形例における疲労
曲線を示す図である。
FIG. 13 is a diagram showing a fatigue curve in a modification using a difference in yield force.

【図14】疲労限度の違いを利用する変形例における疲
労曲線を示す図である。
FIG. 14 is a diagram showing a fatigue curve in a modification using a difference in fatigue limit.

【図15】本発明の第3の実施形態の要部である弾塑性
ユニットの構造を表す斜視図である。
FIG. 15 is a perspective view illustrating a structure of an elastic-plastic unit that is a main part of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 配管系(相対変位する部材) 3 弾塑性ダンパ 4 第1の接続手段 5 第2の接続手段 6 連結手段 6a 指標弾塑性部材(指標用連結手段、一部の
連結手段) 6b 弾塑性部材(他の連結手段、他の大部分の
連結手段) 8 球面継手 9 長さ調節部材 10 締結部材 11 接続部材 12 すきま部材 13 接続部材 14 破断防止部材 15 球面継手 16 長さ調節部材 18 締結部材 19 接続部材 20 すきま部材 21 接続部材 22 破断防止部材 206a 指標弾塑性部材(指標用連結手段、一
部の連結手段) 206b 弾塑性部材(他の連結手段、他の大部
分の連結手段) 306a 指標弾塑性部材(指標用連結手段、一
部の連結手段) 306b 弾塑性部材(他の連結手段、他の大部
分の連結手段) 406a 指標弾塑性部材(指標用連結手段、一
部の連結手段) 406b 弾塑性部材(他の連結手段、他の大部
分の連結手段) 506a 指標弾塑性部材(指標用連結手段、一
部の連結手段) 506b 弾塑性部材(他の連結手段、他の大部
分の連結手段) 600 弾塑性ユニット 600a 上部ブロック部分(第1の接続手段) 600b 下部ブロック部分(第2の接続手段) 600c 指標連結部(指標用連結手段、一部の
連結手段) 600d 連結部(他の連結手段、他の大部分の
連結手段)
DESCRIPTION OF SYMBOLS 1 Piping system (member which relatively displaces) 3 Elasto-plastic damper 4 1st connection means 5 2nd connection means 6 Connection means 6a Index elasto-plastic member (index connection means, some connection means) 6b Elasto-plastic member ( 8 Spherical joint 9 Length adjusting member 10 Fastening member 11 Connecting member 12 Clearance member 13 Connecting member 14 Break prevention member 15 Spherical joint 16 Length adjusting member 18 Fastening member 19 Connection Member 20 Clearance member 21 Connection member 22 Break prevention member 206a Index elastic-plastic member (index connecting means, part of connecting means) 206b Elastic-plastic member (other connecting means, most other connecting means) 306a Index elastic-plastic Member (connecting means for index, some connecting means) 306b Elasto-plastic member (other connecting means, most other connecting means) 406a Elasto-plastic member for index (connecting means for index) 406b Elasto-plastic member (other connection means, most other connection means) 506a Index elasto-plastic member (index connection means, some connection means) 506b Elasto-plastic member (other connection means) Means, most other connecting means) 600 Elasto-plastic unit 600a Upper block part (first connecting means) 600b Lower block part (second connecting means) 600c Index connecting part (index connecting means, partial connection) Means) 600d connecting part (other connecting means, most other connecting means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16L 55/02 F16L 55/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F16L 55/02 F16L 55/02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】互いに相対変位する2つの部材にそれぞれ
接続される第1の接続手段及び第2の接続手段と、これ
ら第1の接続手段と第2接続手段との間を連結し、前記
2つの部材間の相対変位に応じて弾塑性変形する複数の
連結手段とを備えた弾塑性ダンパにおいて、 前記複数の連結手段は、疲労破壊するときの破断までの
繰り返し数が他の連結手段よりも少なくなるように構成
され、破壊状況を該他の連結手段の余寿命の指標とする
ための少なくとも1つの指標用連結手段を含むことを特
徴とする弾塑性ダンパ。
A first connecting means and a second connecting means respectively connected to two members which are displaced relative to each other; and connecting the first connecting means and the second connecting means to each other. An elastic-plastic damper comprising a plurality of connecting means that undergoes elasto-plastic deformation in accordance with the relative displacement between the two members, wherein the plurality of connecting means has a greater number of repetitions until breakage at the time of fatigue failure than other connecting means. An elasto-plastic damper characterized in that it comprises at least one indicator connecting means for reducing the destruction condition as an indicator of the remaining life of the other connecting means.
【請求項2】請求項1記載の弾塑性ダンパにおいて、前
記指標用連結手段は、前記2つの部材が互いに相対変位
したときその変位に対応する変形で発生する最大応力が
他の連結手段より大きくなるように構成されていること
を特徴とする弾塑性ダンパ。
2. The elasto-plastic damper according to claim 1, wherein, when the two members are displaced relative to each other, the maximum stress generated by the deformation corresponding to the displacement is larger than that of the other coupling means. An elasto-plastic damper characterized in that it is configured to be an elastic plastic damper.
【請求項3】請求項1記載の弾塑性ダンパにおいて、前
記指標用連結手段は、前記他の連結手段より粗い表面粗
さ、前記他の連結手段より大きい事前変形量、前記他の
連結手段より小さい降伏力、及び前記他の連結手段より
小さい疲労限度のうちすくなくとも1つを備えているこ
とを特徴とする弾塑性ダンパ。
3. The elasto-plastic damper according to claim 1, wherein the connecting means for the indicator has a rougher surface roughness than the other connecting means, a pre-deformation larger than the other connecting means, and a larger amount of deformation than the other connecting means. An elasto-plastic damper having at least one of a low yield force and a fatigue limit smaller than said other connecting means.
【請求項4】互いに相対変位する2つの部材にそれぞれ
接続される第1の接続手段及び第2の接続手段と、これ
ら第1の接続手段と第2接続手段との間を連結し、前記
2つの部材間の相対変位に応じて弾塑性変形する複数の
連結手段とを備えた弾塑性ダンパにおいて、 前記複数の連結手段のうち、一部の連結手段のみが、他
の大部分の連結手段よりも所定期間だけ先に疲労破壊し
て破断するように構成したことを特徴とする弾塑性ダン
パ。
4. A first connecting means and a second connecting means which are respectively connected to two members which are relatively displaced from each other, and the first connecting means and the second connecting means are connected to each other. An elastic-plastic damper comprising a plurality of connecting means that undergoes elasto-plastic deformation in accordance with the relative displacement between the two members, wherein only a part of the plurality of connecting means is more than other most connecting means. An elasto-plastic damper characterized in that it is also configured to break due to fatigue failure first for a predetermined period.
【請求項5】互いに相対変位する2つの部材にそれぞれ
接続される第1の接続手段及び第2の接続手段と、これ
ら第1の接続手段と第2接続手段との間を連結し、前記
2つの部材間の相対変位に応じて弾塑性変形する複数の
連結手段とを備えた弾塑性ダンパのメンテナンス方法に
おいて、 前記複数の連結手段のうち、一部の連結手段のみを、他
の大部分の連結手段よりも所定期間だけ先に疲労破壊し
て破断するように構成しておき、 前記一部の連結手段の破断が見つかった場合には、破断
していない前記大部分の連結手段を含むすべての連結手
段を交換することを特徴とする弾塑性ダンパのメンテナ
ンス方法。
5. A first connecting means and a second connecting means which are respectively connected to two members which are displaced relative to each other, and the first connecting means and the second connecting means are connected to each other, In a maintenance method for an elasto-plastic damper comprising a plurality of connecting means that undergoes elasto-plastic deformation according to a relative displacement between the two members, of the plurality of connecting means, only some of the connecting means are replaced with most of the other parts. It is configured so that it is broken by fatigue failure earlier than the connection means only for a predetermined period, and if a breakage of the part of the connection means is found, all of the connection means including most of the connection means which has not been broken A maintenance method for the elasto-plastic damper, characterized in that the connecting means is replaced.
JP25495697A 1997-09-19 1997-09-19 Elasto-plastic damper and its maintenance method Pending JPH1193999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25495697A JPH1193999A (en) 1997-09-19 1997-09-19 Elasto-plastic damper and its maintenance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25495697A JPH1193999A (en) 1997-09-19 1997-09-19 Elasto-plastic damper and its maintenance method

