JPH1189117A - Demand monitoring and controlling device and method therefor - Google Patents

Demand monitoring and controlling device and method therefor

Info

Publication number
JPH1189117A
JPH1189117A JP25787897A JP25787897A JPH1189117A JP H1189117 A JPH1189117 A JP H1189117A JP 25787897 A JP25787897 A JP 25787897A JP 25787897 A JP25787897 A JP 25787897A JP H1189117 A JPH1189117 A JP H1189117A
Authority
JP
Japan
Prior art keywords
power
predicted
target
air conditioner
target power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25787897A
Other languages
Japanese (ja)
Inventor
Akinori Kawai
昭則 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C ONE KK
Original Assignee
C ONE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C ONE KK filed Critical C ONE KK
Priority to JP25787897A priority Critical patent/JPH1189117A/en
Publication of JPH1189117A publication Critical patent/JPH1189117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems

Abstract

PROBLEM TO BE SOLVED: To provide a demand monitoring and controlling device capable of automatically performing the jobs from the monitoring of a demand up to the control of a plurality of air conditioners in order to save electric power efficiently. SOLUTION: In a demand monitoring and controlling device whose CPU 13 is connected to a pulse detector 201 which detects pulses to be outputted from a pulse oscillator 200 of an electric power company, and a switching function for the on-off control of a plurality of air conditioners No. 1 to No. 8, the CPU 13 calculates a predicted power R0 and a second target power P2 from the present power P corresponding to the number of pulses per a certain time at an initial stage. Then, after setting the smaller one of the second target power P2 and monthly target power P1 to reference power P0 , the CPU 13 again calculates predicted power R from the present power P. If the predicted power R exceeds the reference power P0 , a signal is transmitted to switch off one of the air conditioners and restart it in t seconds. If predicted power calculated next exceeds the reference power, the control is repeated of transmitting a signal for sequentially switching off an air conditioner next to the switched-off air conditioner and restarting it until the predicted power becomes equal to or lower than the reference power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デマンド監視制御
方法及びデマンド監視制御装置に関する。詳細には、最
大需要電力を管理値以下にとどめ、電力設備の効率的な
運転と省エネルギーを推進するため、目標電力に対し予
測監視制御機能をもつ制御装置とその制御方法に関す
る。
The present invention relates to a demand monitoring control method and a demand monitoring control device. More specifically, the present invention relates to a control device having a predictive monitoring control function for a target power and a control method thereof in order to keep the maximum demand power below a management value and promote efficient operation and energy saving of power equipment.

【0002】[0002]

【従来の技術】昭和63年より電気料金の計算方法がデ
マンド契約方式に変更され、段階的に身近な施設に適用
されている。この契約方式は、1年間の電力使用量のピ
ーク値を基本料金の基準とするものであり、そのピーク
値に達していないときでも高い基本料金を払われている
のが現状である。この契約デマンド値は通常の業務の電
力使用量に応じて決定されることから、電力使用量を日
常業務に影響のないように抑えることによって効果的な
節電を図ることができる。すなわち、電力使用量は、図
5に示すように、空調機稼働率の一番高い7月,8月,
9月頃がピークになるため、これら消費電力の比較的多
い空調機のみをコントロールすることによって無理なく
効果的に節電を図ることができる。
2. Description of the Related Art From 1988, the method of calculating electricity rates was changed to a demand contract method, and the method was gradually applied to familiar facilities. This contract system uses the peak value of the power consumption for one year as a basis for the basic fee, and at present, a high basic fee is paid even when the peak value is not reached. Since the contract demand value is determined according to the power consumption of the normal business, effective power saving can be achieved by suppressing the power consumption so as not to affect the daily business. That is, as shown in FIG. 5, the electric power consumption is the highest in July, August,
Since the peak occurs around September, it is possible to effectively and effectively save power by controlling only those air conditioners that consume relatively large amounts of power.

