JP2006272656A - Metal/resin composite pipe and its manufacturing method - Google Patents

Metal/resin composite pipe and its manufacturing method Download PDF

Info

Publication number
JP2006272656A
JP2006272656A JP2005092737A JP2005092737A JP2006272656A JP 2006272656 A JP2006272656 A JP 2006272656A JP 2005092737 A JP2005092737 A JP 2005092737A JP 2005092737 A JP2005092737 A JP 2005092737A JP 2006272656 A JP2006272656 A JP 2006272656A
Authority
JP
Japan
Prior art keywords
tube
metal
pipe
resin
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005092737A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazaki
謙一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Manufacturing Co Ltd
Original Assignee
Sankyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Manufacturing Co Ltd filed Critical Sankyo Manufacturing Co Ltd
Priority to JP2005092737A priority Critical patent/JP2006272656A/en
Publication of JP2006272656A publication Critical patent/JP2006272656A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a metal outer pipe and an FRP inner pipe of a metal/resin composite pipe from being released apart in a cooling process after thermal molding and also, the buckling of the inner pipe/breakage of a material from occurring, in the metal/resin composite pipe. <P>SOLUTION: When the metal outer pipe and the FRP inner pipe are molded by heat and under pressure, a fiber-reinforced resin whose ratio of compression strength to compression modulus in the pipe axial direction can meet a specified relationship, is sandwiched between both outer/inner pipes as a buffer layer. Consequently, the compression load of the outer pipe by heat shrinkage in the pipe axial direction, is absorbed by the compression and shear deformation of the buffer layer. Besides, in the pipe axial direction of the composite pipe, the value (Rc2) of the compression strength/compression modulus of a second fiber-reinforced resin is higher than the value (Rc1) of the compression strength/compression modulus of a first fiber-reinforced resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は金属と樹脂を一体に加熱および加圧成形してなる複合管およびその製造方法に関する。   The present invention relates to a composite pipe formed by integrally heating and pressure-molding a metal and a resin and a method for manufacturing the same.

金属材料の摺動性、耐溶剤性および加工性と、繊維強化樹脂(以下、「FRP」という。)の高い比強度、比剛性および耐熱変形性を享受するため、従来から金属管の内部にFRP管を複合した複合管が提供されている。   In order to enjoy the slidability, solvent resistance and workability of metal materials and the high specific strength, specific rigidity and heat distortion resistance of fiber reinforced resin (hereinafter referred to as “FRP”), A composite tube in which an FRP tube is combined is provided.

かかる複合管の製造方法は大別して、(1)接着法、(2)クラッド法、(3)メッキ法、(4)圧着法の四種類が提案されている。   The manufacturing method of such a composite pipe is roughly classified into four types: (1) adhesion method, (2) cladding method, (3) plating method, and (4) pressure bonding method.

(1)接着法は、FRP管の表面に接着剤を塗布し、これを金属管の内周面に貼着する製法である。しかし、FRP管と金属管を均一に接着させるためにはFRP管の外表面を滑らかに研磨する必要があるため、樹脂中の繊維の損傷や加工コストの増大を招くこととなる。また接着剤の強度および剛性が金属管やFRP管に比べて低いため、両管の接着強度、特に層間剪断強度が十分でないという問題があった。 (1) The bonding method is a manufacturing method in which an adhesive is applied to the surface of the FRP tube and this is adhered to the inner peripheral surface of the metal tube. However, in order to evenly bond the FRP tube and the metal tube, it is necessary to smoothly polish the outer surface of the FRP tube, resulting in damage to fibers in the resin and an increase in processing cost. In addition, since the strength and rigidity of the adhesive is lower than those of metal pipes and FRP pipes, there is a problem that the adhesive strength of both pipes, particularly the interlaminar shear strength, is not sufficient.

(2)クラッド法は、金属管とFRP管とを嵌め合いに成形し、金属管の内部にFRP管を圧入する製法である。かかる製法による場合、厳密な公差管理が必要となり加工コストが甚大となる。またFRP管の表面を研磨する必要があることから生じる繊維の損傷の問題も上記の接着法と同様に生ずる。更に、金属管とFRP管は両者の摩擦力によって当接しているのみであるため、両管の層間剪断強度を十分に得ることが困難である。 (2) The cladding method is a manufacturing method in which a metal tube and an FRP tube are formed to fit together, and the FRP tube is press-fitted into the metal tube. In the case of such a manufacturing method, strict tolerance management is required, and the processing cost is increased. In addition, the problem of fiber damage caused by the need to polish the surface of the FRP tube also occurs in the same manner as in the above-described bonding method. Furthermore, since the metal tube and the FRP tube are only in contact with each other by the frictional force, it is difficult to obtain sufficient interlaminar shear strength between the two tubes.

(3)メッキ法は、FRP管の表面に金属メッキを施す製法である。しかしFRP表面に金属をメッキする場合は、金属材料に金属をメッキする場合に比べて両者の接合力が大幅に劣るという問題がある。また金属メッキにより構造部材として十分な厚さの金属層を得るためには加工コストが極めて大きく現実的ではない。 (3) The plating method is a manufacturing method in which metal plating is performed on the surface of the FRP tube. However, when a metal is plated on the FRP surface, there is a problem that the bonding force between the two is significantly inferior to the case where a metal is plated on a metal material. Further, in order to obtain a metal layer having a sufficient thickness as a structural member by metal plating, the processing cost is extremely large and not realistic.

(4)圧着法は、金属管の内周面に配接したFRP管を、金属管と一体に加圧圧着する製法である。かかる製法は加工コストや成形後の両管の層間剪断強度の高さの点で優れている。 (4) The crimping method is a manufacturing method in which an FRP tube arranged on the inner peripheral surface of a metal tube is pressure-bonded integrally with the metal tube. Such a manufacturing method is excellent in terms of processing cost and high interlaminar shear strength of both pipes after molding.

圧着法を用いた先行技術としては、特許文献1(特開平5−50511号公報:段落[0020],[0022],[0027])に金属被覆繊維強化樹脂製円筒部材の製造法に関する発明が、そして特許文献2(特開平8−114216号公報:段落[0009],[0029])に複合ローラおよびその製造方法に関する発明が、それぞれ記載されている。   As a prior art using the pressure bonding method, Patent Document 1 (Japanese Patent Laid-Open No. 5-50511: paragraphs [0020], [0022], [0027]) discloses an invention relating to a method for producing a metal-coated fiber-reinforced resin cylindrical member. Patent Document 2 (Japanese Patent Laid-Open No. 8-114216: paragraphs [0009] and [0029]) describes inventions related to the composite roller and a method for manufacturing the same.

特許文献1記載の発明は、内管としてガラスクロスプリプレグシートをはじめとする繊維含浸樹脂または金属薄板を、そしてこれを金属外管と接合する接着層としてエポキシ樹脂等の熱硬化性樹脂を含浸した樹脂含浸補強繊維を、それぞれ用いるものである。また接着層の加熱硬化に際しては圧縮空気による加圧を併用する旨が開示されている。   In the invention described in Patent Document 1, a fiber-impregnated resin or a metal thin plate including a glass cloth prepreg sheet is impregnated as an inner tube, and a thermosetting resin such as an epoxy resin is impregnated as an adhesive layer for joining this to a metal outer tube. Each of the resin-impregnated reinforcing fibers is used. Further, it is disclosed that pressurization with compressed air is used in combination when the adhesive layer is heat-cured.

