JPH1192841A - Production of parts made of metallic composite material - Google Patents

Production of parts made of metallic composite material

Info

Publication number
JPH1192841A
JPH1192841A JP25160297A JP25160297A JPH1192841A JP H1192841 A JPH1192841 A JP H1192841A JP 25160297 A JP25160297 A JP 25160297A JP 25160297 A JP25160297 A JP 25160297A JP H1192841 A JPH1192841 A JP H1192841A
Authority
JP
Japan
Prior art keywords
fiber
composite material
composite materials
composite
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25160297A
Other languages
Japanese (ja)
Inventor
Takayuki Tsuzuki
隆之 都筑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25160297A priority Critical patent/JPH1192841A/en
Publication of JPH1192841A publication Critical patent/JPH1192841A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the production cost of parts made of composite materials, in such a manner that the fibers of plural fiber-reinforced composite materials obtd. from fibers for reinforcing orientated in one direction are orientated in an optional direction, by largely laminating the composite materials to form into a laminated body, charging a die having a curved face with the laminated body, subjecting it to heating and pressurizing and executing integrated forming. SOLUTION: As for bending as representative plastic working for long fibrous composite materials, the draft (e) to certain bending R is expressed by e=1/2R in proportion to the sheet thickness (t), and a thin sheet material is small in the degree (e) compared to that in a thick sheet material. Thus, in the case of the same draft, bending with small R is made possible in the thin sheet material compared to the case of the thick sheet material. Thus, the thin sheet laminated materials (to mm × (n) pieces = (t) mm) can be formed to the draft (1/n of bending R) higher (n) times than the case of the integrated sheet material (t mm) with the same thickness outwardly, and by integrating the laminated materials after the forming, the applying range of a compound-shape imparting process can remarkably be extended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は凹凸を有する形状の
繊維強化金属複合材製部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber reinforced metal composite material part having an uneven shape.

【0002】[0002]

【従来の技術】繊維強化金属複合材はその使用される繊
維の長さによって長繊維系、短繊維系(含粒子系)に分
類され、これらの材料を用いた部品は各々次のようなプ
ロセス、加工法で製造されている。
2. Description of the Related Art Fiber-reinforced metal composite materials are classified into long fiber type and short fiber type (including particle type) according to the length of the fibers used. It is manufactured by a processing method.

【0003】(1)長繊維系複合材: 長繊維系材は塑
性加工性、機械加工性ともに劣っているため、複合材製
造の後に塑性加工法、機械加工法を利用して部品を製造
することは難しく、複合化前のプリフォームの段階(例
えば“金属箔と繊維の積層体”、“マトリックス材をコ
ーティングした繊維”、“一方向に並べた繊維上にマト
リックス材を溶射したシート”等)で所定の部品形状を
付与し、その後複合化して金属複合材製部品を製造して
いる。すなわち、形状付与の後に複合化する“形状付与
−複合化プロセス”が採用されている。
(1) Long-fiber-based composite material: Since long-fiber-based material is inferior in both plastic workability and machinability, parts are manufactured by using plastic working method and machining method after manufacturing the composite material. It is difficult, and the preform stage before compounding (for example, “lamination of metal foil and fiber”, “fiber coated with matrix material”, “sheets with matrix material sprayed on unidirectionally arranged fibers” etc.) ), A predetermined component shape is given, and then compounded to manufacture a metal composite material component. That is, a "shape-composite process" in which the composite is formed after the shape is applied is employed.

【0004】(2)短繊維系複合材: 短繊維系材に対
しては基本的に金属材料と同様の部品製造方法が適用さ
れており、 鋳造や粉末HIP等のネットシェイプ
(Net Shape)加工法、 金属複合材素材を溶湯法や粉
末法にて製造した後に塑性加工(押出し、鍛造、圧延
等)や機械加工によって部品を製造する方法が適用され
ている。このうち、塑性加工による部品(あるいは素形
材)製造法はその加工方向(押出し方向、圧延方向)に
繊維を配向させることが可能であり、付形と同時に強度
特性を向上する方法として利用されている。
[0004] (2) Short fiber composite material: The same component manufacturing method as that of the metal material is basically applied to the short fiber material, and a net shape processing such as casting or powder HIP is performed. A method is used in which a metal composite material is manufactured by a molten metal method or a powder method, and then a part is manufactured by plastic working (extrusion, forging, rolling, etc.) or mechanical processing. Among them, the part (or shaped material) manufacturing method by plastic working is capable of orienting the fiber in the working direction (extrusion direction, rolling direction), and is used as a method for improving strength characteristics at the same time as shaping. ing.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の繊維強
化金属複合材製部品の製造方法には次の問題点がある。
The above-mentioned conventional method of manufacturing a fiber-reinforced metal composite component has the following problems.