【0003】従来のデマンド監視制御装置は、図6に示
すように、電力会社の電力量測定用計器から30分単位
で送られるパルスを検出し、そのパルス数から得られる
現在電力Pから予測電力Rを算出し、予測電力Rを予め
設定された各月別の目標電力P1と比較する。そして、
予測電力Rが目標電力P1を超えると音やランプなどに
よって警報を発生し、予測電力Rが目標電力P1以下に
なると警報を解除するものである。なお、現在電力P及
び予測電力Rは次式により算出される。 現在電力P=(現時点までの入力パルス数)×PCT比×2/パルス定数 ・・・(1) 予測電力R=P+(ΔP/Δt)×(30−t) (ΔP:Δt分間のデマンドの増加分) ・・・(2)
As shown in FIG. 6, a conventional demand monitoring and control device detects a pulse sent from a power measuring instrument of a power company every 30 minutes, and calculates a predicted power from a current power P obtained from the number of pulses. calculates R, is compared with target power P 1 of each month in advance set the predicted power R. And
Predicted power R is generated an alarm, such as by sound or lamp exceeds the target power P 1, is intended to release an alarm predicted power R is equal to or smaller than the target power P 1. The current power P and the predicted power R are calculated by the following equations. Current power P = (number of input pulses up to the present time) × PCT ratio × 2 / pulse constant (1) predicted power R = P + (ΔP / Δt) × (30−t) (ΔP: demand of Δt minutes) Increase) (2)

【0004】そして、警報が発生されると需要者が稼働
中の空調機をオフにして警報を解除するようにするもの
である。つまり、従来のデマンド監視制御装置は、デマ
ンドの監視を主にするものである。これによれば、需要
者側が常にデマンド監視制御装置の警報の有無について
心配する必要があり空調機のスイッチをその都度切って
回る人材を必要とするなど需要者側の負担が大きい。
When an alarm is issued, the consumer turns off the operating air conditioner to cancel the alarm. That is, the conventional demand monitoring control device mainly monitors demand. According to this, the consumer side needs to always worry about the presence or absence of the alarm of the demand monitoring control device, and requires a human resource to turn off and turn on the switch of the air conditioner each time, which places a heavy burden on the consumer side.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、上述
の問題を解決するために考えだされたものであり、その
目的とするところは、デマンドの監視から空調機の制御
までを自動的に行え、効率的に節電を行うことのできる
デマンド監視制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been conceived to solve the above-mentioned problems, and the object of the present invention is to automatically perform processing from demand monitoring to air conditioner control. It is an object of the present invention to provide a demand monitoring control device that can perform power saving efficiently.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のデマンド監視制御方法は、電力会社の電
力量測定用計器のパルス発振器(200)から送られる
パルス信号を検出するパルス検出器(201)からの信
号を入力し、一定時間当たりのパルス数に対応した現在
電力(P)から予測電力(R)を算出し、予測電力
(R)を予め記憶部(11)に設定された各月別の目標
電力のうち当月の目標電力(P1)と比較し、予測電力
(R)が目標電力(P1)を超えると、空調機をオフに
する信号をその空調機側に発信することを特徴とする。
In order to achieve the above object, a demand monitoring control method according to the present invention comprises a pulse detecting a pulse signal sent from a pulse oscillator (200) of a meter for measuring electric energy of a power company. A signal from the detector (201) is input, a predicted power (R) is calculated from a current power (P) corresponding to the number of pulses per fixed time, and the predicted power (R) is set in the storage unit (11) in advance. has been compared to the current month target power of a desired power of each month (P 1), the predicted power (R) is greater than the target power (P 1), a signal to turn off the air conditioner to the air conditioner side It is characterized by transmitting.