特許文献2記載の発明は、金属パイプの内周面にFRPローラを複合するに際し、FRPローラの最内層と最外層について、ともにローラの周方向に繊維を配向させることにより、繊維の乱れを無くし、内外管を強固に接着することを可能とするものである。また内外管の成形方法については、加熱環境下において拡張コーンのねじ込みや拡張用カムの回転作動を行う旨が開示されている。
特開平5−50511号公報 特開平8−114216号公報
When the FRP roller is combined with the inner peripheral surface of the metal pipe, the invention described in Patent Document 2 eliminates the fiber disturbance by orienting the fibers in the circumferential direction of the innermost layer and the outermost layer of the FRP roller. It is possible to firmly bond the inner and outer tubes. As for the method for forming the inner and outer tubes, it is disclosed that the expansion cone is screwed and the expansion cam is rotated in a heated environment.
JP-A-5-50511 JP-A-8-114216

圧着法においては、金属製の外管とFRPのプリプレグよりなる内管とを強固に加圧成形しようとする場合、FRPの母材(マトリクス)が熱硬化性樹脂であるか熱可塑性樹脂であるかを問わず、高い成形温度下にて加圧作業を行う。このとき金属とFRPの線膨張係数(CTE)の違いにより、加熱・加圧成形後の冷却工程において、両管間の剥離や内管の座屈または材料破壊を生じる場合がある。   In the pressure bonding method, when a metal outer tube and an inner tube made of FRP prepreg are to be strongly pressure-molded, the FRP base material (matrix) is a thermosetting resin or a thermoplastic resin. Regardless of this, the pressurizing operation is performed at a high molding temperature. At this time, due to the difference in coefficient of linear expansion (CTE) between the metal and FRP, in the cooling step after heating and pressure forming, separation between both tubes, buckling of the inner tube, or material destruction may occur.

これは、図9に示すように、金属製の外管10とFRP製の内管12が加熱下で加圧圧着された複合管の状態Aから、両管が冷却されるとCTEの大きい外管10は特に長さの大きい管軸方向に沿って大きく熱収縮するため、両管の接合力が弱い場合は剥離11(状態B)を、接合力が大きい場合は内管の座屈13(状態C)や、主として内管の最外層において材料破壊を生じるためである。なお、金属材料の例としてステンレスのCTEは17〜18[10−6/K]、アルミニウムのCTEは25〜26[10−6/K]であるのに対し、FRPの例として、代表的な炭素繊維強化プラスチックの場合、CTEは1[10−6/K]前後と極めて低い。 As shown in FIG. 9, when both pipes are cooled from the state A of the composite pipe in which the metal outer pipe 10 and the FRP inner pipe 12 are pressure-bonded under heating, the outer part having a large CTE is obtained. Since the pipe 10 is greatly heat-shrinked along the direction of the pipe axis having a particularly long length, the peeling 11 (state B) is performed when the joining force between the two pipes is weak, and the buckling 13 ( This is because the material C breaks in the state C) or mainly in the outermost layer of the inner tube. As an example of the metal material, the CTE of stainless steel is 17 to 18 [10 −6 / K], and the CTE of aluminum is 25 to 26 [10 −6 / K]. In the case of carbon fiber reinforced plastic, CTE is extremely low, around 1 [10 −6 / K].

ここで、先行文献1記載の発明の場合、内筒体1と樹脂含浸補強繊維2の繊維種別やその配向は特に検討されておらず、管軸方向についてのそれぞれの圧縮弾性率や剪断弾性率の大小が不明であり、また内筒体1と樹脂含浸補強繊維2にいずれもガラスクロスプリプレグシートを用いることを許容していることから、上記の剥離や座屈、材料破壊が生じ得るという問題があった。   Here, in the case of the invention described in the prior art document 1, the fiber type and the orientation of the inner cylinder 1 and the resin-impregnated reinforcing fiber 2 are not particularly examined, and the respective compression elastic modulus and shear elastic modulus in the tube axis direction are not examined. In addition, since the glass cloth prepreg sheet is allowed to be used for both the inner cylindrical body 1 and the resin-impregnated reinforcing fiber 2, the above-described peeling, buckling, and material destruction may occur. was there.

また、先行文献2記載の発明の場合、FRP管の最外層(および最内層)をそれぞれ1層ずつ周方向に繊維配向させているものの、内管は単一の繊維強化樹脂よりなるため、これと直接当接する金属パイプが熱収縮した場合、複合管全体としての剛性を高く維持しようとするならば、特に内管の外層近傍にて材料破壊が生じやすいという問題が避けられないものであった。   In the case of the invention described in the prior art document 2, the outermost layer (and the innermost layer) of the FRP pipe is fiber oriented in the circumferential direction, but the inner pipe is made of a single fiber reinforced resin. If the metal pipe that directly contacts the heat shrinks, if the rigidity of the composite pipe as a whole is to be maintained high, the problem that material breakage tends to occur especially in the vicinity of the outer layer of the inner pipe is inevitable. .

先行技術の有するこれらの課題を踏まえ、本発明においては、金属製の外管とFRP製の内管を複合した金属/樹脂複合管において、その剛性を高く維持しつつも、加熱成形後の冷却工程における両管の間の剥離や、内管の座屈および材料破壊を防止することを目的とする。   In light of these problems of the prior art, in the present invention, a metal / resin composite pipe composed of a metal outer pipe and an FRP inner pipe is cooled after heat forming while maintaining its rigidity high. The object is to prevent peeling between both pipes in the process, buckling of the inner pipe, and material destruction.

そこで上記課題を解決するため本発明者は鋭意検討の末、金属の外管とFRPの内管を加熱および加圧成形するに際し、管軸方向の圧縮強度と圧縮弾性率との比率が所定の関係を満たす、内管とは異なる繊維強化樹脂を緩衝層として両管の間に挟み込むことにより、外管の熱収縮による管軸方向の圧縮荷重が、かかる緩衝層の圧縮および剪断変形によって吸収されるという知見に想到した。またこのことは、外管の熱収縮に伴う管軸方向の荷重が内管に直接負荷されることを防止し、内/外管の剥離や、内管の座屈または材料破壊の発生を回避できることを意味するものであることから、かかる知見に基づき上記課題を解決する本発明の完成に到った。また緩衝層をエポキシ系などの接着剤ではなく繊維強化樹脂とすることにより、複合管全体としての剛性の確保も図られている。   Therefore, in order to solve the above problems, the present inventor has intensively studied, and when the metal outer tube and the FRP inner tube are heated and pressure-molded, the ratio between the compression strength in the tube axis direction and the compression elastic modulus is a predetermined ratio. By sandwiching a fiber reinforced resin satisfying the relationship different from the inner tube as a buffer layer between the two tubes, the compressive load in the tube axis direction due to the thermal contraction of the outer tube is absorbed by the compression and shear deformation of the buffer layer. I came up with the knowledge that This also prevents the axial load caused by heat shrinkage of the outer tube from being directly applied to the inner tube, avoiding the inner / outer tube peeling, the inner tube buckling or material breakage. Since this means that it can be done, the present invention that solves the above-described problems has been completed based on this finding. In addition, by using a fiber reinforced resin instead of an epoxy-based adhesive as the buffer layer, the rigidity of the composite pipe as a whole is also ensured.

すなわち以下の発明によれば、上記課題を解決することが可能である。
(1)金属製の外管の内周面に、第一の繊維強化樹脂からなる内管が、第二の繊維強化樹脂からなる緩衝層を挟んで加熱および加圧成形された金属/樹脂複合管であって、
前記複合管の管軸方向について、第二の繊維強化樹脂の圧縮強度/圧縮弾性率の値(Rc2)が、第一の繊維強化樹脂の圧縮強度/圧縮弾性率の値(Rc1)よりも大きいことを特徴とする金属/樹脂複合管。
That is, according to the following invention, the above-described problems can be solved.
(1) A metal / resin composite in which an inner tube made of a first fiber reinforced resin is heated and pressure-molded on an inner peripheral surface of a metal outer tube with a buffer layer made of a second fiber reinforced resin interposed therebetween A tube,
Regarding the tube axis direction of the composite tube, the compression strength / compression modulus value (Rc2) of the second fiber reinforced resin is larger than the compression strength / compression modulus value (Rc1) of the first fiber reinforced resin. A metal / resin composite tube characterized by that.

また本発明は、その具体的な実施の態様として以下の各関連発明を含むものである。
(2)前記Rc2がRc1の1.5倍以上であることを特徴とする(1)記載の金属/樹脂複合管。
The present invention includes the following related inventions as specific embodiments thereof.
(2) The metal / resin composite tube according to (1), wherein Rc2 is 1.5 times or more of Rc1.

(3)外管、内管および緩衝層の、管軸に垂直な断面の形状が矩形であることを特徴とする(1)または(2)に記載の金属/樹脂複合管。 (3) The metal / resin composite tube according to (1) or (2), wherein the outer tube, the inner tube, and the buffer layer have a rectangular cross-sectional shape perpendicular to the tube axis.