【0006】(1)長繊維系複合材: 部品の製造に現
在用いられている“形状付与−複合化プロセス”では形
状付与の工程に多くの工数を要し、部品製造コストが極
めて高くなるという欠点がある。例えば金属箔と繊維の
積層体をプリフォームとする場合には、形状付与の工程
で数十枚もの金属箔を個別に成形することが必要であ
り、チタン合金複合材では、これらが全て熱間成形とな
る。また、マトリックス金属をコーティングした繊維を
プリフォームとしてフィラメントワインディングする方
法は比較的安価な形状付与方法であるが、この方法が適
用できる部品は一部の軸対称形状部品に限られている。
平板、角棒等の単純形状の複合材を製造した後に塑性加
工によって形状付与する“複合化−形状付与プロセス”
が適用できると形状付与が一工程となって大幅なコスト
低減が可能となる。しかし長繊維系複合材の塑性加工性
は非常に乏しく、このようなプロセスの適用可能な部品
形状は極めて限られている。
[0006] (1) Long fiber composite material: In the "shaping-compositing process" currently used for manufacturing parts, it takes a lot of man-hours for the shaping step, and the manufacturing cost of parts is extremely high. There are drawbacks. For example, when a laminate of a metal foil and a fiber is used as a preform, it is necessary to individually form dozens of metal foils in the shape-imparting step. It becomes molding. In addition, although the method of performing filament winding using a matrix metal-coated fiber as a preform is a relatively inexpensive shape-imparting method, parts to which this method can be applied are limited to some axially symmetric parts.
"Composite-shape-imparting process" in which a simple-shaped composite material such as a flat plate or a square bar is manufactured and then shaped by plastic working.
Can be applied to form a single step, thereby enabling a significant cost reduction. However, the plastic workability of long fiber composites is very poor, and the shape of parts to which such a process can be applied is extremely limited.

【0007】(2)短繊維系複合材: 短繊維系材に対
する加工法のうち、塑性加工を利用する部品製造プロセ
スでは塑性加工によって繊維を配向させて強度特性を向
上することが可能であり、これが金属複合材利用上の大
きなメリットとなっている。例えば一方向圧延を行えば
圧延方向に高強度を有する一方向強化板材が、また交差
圧延を行えば強度異方性の小さな板材が製造できる。し
かし、塑性加工によって付与される繊維配向は加工方向
(押出し方向、圧延方向等)によって一義的に決まるた
め、ある目的の形状に塑性加工したとき、その繊維配向
を任意に制御することは不可能であり、これがこの材料
の加工技術上の大きな問題点となっている。例えば内圧
あるいは外圧を受ける円筒を押出し加工によって製造す
ると製品にとって望ましい繊維配向(円周方向配向)と
は全く逆の軸方向配向が付与されてしまう。
(2) Short fiber composite material: Among the processing methods for short fiber material, in a part manufacturing process using plastic working, it is possible to improve the strength characteristics by orienting fibers by plastic working. This is a great advantage in using metal composites. For example, a unidirectionally reinforced plate having high strength in the rolling direction can be produced by unidirectional rolling, and a plate having low strength anisotropy can be produced by cross rolling. However, since the fiber orientation given by plastic working is uniquely determined by the working direction (extrusion direction, rolling direction, etc.), it is not possible to arbitrarily control the fiber orientation when plastic working to a desired shape This is a major problem in the processing technology of this material. For example, when a cylinder subjected to internal or external pressure is manufactured by extrusion, an axial orientation completely opposite to a fiber orientation (circumferential orientation) desired for a product is given.