Publications (1)

Publication Number Publication Date
JPH1193999A true JPH1193999A (en) 1999-04-06

Family

ID=17272205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25495697A Pending JPH1193999A (en) 1997-09-19 1997-09-19 Elasto-plastic damper and its maintenance method

Country Status (1)

Country Link
JP (1) JPH1193999A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032777A (en) * 2009-08-04 2011-02-17 Jutaku Kozo Kenkyusho:Kk Vibration control damper used in vibration control mechanism of building
JP2017026116A (en) * 2015-07-28 2017-02-02 センクシア株式会社 Steel plate damper
KR102112793B1 (en) * 2019-12-09 2020-05-19 최규출 Elastic damping apparatus and vibration suppression apparatus for bliding structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032777A (en) * 2009-08-04 2011-02-17 Jutaku Kozo Kenkyusho:Kk Vibration control damper used in vibration control mechanism of building
JP2017026116A (en) * 2015-07-28 2017-02-02 センクシア株式会社 Steel plate damper
KR102112793B1 (en) * 2019-12-09 2020-05-19 최규출 Elastic damping apparatus and vibration suppression apparatus for bliding structure

Similar Documents

Publication Publication Date Title
TWI280996B (en) Device for insulating a building from earthquake
US7594438B2 (en) Inertial sensor having a flexing element supporting a movable mass
JP3555035B2 (en) Dynamic vibration absorber
KR20160060004A (en) Seismic damping wall structure
JP6472598B2 (en) Vibration control device
JPH1193999A (en) Elasto-plastic damper and its maintenance method
US7222541B2 (en) Measuring torsional distortion with an easily applied clip device (saw)
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP2013002192A (en) Tension type base-isolation bearing device
US8128076B2 (en) Noise attenuator for side wall panel
JP6021248B2 (en) Hanger mechanism and base structure of suspended ceiling using it
JP2009264015A (en) Seismic response control apparatus
JP4074858B2 (en) Building vibration control structure
KR101129479B1 (en) Energy absorption device for base isolation system
JP2005133533A (en) Damping wall
KR101781053B1 (en) Steel high vibration control damper
Takhirov et al. Seismic evaluation of lay-in panel suspended ceilings using static and dynamic and an assessment of the US building code requirements
JP2002030828A (en) Brace damper
JP4033077B2 (en) Dynamic damper for suspension members
JP6208782B2 (en) Dynamic vibration absorber and floor
JPS61211549A (en) Vibration suppressing steel board
JPH1129906A (en) Vibration control method of suspension bridge girder, and the suspension bridge
JP6941480B2 (en) Ceiling support structure
JP2002327798A (en) Damper device
JP2001083047A (en) Elasto-plastic support device, fatigue evaluation method using the same, and maintenance method