(4)内管が炭素繊維強化プラスチック、緩衝層がガラス繊維強化プラスチックからなることを特徴とする(1)から(3)のいずれかに記載の金属/樹脂複合管。 (4) The metal / resin composite tube according to any one of (1) to (3), wherein the inner tube is made of carbon fiber reinforced plastic and the buffer layer is made of glass fiber reinforced plastic.

(5)内管と緩衝層の厚さの比が10:1乃至100:1であることを特徴とする(4)記載の金属/樹脂複合管。 (5) The metal / resin composite tube according to (4), wherein the ratio of the thickness of the inner tube to the buffer layer is 10: 1 to 100: 1.

(6)内圧負荷手段を具備する芯材の周囲に、第一の繊維強化樹脂からなる内管を被着させる第一工程と、
内管の外周に第二の繊維強化樹脂からなる緩衝層を被着させる第二工程と、
金属製の外管の内部に、緩衝層を被着した内管を挿入する第三工程と、
外管、緩衝層および内管を所定の成形温度(℃)に加熱しつつ、前記内圧負荷手段によりこれらを一体に加圧成形する第四工程と、
前記成形温度(℃)の40乃至80%の温度(℃)にてエージングを行う第五工程とからなる金属/樹脂複合管の製造方法であって、
前記複合管の管軸方向について、第二の繊維強化樹脂の加圧成形後の圧縮強度/圧縮弾性率の値(Rc2)が、第一の繊維強化樹脂の加圧成形後の圧縮強度/圧縮弾性率の値(Rc1)よりも大きいことを特徴とする金属/樹脂複合管の製造方法。
(6) a first step of attaching an inner tube made of a first fiber reinforced resin around a core material provided with an internal pressure load means;
A second step of depositing a buffer layer made of a second fiber reinforced resin on the outer periphery of the inner tube;
A third step of inserting the inner tube with the buffer layer deposited inside the metal outer tube;
A fourth step in which the outer tube, the buffer layer and the inner tube are heated to a predetermined molding temperature (° C.), and these are integrally pressure-molded by the internal pressure load means;
A metal / resin composite pipe manufacturing method comprising a fifth step of aging at a temperature (° C.) of 40 to 80% of the molding temperature (° C.),
For the tube axis direction of the composite tube, the compression strength / compression modulus value (Rc2) after pressure molding of the second fiber reinforced resin is the compression strength / compression after pressure molding of the first fiber reinforced resin. A method for producing a metal / resin composite pipe, characterized by being larger than a value of elastic modulus (Rc1).

金属製の外管とFRP製の内管を加熱環境下で加圧成形する場合、CTEの大きな金属管は成形温度まで加熱した際に大きな熱膨張変形を生じ、その状態で熱変形の小さなFRP製の内管と一体に加圧成形されることとなる。本発明にかかる金属/樹脂複合管によれば、複合管の管軸方向について、両者の間に挟み込む緩衝層の圧縮強度/圧縮弾性率の値(Rc2)が、内管の圧縮強度/圧縮弾性率の値(Rc1)よりも大きいことを特徴とする。   When a metal outer tube and an FRP inner tube are pressure-formed in a heated environment, a metal tube with a large CTE undergoes a large thermal expansion deformation when heated to the molding temperature, and FRP with a small thermal deformation in that state. It is press-molded integrally with the made inner tube. According to the metal / resin composite tube according to the present invention, in the tube axis direction of the composite tube, the compression strength / compression modulus value (Rc2) of the buffer layer sandwiched between them is the compression strength / compression elasticity of the inner tube. It is characterized by being larger than the rate value (Rc1).

これにより、加熱・加圧状態から複合管の全体が冷却されて外管が収縮する際に、緩衝層は、圧縮弾性率の低さゆえ外管側が引きずられて圧縮変形し、一方で内管側は拘束された状態で保持されるため管軸方向に全体が剪断変形をすることとなる。このため、金属外管とFRP内管の間に生じる熱応力を緩衝層の圧縮および剪断応力として受け止め、これを吸収させることができる。   As a result, when the entire composite tube is cooled from the heated / pressurized state and the outer tube contracts, the buffer layer is compressed and deformed by being dragged on the outer tube side due to the low compression elastic modulus. Since the side is held in a restrained state, the whole undergoes shear deformation in the tube axis direction. For this reason, the thermal stress generated between the metal outer tube and the FRP inner tube can be received as the compression and shear stress of the buffer layer and absorbed.

図8は、本発明にかかる複合管の熱変形特性を示す説明図である。外管10と内管12の間に緩衝層14を挟み込むことにより、熱膨張した外管10(状態A)の冷却による熱収縮に伴う緩衝層14の圧縮および剪断変形が生じ(状態B)、熱応力が吸収されている様子を示している。   FIG. 8 is an explanatory diagram showing the thermal deformation characteristics of the composite pipe according to the present invention. By sandwiching the buffer layer 14 between the outer tube 10 and the inner tube 12, compression and shear deformation of the buffer layer 14 due to thermal contraction due to cooling of the thermally expanded outer tube 10 (state A) occurs (state B). It shows how the thermal stress is absorbed.

また緩衝層に負荷される応力は、そのひずみの大きさから、外管と直接接触する最外面の圧縮応力が一般的に最もクリティカルになるところ、緩衝層の圧縮強度の高さゆえ、上記の圧縮変形によっても緩衝層自体が破壊されることは回避される。一方、繊維強化樹脂の圧縮強度と剪断強度は一般に正の相関関係を有し、緩衝層は高い剪断強度も有するものであるところ、外管から緩衝層に負荷される剪断応力は緩衝層の厚さに反比例して緩衝層全体に負荷されるためその値は小さなものとなり、緩衝層自体が剪断破壊されることもまた回避される。   The stress applied to the buffer layer is generally the most critical compressive stress on the outermost surface in direct contact with the outer tube due to the magnitude of the strain. It is avoided that the buffer layer itself is destroyed even by compressive deformation. On the other hand, the compressive strength and shear strength of fiber reinforced resin generally have a positive correlation, and the buffer layer also has a high shear strength. However, the shear stress applied to the buffer layer from the outer tube is the thickness of the buffer layer. Since the load is applied to the entire buffer layer in inverse proportion to this, the value becomes small, and it is also avoided that the buffer layer itself is sheared.

このような緩衝層を設けない従来の複合管では、冷却開始時に生じるストレスオーバーシュートによる内管最外層の材料破壊や、冷却が進行し外管の熱収縮ひずみが大きくなった場合の両管の剥離や内管全体の座屈破壊などが特に問題となるが、本発明のように金属外管とFRP内管の間に、管軸方向の圧縮強度/圧縮弾性率(Rc)の値が大きい緩衝層を設けることによりこれらの問題を解決することができる。   In conventional composite pipes that do not have such a buffer layer, material destruction of the outermost layer of the inner pipe due to stress overshoot that occurs at the start of cooling, or when the heat shrinkage strain of the outer pipe increases as cooling progresses, Peeling and buckling failure of the entire inner tube are particularly problematic, but the value of compressive strength / compression modulus (Rc) in the tube axis direction is large between the metal outer tube and the FRP inner tube as in the present invention. By providing the buffer layer, these problems can be solved.

また緩衝層を繊維強化樹脂とすることにより、接着剤による内/外管の接合を行う従来の方式に比べ、複合管全体としての剛性が高く確保される。これにより金属外管の摺動性や加工性、耐溶剤性と、FRP内管の高い比強度や比剛性、耐熱変形性の利点をいずれも享受することのできる金属/樹脂複合管が得られる。   Further, by using the fiber reinforced resin as the buffer layer, the rigidity of the composite pipe as a whole can be ensured to be high as compared with the conventional method in which the inner / outer pipes are bonded with an adhesive. As a result, a metal / resin composite tube can be obtained that can enjoy all of the slidability, workability, solvent resistance of the metal outer tube, and the advantages of the high specific strength, specific rigidity, and heat distortion resistance of the FRP inner tube. .