【0008】また、長繊維系、短繊維系複合材に共通す
る課題として、製造し得る素材寸法の制約により、大型
部品の製造ができないという問題がある。
Another problem common to long fiber and short fiber composite materials is that large parts cannot be manufactured due to restrictions on the size of the material that can be manufactured.

【0009】本発明は上記技術水準に鑑み、上述した従
来法におけるような不具合のない長繊維系金属複合材製
部品及び短繊維系金属複合材製部品の製造方法を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a method for manufacturing a component made of a long-fiber-based metal composite material and a component made of a short-fiber-based metal composite material, which does not have the disadvantages of the above-described conventional method. .

【0010】[0010]

【課題を解決するための手段】第1の課題である“長繊
維系複合材製部品の製造コスト”を低減するには、従来
の“形状付与−複合化プロセス”に変えて、複合化の後
に塑性加工によって形状を付与する“複合化−形状付与
プロセス”とするのが有効な手段となる。このことから
複合材の加工限界の制約によって現在極めて限られてい
る本プロセスの適用可能な部品形状の範囲を拡大して部
品製造コストを低減することを考え、適用範囲拡大のた
めの手段として“一体の複合材”(たとえば厚板)に変
えて“複合材の積層体”(たとえば薄板の積層体)を用
い、塑性加工を行った後に同一の加熱プロセス内あるい
は冷却後再加熱して一体化することを考えた。
In order to reduce the first problem of "manufacturing cost of a long-fiber composite material part", the conventional "shaping-compositing process" is replaced with a complex forming process. An effective means is to use a “composite-shaping process” in which a shape is later formed by plastic working. Based on this, we considered expanding the range of applicable part shapes for this process, which is currently extremely limited due to the limitations of the processing limits of composite materials, and reducing the manufacturing cost of parts. As a means for expanding the applicable range, Instead of “integral composite material” (for example, thick plate), use “lamination of composite material” (for example, laminate of thin plate), perform plastic working and then reheat and integrate after cooling in the same heating process. Thought about doing it.

【0011】第2の課題である“短繊維系複合材の繊維
配向制御に自由度がない”という点については、押出し
加工、圧延加工等により繊維配向を付与した材料を準備
し、それらの材料の繊維配向方向を部品に要求される繊
維配向に一致させて積層して、その積層体を加熱/加圧
して一体化することを考えた。
Regarding the second problem, "there is no freedom in controlling the fiber orientation of the short fiber composite material", materials having fiber orientation imparted by extrusion, rolling and the like are prepared, and these materials are prepared. It was conceived that the fibers were laminated in such a manner that the fiber orientation direction of the components matched the fiber orientation required for the component, and the laminate was integrated by heating / pressing.

【0012】第3の課題である“大型部品が製造できな
い”という問題については、小型素材を組合せてそれを
一体化することにより大型部品を製造することを考え
た。
Regarding the third problem, that is, "Large parts cannot be manufactured", it was considered to manufacture large parts by combining small materials and integrating them.

【0013】すなわち、本発明は(1)強化用繊維を一
方向に配向させてなる複数のブロック状または板状繊維
強化金属複合材を製作し、該複合材の繊維が任意の方向
に配向するように該複合材を多数積層して積層体とな
し、曲面を有する成形型に該積層体を装填して加熱、加
圧して一体化成形することを特徴とする繊維強化金属複
合材製部品の製造方法、(2)強化用繊維を一方向に配
向させてなる複数のブロック状または板状繊維強化金属
複合材を製作し、該複合材のそれぞれを曲面を有する所
望形状に成形したのち、形状付与した複合材を多数積層
して積層体となし、曲面を有する成形型に該積層体を装
填して加熱、加圧して一体化成形することを特徴とする
繊維強化金属複合材製部品の製造方法及び(3)複合材
を多数積層して積層体となす際、複合材間に、複合材に
用いられる繊維粉末、金属粉末または箔を装入すること
を特徴とする上記(1)または(2)記載の繊維強化金
属複合材製部品の製造方法である。
That is, the present invention provides (1) a plurality of block-like or plate-like fiber-reinforced metal composites in which reinforcing fibers are oriented in one direction, and the fibers of the composites are oriented in an arbitrary direction. A fiber-reinforced metal composite material component characterized in that a large number of the composite materials are laminated to form a laminate, and the laminate is loaded into a mold having a curved surface, and heated and pressed to be integrally molded. Manufacturing method, (2) producing a plurality of block-shaped or plate-shaped fiber-reinforced metal composite materials in which reinforcing fibers are oriented in one direction, and forming each of the composite materials into a desired shape having a curved surface; Manufacturing a fiber-reinforced metal composite material component, comprising laminating a large number of the applied composite materials to form a laminate, loading the laminate in a mold having a curved surface, and heating and pressing to integrally mold the laminate. Method and (3) Laminating a large number of composite materials Wherein a fiber powder, a metal powder, or a foil used for the composite material is inserted between the composite materials, wherein the method for producing a fiber-reinforced metal composite part according to the above (1) or (2) is performed. It is.