以下、本発明の実施の形態について図面を用いて具体的に説明する。ただし特に複合管の断面形状や管軸の形状、加圧手段の具体方法などにつき、本発明は以下の実施の形態に限られるものではない。本発明にかかる金属/樹脂複合管の管軸に沿った断面(縦断面)の形状を図1に示す。また管軸に垂直な断面(横断面)の形状を図2に示す。図2は図1のA−A断面に相当する。10は外管、12は内管、14は緩衝層、20は複合管を表わす。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the following embodiments particularly with respect to the cross-sectional shape of the composite tube, the shape of the tube shaft, the specific method of the pressurizing means, and the like. The shape of the cross section (longitudinal cross section) along the tube axis of the metal / resin composite tube according to the present invention is shown in FIG. FIG. 2 shows the shape of a cross section (cross section) perpendicular to the tube axis. FIG. 2 corresponds to the AA cross section of FIG. 10 represents an outer tube, 12 represents an inner tube, 14 represents a buffer layer, and 20 represents a composite tube.

外管10は金属材料からなる。これにより、樹脂との複合管とした場合の表面の摺動性、切削、溶接、メッキなどの加工性、耐溶剤性などの利点が得られる。金属材料は特に限定されず、例えばステンレス(SUS)、鋼、アルミニウム(アルミ)、鉄、銅、チタン、マグネシウム、またはこれらの合金などの中から用途、入手性、加工性などの観点から適宜選択できる。   The outer tube 10 is made of a metal material. As a result, advantages such as surface slidability, workability such as cutting, welding and plating, and solvent resistance in the case of a composite tube with resin can be obtained. The metal material is not particularly limited, and is appropriately selected from the viewpoints of use, availability, workability, and the like from, for example, stainless steel (SUS), steel, aluminum (aluminum), iron, copper, titanium, magnesium, or alloys thereof. it can.

また外管10の外周面は、一般的なワイヤブラシやサンダーなどの機械的研磨処理のほか、脱脂処理、硫化や酸化などの化成処理、防錆などのメッキ処理、陽極酸化処理、表面効果処理、膜処理などを成形前に行っておいてもよい。ただし、これらの表面処理は内管12との複合後に行うこともできる。   Further, the outer peripheral surface of the outer tube 10 is subjected to a mechanical polishing process such as a general wire brush or a sander, a degreasing process, a chemical conversion process such as sulfurization and oxidation, a plating process such as rust prevention, an anodizing process, and a surface effect process. Further, a film treatment or the like may be performed before molding. However, these surface treatments can also be performed after combining with the inner tube 12.

一方、外管10の内周面は緩衝層14との接着力を向上するため、脱脂処理、プライマー処理、機械的研磨処理、化成処理などを行っておくことが好適であるが、これらは必須の工程ではない。また用いる金属材料により、例えばアルミニウム管へのノンクロメート化成処理、鋼管へのリン酸塩被膜処理、SUS管へのエポキシ系プライマー処理など、好適な処理を適宜選択できる。   On the other hand, the inner peripheral surface of the outer tube 10 is preferably subjected to degreasing treatment, primer treatment, mechanical polishing treatment, chemical conversion treatment, etc. in order to improve the adhesive strength with the buffer layer 14, but these are essential. This is not a process. Depending on the metal material used, suitable treatments such as non-chromate conversion treatment on aluminum pipes, phosphate coating treatment on steel pipes, and epoxy primer treatment on SUS pipes can be selected as appropriate.

図1、図2において、外管10の縦断面形状は直線、横断面形状は矩形を例示してあるが、本発明の目的を達成するための外管10の形状はこれに限られるものではなく、枝分かれの有無を含めて長手方向が真っ直ぐ以外の異形管や、円形断面や三角形断面をはじめ、特殊形状の横断面形状の管でもよく、長手方向に沿って断面が変化してもよい。   1 and 2, the vertical cross-sectional shape of the outer tube 10 is illustrated as a straight line and the cross-sectional shape is illustrated as a rectangle, but the shape of the outer tube 10 for achieving the object of the present invention is not limited to this. Alternatively, it may be a deformed tube whose longitudinal direction is not straight including the presence or absence of branching, a tube having a special cross-sectional shape such as a circular cross section or a triangular cross section, and the cross section may change along the longitudinal direction.

内管12は、第一の繊維強化樹脂材料からなる。これにより、母材や繊維の種別、および繊維配向の好適な設定により、金属管を超える比強度、比剛性、耐熱変形性、耐食性、耐薬品性などを複合管として得ることができる。   The inner tube 12 is made of a first fiber reinforced resin material. Thereby, specific strength, specific rigidity, heat distortion resistance, corrosion resistance, chemical resistance, and the like exceeding the metal pipe can be obtained as a composite pipe by suitable setting of the base material, fiber type, and fiber orientation.

第一の繊維強化樹脂に用いる母材(マトリクス)には、例えばエポキシ樹脂(EP)、フェノール樹脂(PF)、不飽和ポリエステル樹脂(FRP)、アルキド樹脂、ビスマレイミド樹脂(BMI)、シアネート樹脂、シリコーン樹脂、ポリイミド樹脂(PI)、またはポリウレタン樹脂(PUR)などの熱硬化性樹脂、またはポリアミド(PA)、ポリアセタール(POM)、ポリプロピレン(PP)、ポリサルフォン(PSF)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、ポリアリレート(PAR)、ポリアリレンケトン、ポリアリレンサルファイド、またはポリエステル(PET)などの熱可塑性樹脂の中から一つを選択して、または二種類以上を混合して用いることができる。このうち、エポキシ樹脂またはシアネート樹脂が強度、成形性、入手性の観点から好適に用いられる。   Examples of the base material (matrix) used for the first fiber reinforced resin include epoxy resin (EP), phenol resin (PF), unsaturated polyester resin (FRP), alkyd resin, bismaleimide resin (BMI), cyanate resin, Thermosetting resin such as silicone resin, polyimide resin (PI), or polyurethane resin (PUR), or polyamide (PA), polyacetal (POM), polypropylene (PP), polysulfone (PSF), polybutylene terephthalate (PBT), Polycarbonate (PC), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherimide (PEI), polyethersulfone (PES), polyamideimide (PAI), polyarylate (PAR), polyarylenketo Can be used by mixing polyarylene sulfide or select one of a thermoplastic resin such as polyester (PET),, or two or more kinds. Among these, an epoxy resin or a cyanate resin is preferably used from the viewpoints of strength, moldability, and availability.

また第一の繊維強化樹脂に用いる強化繊維(ファイバー)には、例えば炭素繊維、アラミド繊維、ケブラー繊維、天然繊維、ボロン繊維、セラミック繊維、炭化珪素繊維、またはアルミナ繊維などの金属繊維が用いられる。   In addition, for example, carbon fibers, aramid fibers, Kevlar fibers, natural fibers, boron fibers, ceramic fibers, silicon carbide fibers, or alumina fibers are used as the reinforcing fibers (fibers) used for the first fiber reinforced resin. .

これらの強化繊維は、いずれか一種類、または複数種類を混合したものでもよく、繊維長も短繊維、長繊維を問わないが、内管、ひいては複合管の比強度や比剛性を高くする観点から、炭素繊維、アラミド繊維、または炭化珪素繊維を長繊維として用いるのが好適である。   These reinforcing fibers may be any one type or a mixture of two or more types, and the fiber length is not limited to short fibers or long fibers. However, the viewpoint of increasing the specific strength and specific rigidity of the inner tube, and hence the composite tube. Therefore, it is preferable to use carbon fibers, aramid fibers, or silicon carbide fibers as long fibers.

強化繊維と樹脂の複合方法は特に限定されない。例えば、強化繊維を三次元的に内管の形状に編み上げた状態で樹脂を含浸することもできるが、強化繊維を一方向に揃え、前記の母材を含浸して半硬化状態にしたシート状のプリプレグを複数枚形成しておき、これらを適宜積層していく方法が、繊維の配向設計により複合管の所定の方向(例えば管軸方向)を強化することが容易にできるため好適である。   The method for combining the reinforcing fiber and the resin is not particularly limited. For example, the resin can be impregnated in a state where the reinforcing fibers are three-dimensionally knitted into the shape of the inner tube. However, the reinforcing fibers are aligned in one direction, and the base material is impregnated with the above-mentioned base material so as to be in a semi-cured state. A method of forming a plurality of prepregs and laminating them appropriately is preferable because it is easy to reinforce a predetermined direction of the composite pipe (for example, the pipe axis direction) by fiber orientation design.

複合管20全体の軸方向弾性率を高くする観点から、内管12は、炭素繊維の一方向(UD:unidirectional)材のプリプレグシートを、管軸方向(0度方向)を中心に配向させて積層成形することが特に好適である。   From the viewpoint of increasing the axial elastic modulus of the composite pipe 20 as a whole, the inner pipe 12 is formed by orienting a unidirectional (UD) material prepreg sheet of carbon fiber around the pipe axial direction (0 degree direction). Lamination molding is particularly suitable.

内管12の形状は特に限定されない。図1、図2では外管10と同様に縦断面形状を直線、横断面形状を矩形としているが、これに限られず、外管10と同様に、異形管や、特殊形状の横断面形状の管としてもよい。また内管12の縦または横断面形状を外管10と同一または相似形とする必要はなく、内管として要求される肉厚、開口形状および開口面積を適宜採用することができる。   The shape of the inner tube 12 is not particularly limited. In FIGS. 1 and 2, the vertical cross-sectional shape is a straight line and the cross-sectional shape is rectangular like the outer tube 10, but the shape is not limited to this, and similarly to the outer tube 10, a deformed tube or a special-shaped cross-sectional shape is used. It may be a tube. Moreover, it is not necessary to make the vertical or horizontal cross-sectional shape of the inner tube 12 the same as or similar to that of the outer tube 10, and the thickness, opening shape, and opening area required for the inner tube can be appropriately employed.

外管10と内管12に挟み込まれ、両者を結合する緩衝層14は、第二の繊維強化樹脂材料からなる。これにより複合管全体としての剛性を維持しつつ、両管の間に生じる熱応力を緩衝層14に対する圧縮および剪断応力として吸収させることができる。   The buffer layer 14 sandwiched between the outer tube 10 and the inner tube 12 and joining them is made of a second fiber reinforced resin material. Thereby, the thermal stress generated between the two pipes can be absorbed as compressive and shear stress on the buffer layer 14 while maintaining the rigidity of the composite pipe as a whole.

第二の繊維強化樹脂に用いる母材(マトリクス)には、第一の繊維強化樹脂として広く例示した熱硬化性樹脂、または熱可塑性樹脂の中から一つを選択して、または二種類以上を混合して用いることができる。   For the base material (matrix) used for the second fiber reinforced resin, select one of the thermosetting resins or thermoplastic resins widely exemplified as the first fiber reinforced resin, or two or more types. It can be used by mixing.

また第二の繊維強化樹脂に用いる強化繊維(ファイバー)には、第一の繊維強化樹脂として広く例示した繊維材料の中からいずれか一種類、または複数種類を混合して用いることができる。ただし本発明の目的を達成するためには、前記樹脂を含浸して緩衝層14を形成し、これを加熱および加圧成形した状態で、管軸方向について、圧縮強度/圧縮弾性率の値(Rc2)が、内管12のそれ(Rc1)よりも大きいものとすることが必要である。Rc2をRc1よりも大きくすることにより、加熱成形後の冷却工程における内/外管の剥離や、内管12の材料破壊または座屈破壊を防ぐことができる。   In addition, the reinforcing fibers (fibers) used for the second fiber reinforced resin can be used by mixing any one or a plurality of types of fiber materials widely exemplified as the first fiber reinforced resin. However, in order to achieve the object of the present invention, the buffer layer 14 is formed by impregnating the resin, and in a state where the buffer layer 14 is heated and pressure-molded, the compression strength / compression modulus value ( Rc2) needs to be larger than that of the inner tube 12 (Rc1). By making Rc2 larger than Rc1, it is possible to prevent peeling of the inner / outer tube and material destruction or buckling failure of the inner tube 12 in the cooling step after thermoforming.

このため、強化繊維としてガラス繊維、アラミド繊維、ケブラー繊維または炭素繊維、母材としてエポキシ樹脂、シアネート樹脂、または不飽和ポリエステル樹脂が、高い圧縮および剪断強度、並びに適度な圧縮および剪断弾性率の観点から好適に用いられる。   Therefore, glass fiber, aramid fiber, Kevlar fiber or carbon fiber as the reinforcing fiber, and epoxy resin, cyanate resin, or unsaturated polyester resin as the base material are the viewpoints of high compression and shear strength, and appropriate compression and shear modulus. Are preferably used.

ただし、例えば第一、第二の繊維強化樹脂をいずれもエポキシ樹脂を含浸した炭素繊維とする場合、上記のようにRc2をRc1よりも大きくするため、強化繊維の含有量および/または配向の向きを変えることが必要であり、特に0/90度方向に積層したクロス材を用いることが好適である。このほか、ガラスクロスFRP、ガラスマットFRP、ガラス繊維強化熱可塑性樹脂などのGFRP、ケブラークロスFRPなどが圧縮強度と圧縮弾性率の適度なバランスの観点から好適に用いられる。   However, for example, when both the first and second fiber reinforced resins are carbon fibers impregnated with an epoxy resin, Rc2 is made larger than Rc1 as described above, so the content and / or orientation direction of the reinforced fibers. In particular, it is preferable to use a cloth material laminated in the 0/90 degree direction. In addition, glass cloth FRP, glass mat FRP, GFRP such as glass fiber reinforced thermoplastic resin, Kevlar cloth FRP, and the like are preferably used from the viewpoint of an appropriate balance between compression strength and compression elastic modulus.

接着剤にて内/外管を接着する従来技術の場合、金属管の収縮による両管の剥離等を防止するためには、接着層を剪断強度に見合うまで厚くする必要があり、複合管全体の弾性率を低下させるという問題点があったところ、上記の繊維強化樹脂を緩衝層14に用いることにより、金属/樹脂複合管とした場合も、外管単体の弾性率を低下させることなく高い値に維持することができるという本発明の利点を得ることが可能となる。例えば内管として炭素繊維強化プラスチックを用いる場合、外管の材料をアルミやチタンのみならず高弾性率のSUSを用いたとしても、剥離等の成形上の問題を生じることなく、外管単体の弾性率を維持する金属/樹脂複合管を得ることができる。   In the case of the conventional technique in which the inner / outer pipes are bonded with an adhesive, it is necessary to increase the thickness of the adhesive layer to match the shear strength in order to prevent the peeling of both pipes due to the shrinkage of the metal pipe. When the above-mentioned fiber reinforced resin is used for the buffer layer 14, the metal / resin composite pipe is high without reducing the elastic modulus of the outer tube alone. It is possible to obtain the advantage of the present invention that it can be maintained at a value. For example, when carbon fiber reinforced plastic is used as the inner tube, the outer tube is made of a single material without causing problems such as peeling even if the material of the outer tube is not only aluminum or titanium but also SUS having a high elastic modulus. A metal / resin composite tube that maintains the elastic modulus can be obtained.

緩衝層14は外管10と内管12に挟み込まれるが、その分布や厚さは特に限定されない。ただし、内/外管の剥離などの問題を回避し、かつ複合管全体の剛性を高く維持する観点からは、外管10の内周面と内管12の外周面の間に形成される空間を全体に均一に近い厚さとし、かかる空間にて緩衝層14を挟み込むことが好適である。   Although the buffer layer 14 is sandwiched between the outer tube 10 and the inner tube 12, the distribution and thickness thereof are not particularly limited. However, a space formed between the inner peripheral surface of the outer tube 10 and the outer peripheral surface of the inner tube 12 from the viewpoint of avoiding problems such as peeling of the inner / outer tube and maintaining high rigidity of the entire composite tube. It is preferable that the thickness of the buffer layer 14 is substantially uniform throughout, and the buffer layer 14 is sandwiched in such a space.

本発明の請求項2にかかる発明においては、前記Rc2がRc1の1.5倍以上、好ましくは2.0倍、更に好ましくは3.0倍以上であることが好適である。これにより、外管10の熱収縮により生じる応力を緩衝層14にて十分に吸収させ、内/外管の剥離や内管の破壊の問題をより好適に回避することができる。   In the invention according to claim 2 of the present invention, it is preferable that the Rc2 is 1.5 times or more, preferably 2.0 times, more preferably 3.0 times or more of Rc1. Thereby, the stress caused by the thermal contraction of the outer tube 10 can be sufficiently absorbed by the buffer layer 14, and problems of peeling of the inner / outer tube and destruction of the inner tube can be more preferably avoided.