【0014】(作用)長繊維系複合材のコスト低減に有
効な“複合化−形状付与プロセス”において“一体の複
合材”に変えて“複合材の積層体”を用いることは次の
作用を有している。長繊維系複合材の代表的な塑性加工
である曲げ成形では、一定の曲げR(R)に対する加工
度(e)は板厚(t)に比例してe=t/2Rと表わさ
れ、薄板材は厚板材に比べて加工度が小さくなる。従っ
て同じ加工度では薄板材の方が小さなRの曲げ成形が可
能となる。このことから薄板積層材(t0 mm×n枚=t
mm)は同じ厚さの一体の板材(tmm)に比べて見かけ
上、n倍大きな加工度(1/nの曲げR)まで成形が可
能となり、成形の後に積層材を一体化することにより、
“複合化−形状付与プロセス”の適用範囲が大幅に拡大
される。
(Function) In the "compositing-shaping process" effective for reducing the cost of long fiber composite material, using "composite laminate" instead of "integral composite material" has the following effects. Have. In bending forming, which is a typical plastic working of long fiber composite materials, the degree of work (e) for a constant bending R (R) is expressed as e = t / 2R in proportion to the plate thickness (t), A thin plate material has a smaller workability than a thick plate material. Therefore, at the same degree of processing, a thinner sheet material can be bent with a smaller radius. From this, the laminated sheet material (t 0 mm × n sheets = t
mm) can be formed to an apparently n-fold greater working ratio (1 / n bending R) than an integrated plate material (tmm) of the same thickness. By integrating the laminated material after forming,
The scope of the “composite-shaping process” is greatly expanded.

【0015】短繊維系複合材の繊維配向材を積層して一
体化するプロセスは次の作用を有している。金属複合材
を積層する段階で、繊維配向を有する素材を任意の方向
で組合せることができるため、従来の塑性加工法では不
可能であった任意の繊維配向の付与が可能となる。これ
により、部品に要求される最適な繊維配向を部品形状の
制約を受けることなく容易に実現することができる。
The process of laminating and integrating the fiber orientation materials of the short fiber composite material has the following effects. At the stage of laminating the metal composite material, materials having fiber orientation can be combined in an arbitrary direction, so that an arbitrary fiber orientation that cannot be provided by the conventional plastic working method can be provided. Thereby, the optimum fiber orientation required for the component can be easily realized without being restricted by the component shape.

【0016】また長繊維系、短繊維系によらず、積層体
を一体化して部品とするプロセスは小型部材を組合せて
大型部材化することを可能とする作用を有している。
[0016] Regardless of the long fiber type or the short fiber type, the process of integrating the laminate into a part has an effect of enabling a large member by combining small members.

【0017】本発明の強化繊維としては一般的にはSi
C繊維、SiCウィスカなどが、また、金属材料として
はTi、Al、TiAlなどがあげられる。
The reinforcing fibers of the present invention are generally Si
C fibers, SiC whiskers and the like, and metal materials include Ti, Al, TiAl and the like.

【0018】[0018]

【実施例】以下、本発明の具体例をあげ、本発明の効果
を明らかにする。
EXAMPLES The effects of the present invention will be clarified below with reference to specific examples of the present invention.