本発明の請求項3にかかる発明においては、外管、内管および緩衝層の横断面形状を矩形とすることができる。これは、後述する本発明にかかる複合管の製造方法において、内管12の内側より内圧を負荷する方式を採っているため、従来のシュリンクテープなどを用いた外圧負荷方式と異なり、金属管を外側に有し、かつ矩形断面の複合管でありながら、各コーナー部についても高い圧力負荷を与え、成形後の各層の剥離を排除することができるためである。   In the invention according to claim 3 of the present invention, the cross-sectional shapes of the outer tube, the inner tube and the buffer layer can be rectangular. This is because the composite pipe manufacturing method according to the present invention, which will be described later, employs a system in which an internal pressure is applied from the inside of the inner pipe 12, and therefore, unlike a conventional external pressure load system using a shrink tape or the like, a metal pipe is used. This is because, even though it is a composite pipe having an outer side and a rectangular cross section, a high pressure load is also applied to each corner portion, and peeling of each layer after molding can be eliminated.

本発明の請求項4にかかる発明においては、内管を炭素繊維強化プラスチック、緩衝層をガラス繊維強化プラスチックとすることが好適である。これにより、緩衝層の圧縮強度/圧縮弾性率の値(Rc2)を、内管のそれ(Rc1)よりも大きくすることができる、本発明の目的を達成することができる。   In the invention according to claim 4 of the present invention, it is preferable that the inner tube is made of carbon fiber reinforced plastic and the buffer layer is made of glass fiber reinforced plastic. Thereby, the object of the present invention can be achieved, in which the compression strength / compression modulus value (Rc2) of the buffer layer can be made larger than that (Rc1) of the inner tube.

本発明の請求項5にかかる発明においては、内管と緩衝層の厚さの比が好ましくは5:1乃至200:1、更に好ましくは10:1乃至100:1であることが好適である。弾性率の比較的低い緩衝層の厚さをこの範囲に留めることにより、複合管全体の剛性を高く維持しつつ、外管10の熱収縮によって生じる内管12との間の熱応力を、緩衝層14の圧縮および剪断変形により好適に吸収させることができる。   In the invention according to claim 5 of the present invention, the ratio of the thickness of the inner tube to the buffer layer is preferably 5: 1 to 200: 1, more preferably 10: 1 to 100: 1. . By keeping the thickness of the buffer layer having a relatively low elastic modulus within this range, the thermal stress between the inner tube 12 and the inner tube 12 caused by the thermal contraction of the outer tube 10 is buffered while maintaining the rigidity of the entire composite tube high. The layer 14 can be suitably absorbed by compression and shear deformation.

本発明の請求項6にかかる発明については、
内圧負荷手段を具備する芯材の周囲に、内管12を被着させる第一工程と、その外周に緩衝層14を被着させる第二工程と、これらを外管10の内部に挿入する第三工程と、外管10、緩衝層14および内管12を所定の成形温度(℃)に加熱しつつ、前記内圧負荷手段によりこれらを一体に加圧成形する第四工程と、前記成形温度(℃)の40乃至80%の温度(℃)にてエージングを行う第五工程とからなる金属/樹脂複合管の製造方法であって、
前記複合管の管軸方向について、緩衝層14の加圧成形後の圧縮強度/圧縮弾性率の値(Rc2)が、内管12のそれ(Rc1)よりも大きいものとすることが好適である。これにより本発明にかかる金属/樹脂複合管が得られるとともに成形時のプリストレスを除去することができる。
Regarding the invention according to claim 6 of the present invention,
A first step of depositing the inner tube 12 around the core material having the internal pressure loading means, a second step of depositing the buffer layer 14 on the outer periphery thereof, and a first step of inserting these into the outer tube 10 Three steps, a fourth step in which the outer tube 10, the buffer layer 14 and the inner tube 12 are heated to a predetermined molding temperature (° C.) while the inner pressure load means integrally press-molds them, and the molding temperature ( A metal / resin composite pipe comprising a fifth step of aging at a temperature (° C.) of 40 to 80% of
In the tube axis direction of the composite tube, it is preferable that the compression strength / compression modulus value (Rc2) of the buffer layer 14 after pressure molding is larger than that of the inner tube 12 (Rc1). . As a result, the metal / resin composite tube according to the present invention can be obtained and the prestress at the time of molding can be removed.

芯材は、後述する内圧負荷手段18を具備する中子であり、その外周に内管12を例えばプリプレグの巻き付けなどの方法により形成するものである。材質はSUS、銅、アルミまたはセラミクスなどの金属や、樹脂材料から適宜選択することができる。   The core material is a core provided with an internal pressure loading means 18 to be described later, and the inner tube 12 is formed on the outer periphery thereof by a method such as winding a prepreg. The material can be appropriately selected from metals such as SUS, copper, aluminum or ceramics, and resin materials.

内圧負荷手段は、積層した内管12と緩衝層14を複合管の内部から押圧し、外管10と一体に加圧成形するための手段である。具体的な方法は特に限定されないが、セパレートした芯材の中心にテーパーのある棒材を押入する方法や、同じくセパレートした芯材の中心部に高圧空気を流し込む方法などが好適に用いられる。   The internal pressure loading means is a means for pressing the laminated inner tube 12 and buffer layer 14 from the inside of the composite tube and press-molding integrally with the outer tube 10. Although a specific method is not particularly limited, a method in which a bar having a taper at the center of the separated core material or a method in which high-pressure air is poured into the central portion of the separated core material is preferably used.

エージングは加熱・加圧成形時に各材料が受けるプリストレスを除去するものである。その温度や時間は特に限定されないが、摂氏温度単位において、成形温度の40乃至80%とすることが好適である。この範囲以下の温度ではエージングの効果が十分得られず、またこの範囲以上の温度では再び外管10の熱膨張量が大きくなり、新たなプリストレスを生じる。   Aging removes the prestress which each material receives at the time of heating and pressure molding. The temperature and time are not particularly limited, but it is preferably 40 to 80% of the molding temperature in degrees Celsius. If the temperature is lower than this range, the effect of aging is not sufficiently obtained, and if the temperature is higher than this range, the amount of thermal expansion of the outer tube 10 increases again, and new pre-stress occurs.

以下、本発明の実施例について図面を用いて具体的に説明する。図3は本実施例にかかる製造方法の第一工程を示す説明図である。高さ5cm、幅10cmのSUS(圧縮弾性率:200[GPa])製の角柱を芯材16とし、その表面に、第一の繊維強化樹脂からなる一方向材のプリプレグを巻き付け、矩形横断面の内管12を形成した。第一の繊維強化樹脂には、母材にエポキシ樹脂、強化繊維にピッチ系の炭素繊維(長繊維)を用いた。長手方向である管軸方向の剛性を強化するため、0度方向(管軸方向)を2層に対し、45度方向を1層の割合でプリプレグを配向し、合計して厚さ4mmの積層を行った。プリプレグの繊維方向(0度方向)の圧縮弾性率は250[GPa]、上記積層によってなる内管の軸方向の圧縮弾性率は約220[GPa]であった。   Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 3 is an explanatory view showing a first step of the manufacturing method according to the present embodiment. A rectangular column made of SUS (compression elastic modulus: 200 [GPa]) made of SUS having a height of 5 cm and a width of 10 cm is used as the core 16, and a unidirectional material prepreg made of the first fiber reinforced resin is wound around the surface. The inner tube 12 was formed. As the first fiber reinforced resin, an epoxy resin was used as a base material, and pitch-based carbon fibers (long fibers) were used as reinforced fibers. In order to reinforce the rigidity in the tube axis direction, which is the longitudinal direction, the prepreg is oriented at a rate of 1 layer in the 45 degree direction with respect to 2 layers in the 0 degree direction (tube axis direction), and the total thickness is 4 mm. Went. The compressive modulus of the prepreg in the fiber direction (0 degree direction) was 250 [GPa], and the compressive modulus in the axial direction of the inner tube formed by the above lamination was about 220 [GPa].