【0019】(実施例1)代表的な長繊維系複合材であ
るSiC/Tiにてブレードを製作するプロセスを例に
採って図1を参照して説明する。図1(a)に示す従来
の“形状付与−複合化プロセス”では初めにマトリック
スとするチタン合金の箔(約100μm):50〜10
0枚を個別に予備成形し、このシートの間にSiC繊維
(直径約100μm)を配置してプリフォーム(チタン
合金箔とSiC繊維の積層体)とし、これを900℃付
近の温度に加熱/加圧して複合化を行う。ここでチタン
合金箔の成形は熱間成形となり、また枚数が多いため、
極めてコスト高のプロセスとなっている。
(Example 1) An example of a process for manufacturing a blade using SiC / Ti, which is a typical long-fiber composite material, will be described with reference to FIG. In the conventional “shaping-compositing process” shown in FIG. 1A, first, a titanium alloy foil (about 100 μm) serving as a matrix: 50 to 10
0 sheets are individually preformed and SiC fibers (diameter of about 100 μm) are arranged between the sheets to form a preform (laminated body of titanium alloy foil and SiC fibers), which is heated to a temperature around 900 ° C. Compression is performed by applying pressure. Here, the forming of the titanium alloy foil is hot forming, and since the number is large,
It is a very expensive process.

【0020】図1(b)に示すコスト低減を目的とした
本発明の実施例の“複合化−形状付与プロセス”では複
合化を平板、角棒等の単純形状で行うため、複合化前の
チタン合金箔の成形は不要であり、加熱を要するプロセ
スが複合化工程と複合した材料の塑性加工工程の2工程
のみとなるため、大幅なコストの低減が可能になる。
In the "composite-shaping process" of the embodiment of the present invention shown in FIG. 1B for the purpose of cost reduction, since the composite is performed by a simple shape such as a flat plate or a square bar, The forming of the titanium alloy foil is unnecessary, and the heating requires only two processes, namely, a composite process and a plastic working process of the composite material, so that the cost can be significantly reduced.

【0021】しかし長繊維系複合材の限界加工度(繊維
の破損等による強度低下を生じることなく、塑性加工し
得るひずみ量)は繊維配向方向では数%にすぎず、複合
材の板厚が厚い場合には成形可能な曲げRはかなり大き
な範囲に限定される。限界加工度はマトリックス材質、
繊維含有量、加工条件に依存して変化するが、仮に3%
とし、板厚が10mm、長手方向の曲率半径が100m
mのブレードを成形する場合を考えると、板厚10mm
の複合材プレートを曲率半径100mmで成形すると表
面のひずみ量は約5%となり、繊維破損による強度低下
は避けられない。これに対し、板厚5mmの材料を2枚
積層し、その積層体を成形すると表面のひずみ量はどち
らの板でも約2.5%となることから健全な成形が可能
であり、成形後に2枚の板を接合して一体化すれば、複
合材料の強度特性を損うことなくブレードが製造でき
る。更に小さな曲率半径の成形が必要な場合には、複合
材の板厚を薄くして積層板数を多くすることによって対
応可能である。長繊維系複合材の外表面はマトリックス
金属で覆われているため、積層板の間の接合は基本的に
はインサート材なしの拡散接合が用いられることになる
が、板間にシートあるいは粉末状のインサート材を挿入
して拡散接合やろう付をしてもよい。この積層板の接合
(一体化処理)は塑性加工(曲げ成形)と同一の加熱工
程内で連続的に行われるのが最も効率的でコストも低く
なるが、成形温度と接合温度の兼合いで別工程とするこ
とも可能である。
However, the critical working ratio (amount of strain that can be subjected to plastic working without causing a decrease in strength due to fiber breakage) of the long fiber composite material is only a few percent in the fiber orientation direction, and the thickness of the composite material is small. When it is thick, the formable bend R is limited to a rather large range. Machining limit is matrix material,
It varies depending on the fiber content and processing conditions, but if it is 3%
And the plate thickness is 10 mm and the radius of curvature in the longitudinal direction is 100 m
Considering the case of forming a blade of m
When the composite material plate is molded with a radius of curvature of 100 mm, the amount of strain on the surface becomes about 5%, and a decrease in strength due to fiber breakage cannot be avoided. On the other hand, when two sheets of a material having a thickness of 5 mm are laminated and the laminated body is formed, the amount of strain on the surface is about 2.5% in either plate, so that sound molding is possible. If the two plates are joined and integrated, a blade can be manufactured without impairing the strength characteristics of the composite material. If a smaller radius of curvature is required, the thickness of the composite material can be reduced to increase the number of laminated plates. Since the outer surface of the long-fiber composite material is covered with matrix metal, diffusion bonding without insert material is basically used for bonding between laminates. A material may be inserted for diffusion bonding or brazing. The joining (integration processing) of the laminates is most efficiently performed continuously in the same heating step as the plastic working (bending), and the cost is low. It is also possible to use a separate step.

【0022】(実施例2)代表的な短繊維系複合材であ
るSiCw/Al(SiCwはSiCのウィスカを示
す。)で飛しょう体、水中航走体の胴体等、内圧あるい
は外圧を受ける円筒を製作するプロセスを例に採って図
2を参照して説明する。図2(a)に示す従来のSiC
w/Alの円筒(チューブ)を製作する加工技術として
は押出し加工が最も一般的であると考えられるが、押出
し加工により製造される円筒では繊維(SiCw)は軸
方向(押出し方向)に配向することになるため、圧力円
筒の製作方法としては適していない。すなわち、圧力円
筒ではホープ(Hoop) 応力が軸方向応力の2倍となるた
め、円周方向に繊維を配向させることが望ましい。円周
方向の繊維配向を塑性加工によって実現する方法として
は小径円筒をリング圧延して大径円筒とすることが考え
られるが、この場合にも圧延素材となる小径円筒は押出
し加工によって製作され、軸方向に繊維が配向している
ため、リング圧延後にも円周方向への一方向配向を得る
には至らないと考えられる。
(Example 2) A cylinder receiving internal pressure or external pressure, such as a flying object or a body of an underwater vehicle, is made of SiCw / Al (SiCw is a whisker of SiC) which is a typical short fiber composite material. Will be described with reference to FIGS. Conventional SiC shown in FIG.
Extrusion is considered to be the most common processing technique for producing w / Al cylinders (tubes). However, in a cylinder produced by extrusion, fibers (SiCw) are oriented in the axial direction (extrusion direction). Therefore, it is not suitable as a method for manufacturing a pressure cylinder. That is, in a pressure cylinder, since the Hoop stress is twice the axial stress, it is desirable to orient the fibers in the circumferential direction. As a method of realizing the fiber orientation in the circumferential direction by plastic working, it is conceivable to ring-roll a small-diameter cylinder into a large-diameter cylinder.In this case, too, the small-diameter cylinder to be rolled is manufactured by extrusion. Since the fibers are oriented in the axial direction, it is considered that unidirectional orientation in the circumferential direction is not obtained even after ring rolling.

【0023】これに対し、図2(b)に示す本発明によ
る製作プロセスでは、押出し、圧延等によって一方向に
繊維を配向させた薄板を素材とし、繊維配向方向に所定
の曲率を与えた後、それを所定の形状を有する容器内で
積層して円筒形状とし、HIP法等により一体の円筒を
製作する。このとき長尺の薄板をコイル状に巻くことが
できれば、素材の継ぎ目がなくなり、強度特性的に最も
好ましいが、短尺の一方向配向材でも素材の継ぎ目が円
周上のある一点に集中しないように積層して円筒形状と
することが可能である。短繊維系複合材の場合には、板
の外表面がマトリックス金属で覆われていることは少
く、またマトリックス金属は拡散接合の難かしいアルミ
ニウム合金である場合が多いことから、積層された部材
同士の接合はインサート材を用いる拡散接合やろう付け
となる。積層部材の間にすき間が生じる場合には接合の
ためのインサート材に加えて複合材のマトリックス粉末
及び繊維を充填し、一体化工程において複合材料化す
る。
On the other hand, in the manufacturing process according to the present invention shown in FIG. 2B, a thin plate in which fibers are oriented in one direction by extrusion, rolling, or the like is used as a material, and after a predetermined curvature is given in the fiber orientation direction. Are laminated in a container having a predetermined shape to form a cylindrical shape, and an integrated cylinder is manufactured by a HIP method or the like. At this time, if the long thin plate can be wound in a coil shape, the seam of the material is eliminated and the strength characteristics are most preferable, but even in the case of a short unidirectionally oriented material, the seam of the material is not concentrated at one point on the circumference. To form a cylindrical shape. In the case of short-fiber composite materials, the outer surface of the plate is rarely covered with matrix metal, and the matrix metal is often an aluminum alloy that is difficult to bond by diffusion. Is diffusion bonding or brazing using an insert material. When a gap is generated between the laminated members, a matrix powder and fibers of the composite material are filled in addition to the insert material for joining, and the composite material is formed in the integration process.