図4は第二工程を示す説明図である。内管12の表面に、第二の繊維強化樹脂プリプレグを巻き付け、矩形横断面の緩衝層14を形成した。第二の繊維強化樹脂には、表1に示す4種類のFRP材料を用いた。すなわち実施例1ではファイバーを長繊維ガラスクロス、マトリクスを不飽和ポリエステル樹脂とするFRP、実施例2ではファイバーを短繊維ガラスマット、マトリクスを不飽和ポリエステル樹脂とするFRP、実施例3ではファイバーを炭素繊維(クロス材)、マトリクスをシアネート樹脂とするFRP、実施例4ではファイバーをケブラークロス、マトリクスをエポキシ樹脂とするFRPを、それぞれ用いた。かかる緩衝層14は内管12の表面全体に対し、約0.2mmの厚さで積層した。   FIG. 4 is an explanatory view showing the second step. A second fiber reinforced resin prepreg was wound around the surface of the inner tube 12 to form a buffer layer 14 having a rectangular cross section. As the second fiber reinforced resin, four types of FRP materials shown in Table 1 were used. That is, in Example 1, the fiber is a long fiber glass cloth and the matrix is an FRP using an unsaturated polyester resin, in Example 2, the fiber is a short fiber glass mat, the matrix is an FRP using an unsaturated polyester resin, and in Example 3, the fiber is carbon. Fiber (cloth material) and FRP using a matrix as a cyanate resin, and in Example 4, FRP using a fiber as a Kevlar cloth and a matrix as an epoxy resin were used. The buffer layer 14 was laminated with a thickness of about 0.2 mm on the entire surface of the inner tube 12.

実施例1から4で用いた第一および第二の繊維強化樹脂につき、管軸方向の圧縮強度[MPa]、圧縮弾性率[GPa]、圧縮強度/圧縮弾性率(Rc1、Rc2)[10−3]、Rc2とRc1の比率をそれぞれ表1に示す。 For the first and second fiber reinforced resins used in Examples 1 to 4, the compressive strength [MPa] in the tube axis direction, the compressive elastic modulus [GPa], and the compressive strength / compressive elastic modulus (Rc1, Rc2) [10 − 3 ], ratios of Rc2 and Rc1 are shown in Table 1, respectively.

図5は第三工程を示す説明図である。肉厚5mmのSUS製の矩形管を外管10に用い、これを緩衝層14に被せた。後述する内圧負荷手段18のストロークを小さくすべく、外管10の内周面は緩衝層14と極力嵌め合いに近い状態となるよう切削した。なお、外管10の内周面はエポキシ系のプライマー処理を行い、緩衝層14との接着性を向上させた。   FIG. 5 is an explanatory view showing the third step. A rectangular tube made of SUS having a thickness of 5 mm was used as the outer tube 10, and this was put on the buffer layer 14. In order to reduce the stroke of the internal pressure loading means 18 to be described later, the inner peripheral surface of the outer tube 10 was cut so as to be in a state as close as possible to the buffer layer 14. The inner peripheral surface of the outer tube 10 was treated with an epoxy primer to improve the adhesion with the buffer layer 14.

図6は第四工程を示す説明図である。芯材16には内圧負荷手段18を設け、内管12および緩衝層14を内側から外管10に対して加圧できるようにした。かかる内圧負荷手段18により内管12に30[MPa]の押圧を与えた。また図示しないヒータにより複合管全体を130[℃]に加熱し、180[分]の成形を行った。   FIG. 6 is an explanatory view showing the fourth step. The core member 16 is provided with an internal pressure loading means 18 so that the inner tube 12 and the buffer layer 14 can be pressurized against the outer tube 10 from the inside. The inner pressure load means 18 applied a pressure of 30 [MPa] to the inner tube 12. Further, the entire composite tube was heated to 130 [° C.] by a heater (not shown) to form 180 [min].

内圧負荷手段18を図7に示す。4つにセパレートした芯材16の中心に穿設したテーパー孔に、これと対応するテーパー状のSUS製の棒材18を押入する方式を採用した。管軸方向に所定の長さだけ棒材18を出し入れすることにより、希望する内圧を芯材16および内管12に与えることができるものである。   The internal pressure loading means 18 is shown in FIG. A method was adopted in which a tapered SUS bar 18 corresponding to the taper hole formed in the center of the core material 16 separated into four was inserted. A desired internal pressure can be applied to the core 16 and the inner tube 12 by inserting and removing the rod 18 by a predetermined length in the tube axis direction.

上記成形時間の経過後、棒材18を芯材16より抜き出し、80[℃]で120[分]のエージングを行い、実施例1から4にかかる金属/樹脂複合管を得た。得られた複合管をそれぞれ管軸に沿って数箇所ずつ輪切りにし、断面を目視により観察したところ、層間剥離や材料破壊はいずれも認められず、良好な成形が行われたことが確認された。またこれら実施例1から4にかかる複合管は、いずれも管軸方向の圧縮弾性率として204[GPa]以上という高い値を維持しており、これはSUSの外管単体による弾性率を超えるものであった。   After the molding time had elapsed, the bar 18 was extracted from the core 16 and aged at 80 [° C.] for 120 [minutes] to obtain metal / resin composite tubes according to Examples 1 to 4. Each of the obtained composite pipes was cut into several parts along the pipe axis, and the cross section was observed visually. As a result, neither delamination nor material destruction was observed, and it was confirmed that good molding was performed. . The composite pipes according to Examples 1 to 4 all maintain a high value of 204 [GPa] or more as the compressive elastic modulus in the pipe axis direction, which exceeds the elastic modulus of the SUS outer pipe alone. Met.

本発明にかかる金属/樹脂複合管は、FRPゆえの比強度、比剛性や耐熱変形性を有するとともに、外管が金属であることから一般の切削加工が可能である。これにより所定の肉厚や形状の複合管を削り出すことができるほか、摺動性や溶接加工性にも優れるため、ロボットハンドや、構造部材としての配管などに利用可能である。   The metal / resin composite tube according to the present invention has specific strength, specific rigidity, and heat distortion resistance due to FRP, and the outer tube is metal, so that general cutting can be performed. As a result, a composite pipe having a predetermined thickness and shape can be cut out, and since it is excellent in slidability and weldability, it can be used for a robot hand or a pipe as a structural member.

本発明の実施の形態にかかる複合管の縦断面図The longitudinal cross-sectional view of the composite pipe concerning embodiment of this invention 本発明の実施の形態にかかる複合管の横断面図The cross-sectional view of the composite pipe concerning embodiment of this invention 本発明の実施例にかかる複合管の製造方法の第一工程を示す説明図Explanatory drawing which shows the 1st process of the manufacturing method of the composite pipe | tube concerning the Example of this invention. 本発明の実施例にかかる複合管の製造方法の第二工程を示す説明図Explanatory drawing which shows the 2nd process of the manufacturing method of the composite pipe | tube concerning the Example of this invention. 本発明の実施例にかかる複合管の製造方法の第三工程を示す説明図Explanatory drawing which shows the 3rd process of the manufacturing method of the composite pipe | tube concerning the Example of this invention. 本発明の実施例にかかる複合管の製造方法の第四工程を示す説明図Explanatory drawing which shows the 4th process of the manufacturing method of the composite pipe | tube concerning the Example of this invention. 本発明の実施例に用いる内圧負荷手段を示す説明図Explanatory drawing which shows the internal pressure load means used for the Example of this invention 本発明にかかる複合管の熱変形特性を示す説明図Explanatory drawing which shows the heat deformation characteristic of the composite pipe concerning this invention 従来の複合管における層間剥離および座屈破壊を示す説明図Explanatory drawing showing delamination and buckling failure in a conventional composite pipe

符号の説明Explanation of symbols

10 外管
11 剥離
12 内管
13 座屈
14 緩衝層
16 芯材
18 内圧負荷手段
20 複合管

DESCRIPTION OF SYMBOLS 10 Outer pipe 11 Separation 12 Inner pipe 13 Buckling 14 Buffer layer 16 Core material 18 Internal pressure load means 20 Composite pipe

Claims (6)