【0024】[0024]

【発明の効果】金属複合材の積層体を一体化して部品と
する本発明は長繊維系複合材においては、塑性加工を利
用する低コストの“複合化−形状付与プロセス”の適用
性を大幅に向上する効果(この効果は被成形板の板厚を
薄くすることによって見かけ上の加工度が上がることに
よる。)を有しており、本材料の適用上の最大の課題と
なっている“コスト高”に対して有効な解決策を提供す
る。また、短繊維系複合材においては、これまで不可能
であった任意の方向への配向の制御を可能とする効果を
有しており、製品性能の向上が計られる。
As described above, according to the present invention, a long-fiber-based composite material can be applied to a low-cost "composite-shaping process" using plastic working. (This effect is due to an increase in the apparent workability by reducing the thickness of the plate to be formed.) This is the biggest problem in applying this material. Provide an effective solution to "high cost". Further, the short fiber composite material has an effect of enabling the orientation to be controlled in an arbitrary direction, which has been impossible so far, and the performance of the product is improved.

【0025】更に、これまで金属複合材料製部品は、製
造可能な素材サイズの制約により、小型部品に限られて
いたが、本発明は金属複合材製の大型部品を製造する手
段を提供するという効果も有しており、金属複合材料の
適用性を大幅に向上するものである。
Furthermore, the metal composite material parts have heretofore been limited to small parts due to restrictions on the size of the material that can be manufactured, but the present invention provides means for manufacturing large parts made of metal composite materials. It also has an effect and greatly improves the applicability of the metal composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるブレードの製造方法
(b)と従来の一態様のブレードの製造方法(a)との
比較を示す説明図。
FIG. 1 is an explanatory view showing a comparison between a blade manufacturing method (b) according to one embodiment of the present invention and a conventional blade manufacturing method (a) according to one embodiment.

【図2】本発明の一実施例である耐圧円筒の製造方法
(b)と従来の一態様の耐圧円筒の製造方法(a)との
比較を示す説明図。
FIG. 2 is an explanatory diagram showing a comparison between a method (b) for manufacturing a pressure-resistant cylinder according to one embodiment of the present invention and a method (a) for manufacturing a pressure-resistant cylinder according to a conventional mode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強化用繊維を一方向に配向させてなる複
数のブロック状または板状繊維強化金属複合材を製作
し、該複合材の繊維が任意の方向に配向するように該複
合材を多数積層して積層体となし、曲面をもつ成形型に
該積層体を装填して加熱、加圧して一体化成形すること
を特徴とする繊維強化金属複合材製部品の製造方法。
1. A plurality of block-shaped or plate-shaped fiber-reinforced metal composites each having a reinforcing fiber oriented in one direction are manufactured, and the composite is oriented so that the fibers of the composite are oriented in an arbitrary direction. A method for producing a component made of a fiber-reinforced metal composite material, comprising laminating a large number into a laminate, loading the laminate in a mold having a curved surface, and applying heat and pressure to integrally mold the laminate.
【請求項2】 強化用繊維を一方向に配向させてなる複
数のブロック状または板状繊維強化金属複合材を製作
し、該複合材のそれぞれを曲面を有する所望形状に成形
したのち、形状付与した複合材を多数積層して積層体と
なし、曲面をもつ成形型に該積層体を装填して加熱、加
圧して一体化成形することを特徴とする繊維強化金属複
合材製部品の製造方法。
2. A plurality of block-shaped or plate-shaped fiber-reinforced metal composites in which reinforcing fibers are oriented in one direction are manufactured, and each of the composites is formed into a desired shape having a curved surface, and then a shape is imparted. A method for producing a fiber-reinforced metal composite part, comprising laminating a large number of composite materials into a laminate, loading the laminate in a mold having a curved surface, and heating and pressing to integrally mold the laminate. .
【請求項3】 複合材を多数積層して積層体となす際、
複合材間に、複合材に用いられる繊維粉末、金属粉末ま
たは箔を装入することを特徴とする請求項1または2記
載の繊維強化金属複合材製部品の製造方法。
3. When laminating a large number of composite materials to form a laminate,
The method for producing a fiber-reinforced metal composite part according to claim 1 or 2, wherein a fiber powder, a metal powder, or a foil used for the composite material is inserted between the composite materials.
JP25160297A 1997-09-17 1997-09-17 Production of parts made of metallic composite material Withdrawn JPH1192841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25160297A JPH1192841A (en) 1997-09-17 1997-09-17 Production of parts made of metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25160297A JPH1192841A (en) 1997-09-17 1997-09-17 Production of parts made of metallic composite material

Publications (1)

Publication Number Publication Date
JPH1192841A true JPH1192841A (en) 1999-04-06

Family

ID=17225270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25160297A Withdrawn JPH1192841A (en) 1997-09-17 1997-09-17 Production of parts made of metallic composite material

Country Status (1)

Country Link
JP (1) JPH1192841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1350857A1 (en) * 2002-03-18 2003-10-08 Fuji Jukogyo Kabushiki Kaisha Preform structure and method of manufacturing a preform formed into metal matrix composite
CN104859218A (en) * 2015-04-21 2015-08-26 杜双双 Thin-coat metal composite plate and production method thereof
WO2015178047A1 (en) * 2014-05-21 2015-11-26 昭和電工株式会社 Process for producing composite material constituted of aluminum and carbon fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1350857A1 (en) * 2002-03-18 2003-10-08 Fuji Jukogyo Kabushiki Kaisha Preform structure and method of manufacturing a preform formed into metal matrix composite
WO2015178047A1 (en) * 2014-05-21 2015-11-26 昭和電工株式会社 Process for producing composite material constituted of aluminum and carbon fibers
JP2015217655A (en) * 2014-05-21 2015-12-07 昭和電工株式会社 Method for producing composite material comprising aluminum and carbon fiber
CN104859218A (en) * 2015-04-21 2015-08-26 杜双双 Thin-coat metal composite plate and production method thereof

Similar Documents

Publication Publication Date Title
US4406393A (en) Method of making filamentary reinforced metallic structures
US6460240B1 (en) Method of manufacturing a profile member of a hybrid composite material
US3609855A (en) Production of beryllium ribbon reinforced composites
JPH10693A (en) Cylindrical part made of fiber reinforced resin composite material and its production
CN107234837A (en) A kind of ripple dot matrix metal sandwich cylindrical shell and preparation method thereof
WO2017134941A1 (en) Hollow tube material manufacturing method
CN109693402A (en) Carbon fibre composite and aluminum alloy materials are without riveting punching press vibration connection method and its mold
JPH04224021A (en) Id dimension-fitting process for annular object reinforced with filament
JPH1192841A (en) Production of parts made of metallic composite material
EP1306459B1 (en) Pretreatment of a metal matrix composite for hot isostatic pressing
JP2006272656A (en) Metal/resin composite pipe and its manufacturing method
WO2004052573A1 (en) Composite material member and method for producing the same
US6379480B1 (en) Method for obtaining thin, light and rigid metal parts
CN108349215B (en) Forming a metal composite
JPS63194816A (en) Manufacture of composite member
JPH07157374A (en) Production of metallic composite material molding
JPH11210937A (en) Cfrp-reinforced square pipe
US11806946B1 (en) Method of designing and producing carbon fiber connecting rods
WO2005009649A1 (en) Reinforcement member, method of manufacturing reinforcement member, and engine block
JPS648058B2 (en)
JPS63212013A (en) Continuous manufacture of pipe made of fiber reinforced metal
JPH03107433A (en) Manufacture of superplasticity silicon nitride whisker reinforced aluminum alloy composite
JP2002283487A (en) Fiber-reinforced composite material laminate having function of actuator and manufacturing method thereof
US20190232615A1 (en) Adapter Component, Method for Producing an Adapter Component and Connection Assembly Having an Adapter Component
JPS62235439A (en) Fiber reinforced composite al alloy material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207