金属製の外管の内周面に、第一の繊維強化樹脂からなる内管が、第二の繊維強化樹脂からなる緩衝層を挟んで加熱および加圧成形された金属/樹脂複合管であって、
前記複合管の管軸方向について、第二の繊維強化樹脂の圧縮強度/圧縮弾性率の値(Rc2)が、第一の繊維強化樹脂の圧縮強度/圧縮弾性率の値(Rc1)よりも大きいことを特徴とする金属/樹脂複合管。
The inner tube made of the first fiber reinforced resin is a metal / resin composite tube that is heated and pressed with the buffer layer made of the second fiber reinforced resin on the inner peripheral surface of the metal outer tube. And
Regarding the tube axis direction of the composite tube, the compression strength / compression modulus value (Rc2) of the second fiber reinforced resin is larger than the compression strength / compression modulus value (Rc1) of the first fiber reinforced resin. A metal / resin composite tube characterized by that.
前記Rc2がRc1の1.5倍以上であることを特徴とする請求項1記載の金属/樹脂複合管。 2. The metal / resin composite tube according to claim 1, wherein Rc2 is 1.5 times or more of Rc1. 外管、内管および緩衝層の、管軸に垂直な断面の形状が矩形であることを特徴とする請求項1または2に記載の金属/樹脂複合管。 The metal / resin composite pipe according to claim 1 or 2, wherein the outer pipe, the inner pipe and the buffer layer have a rectangular cross-sectional shape perpendicular to the pipe axis. 内管が炭素繊維強化プラスチック、緩衝層がガラス繊維強化プラスチックからなることを特徴とする請求項1から3のいずれかに記載の金属/樹脂複合管。 4. The metal / resin composite tube according to claim 1, wherein the inner tube is made of carbon fiber reinforced plastic and the buffer layer is made of glass fiber reinforced plastic. 内管と緩衝層の厚さの比が10:1乃至100:1であることを特徴とする請求項4記載の金属/樹脂複合管。 5. The metal / resin composite pipe according to claim 4, wherein the ratio of the thickness of the inner pipe to the buffer layer is 10: 1 to 100: 1. 内圧負荷手段を具備する芯材の周囲に、第一の繊維強化樹脂からなる内管を被着させる第一工程と、
内管の外周に第二の繊維強化樹脂からなる緩衝層を被着させる第二工程と、
金属製の外管の内部に、緩衝層を被着した内管を挿入する第三工程と、
外管、緩衝層および内管を所定の成形温度(℃)に加熱しつつ、前記内圧負荷手段によりこれらを一体に加圧成形する第四工程と、
前記成形温度(℃)の40乃至80%の温度(℃)にてエージングを行う第五工程とからなる金属/樹脂複合管の製造方法であって、
前記複合管の管軸方向について、第二の繊維強化樹脂の加圧成形後の圧縮強度/圧縮弾性率の値(Rc2)が、第一の繊維強化樹脂の加圧成形後の圧縮強度/圧縮弾性率の値(Rc1)よりも大きいことを特徴とする金属/樹脂複合管の製造方法。

A first step of attaching an inner tube made of a first fiber reinforced resin around a core material having an internal pressure load means;
A second step of depositing a buffer layer made of a second fiber reinforced resin on the outer periphery of the inner tube;
A third step of inserting the inner tube with the buffer layer deposited inside the metal outer tube;
A fourth step in which the outer tube, the buffer layer and the inner tube are heated to a predetermined molding temperature (° C.), and these are integrally pressure-molded by the internal pressure load means;
A metal / resin composite pipe manufacturing method comprising a fifth step of aging at a temperature (° C.) of 40 to 80% of the molding temperature (° C.),
For the tube axis direction of the composite tube, the compression strength / compression modulus value (Rc2) after pressure molding of the second fiber reinforced resin is the compression strength / compression after pressure molding of the first fiber reinforced resin. A method for producing a metal / resin composite pipe, characterized by being larger than a value of elastic modulus (Rc1).

JP2005092737A 2005-03-28 2005-03-28 Metal/resin composite pipe and its manufacturing method Pending JP2006272656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092737A JP2006272656A (en) 2005-03-28 2005-03-28 Metal/resin composite pipe and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092737A JP2006272656A (en) 2005-03-28 2005-03-28 Metal/resin composite pipe and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006272656A true JP2006272656A (en) 2006-10-12

Family

ID=37207868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092737A Pending JP2006272656A (en) 2005-03-28 2005-03-28 Metal/resin composite pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006272656A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286070A (en) * 2008-05-30 2009-12-10 Nissan Motor Co Ltd Fiber-reinforced plastics molded product, and stress relaxation method of fiber-reinforced plastic molded product
JP2015174248A (en) * 2014-03-13 2015-10-05 アイシン高丘株式会社 Composite structure and method for producing the same
KR101620314B1 (en) * 2015-07-30 2016-05-12 동우롤텍 주식회사 Adhesion strengthened complex roll and Method thereof
CN107127980A (en) * 2016-02-29 2017-09-05 本田技研工业株式会社 Moving body structure member and its manufacture method
CN107742558A (en) * 2017-10-26 2018-02-27 江苏神马电力股份有限公司 A kind of insulation mandrel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138749A (en) * 1991-11-25 1993-06-08 Arisawa Mfg Co Ltd Production of metal covered cylindrical member made of fiber reinforced resin
JP2002059509A (en) * 2000-08-22 2002-02-26 Yokohama Rubber Co Ltd:The Structure of laminate and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138749A (en) * 1991-11-25 1993-06-08 Arisawa Mfg Co Ltd Production of metal covered cylindrical member made of fiber reinforced resin
JP2002059509A (en) * 2000-08-22 2002-02-26 Yokohama Rubber Co Ltd:The Structure of laminate and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286070A (en) * 2008-05-30 2009-12-10 Nissan Motor Co Ltd Fiber-reinforced plastics molded product, and stress relaxation method of fiber-reinforced plastic molded product
JP2015174248A (en) * 2014-03-13 2015-10-05 アイシン高丘株式会社 Composite structure and method for producing the same
US10052842B2 (en) 2014-03-13 2018-08-21 Aisin Takaoka Co., Ltd. Composite structure and manufacturing method thereof
KR101620314B1 (en) * 2015-07-30 2016-05-12 동우롤텍 주식회사 Adhesion strengthened complex roll and Method thereof
CN107127980A (en) * 2016-02-29 2017-09-05 本田技研工业株式会社 Moving body structure member and its manufacture method
JP2017154254A (en) * 2016-02-29 2017-09-07 本田技研工業株式会社 Structural member for movable body and method for manufacturing the same
CN107742558A (en) * 2017-10-26 2018-02-27 江苏神马电力股份有限公司 A kind of insulation mandrel and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2492083B1 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
US9890483B2 (en) Fiber-reinforced composite material and method for manufacturing the same
WO2005068284A1 (en) Crank for bicycle and method of producing the same
CN111448398B (en) Method for manufacturing threaded cylinder having thread ridge made of carbon fiber reinforced composite material
JP2006272656A (en) Metal/resin composite pipe and its manufacturing method
WO2010150682A1 (en) Reinforcing member and fastening structure using same
JP2007001226A (en) Forming method of composite member of metal sheet and fiber-reinforced plastic, and composite substrate of metal sheet and fiber-reinforced plastics base material used for the forming
EP2889131B1 (en) A laminated composite structure and related method
JP2007090794A (en) Tubular member made from fiber reinforced resin and manufacturing method of it
JP2012100616A (en) Fishing-line guide and fishing rod
US20110206942A1 (en) Connections Between a Monolithic Metal Component and a Continuous-Fiber Reinforced Laminate Component, and Method for Production of the Same
JP2018202753A (en) Method for manufacturing carbon fiber reinforced resin member
JP2014070714A (en) Double layer sliding member and method of manufacturing double layer sliding member
EP2636509B1 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
JP2008266373A (en) Fiber-reinforced composite material
JP5023785B2 (en) Fiber reinforced plastic
US20230173769A1 (en) Method of Designing and Producing Carbon Fiber Composite Wrist Pins
JP6820737B2 (en) Manufacturing method of FRP fastening structure and FRP fastening structure
CN107310168B (en) Method for manufacturing FRP fastening structure, and FRP fastening structure
JP2009126056A (en) Fiber-reinforced composite material
JPS5850356A (en) Composite gear
JP5593842B2 (en) Air slide device
CN113400680A (en) Method for manufacturing multilayer glass fiber reinforced epoxy composite bushing
US4807531A (en) Contemporary composite polar boss
JP2958920B2 (en) Composite roller and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125