【0007】本発明の請求項2に係る記載のデマンド監
視制御装置は、電力会社の電力量測定用計器のパルス発
振器(200)から送られるパルス信号を検出するパル
ス検出器(201)及び複数の空調機(No.1〜N
o.8)をオン/オフ制御するスイッチ機能が制御部
(13)にそれぞれ接続されたデマンド監視制御装置で
あって、制御部(13)は、パルス検出器(200)か
らの信号が入力され、一定時間当たりのパルス数に対応
した現在電力(P)から予測電力(R)を算出し、予測
電力(R)を予め記憶部(11)に設定された各月別の
目標電力のうち当月の目標電力(P1)と比較し、予測
電力(R)が目標電力(P1)を超えると、前記複数の
空調機(No.1〜No.8)のうち1つ(No.n)
をオフにし所定時間(t)経過後自動復帰させる信号を
その空調機(No.n)側に発信し、更に次に算出した
予測電力(R)が目標電力(P1)を超えると、前記複
数の空調機(No.1〜No.8)のうちオフにした次
の空調機(No.n+1)を順次オフにし所定時間
(t)経過後自動復帰させる信号をその空調機(No.
n+1)側に発信する制御を、予測電力(R)が目標電
力(P1)以下になるまで繰り返して行うことを特徴と
する。
According to a second aspect of the present invention, there is provided a demand monitoring control apparatus comprising: a pulse detector (201) for detecting a pulse signal sent from a pulse generator (200) of an electric energy measuring instrument of a power company; Air conditioners (No. 1 to N
o. 8) A demand monitoring control device in which a switch function for on / off control is connected to the control unit (13). The control unit (13) receives a signal from the pulse detector (200), The predicted power (R) is calculated from the current power (P) corresponding to the number of pulses per time, and the predicted power (R) is set to the target power for the current month among the target powers for each month preset in the storage unit (11). (P 1) compared to, the predicted power (R) is greater than the target power (P 1), one of the plurality of air conditioners (No.1~No.8) (No.n)
Is turned off and a signal for automatically returning after a predetermined time (t) has elapsed is transmitted to the air conditioner (No. n) side. When the predicted power (R) calculated next exceeds the target power (P 1 ), The next air conditioner (No. n + 1), which has been turned off, among the plurality of air conditioners (No. 1 to No. 8) is sequentially turned off, and a signal for automatically returning after a lapse of a predetermined time (t) is output to the air conditioner (No.
The control for transmitting to the (n + 1) side is repeatedly performed until the predicted power (R) becomes equal to or less than the target power (P 1 ).

【0008】また、請求項3に記載の発明は、電力会社
の電力量測定用計器のパルス発振器(200)から送ら
れるパルス信号を検出するパルス検出器(201)及び
複数の空調機(No.1〜No.8)をオン/オフ制御
するスイッチ機能が制御部(13)にそれぞれ接続され
たデマンド監視制御装置であって、制御部(13)は、
パルス検出器(200)からの信号が入力され、初期段
階で一定時間当たりのパルス数に対応した現在電力
(P)から予測電力(R0)を算出し、その予測電力
(R0)に応じた第2目標電力(P2)を算出し、第2目
標電力(P2)を予め記憶部(11)に設定された各月
別の目標電力のうち当月の目標電力(P1)と比較し第
2目標電力(P2)の方が目標電力(P1)より大きい
と、目標電力(P1)を基準電力(P0)とし、逆に第2
目標電力(P2)の方が目標電力(P1)以下であると第
2目標電力(P2)の方を基準電力(P0)に設定した
後、再度、パルス検出器(200)からの信号を入力
し、一定時間当たりのパルス数に対応した現在電力
(P)から予測電力(R)を算出し、その予測電力
(R)を設定された基準電力(P0)と比較し、予測電
力(R)が基準電力(P0)を超えると、複数の空調機
(No.1〜No.8)のうち1つ(No.n)をオフ
にし所定時間(t)経過後自動復帰させる信号をその空
調機(No.n)側に発信し、更に次に算出した予測電
力(R)が基準電力(P0)を超えると、複数の空調機
(No.1〜No.8)のうちオフにした次の空調機
(No.n+1)を順次オフにし所定時間(t)経過後
自動復帰させる信号をその空調機(No.n+1)側に
発信する制御を、予測電力(R)が基準電力(P0)以
下になるまで繰り返して行うことを特徴とする。
The invention according to claim 3 provides a pulse detector (201) for detecting a pulse signal sent from a pulse oscillator (200) of an electric energy measuring instrument of an electric power company and a plurality of air conditioners (No. 1 to No. 8) are demand monitoring control devices each having a switch function for on / off control connected to the control unit (13).
A signal from the pulse detector (200) is input, and in the initial stage, a predicted power (R 0 ) is calculated from a current power (P) corresponding to the number of pulses per fixed time, and according to the predicted power (R 0 ) The second target power (P 2 ) is calculated, and the second target power (P 2 ) is compared with the target power (P 1 ) of the current month among the monthly target powers set in the storage unit (11) in advance. toward the second target power (P 2) is larger than the target power (P 1), and target power (P 1) of the reference power (P 0), the second conversely
If the target power (P 2 ) is less than or equal to the target power (P 1 ), the second target power (P 2 ) is set to the reference power (P 0 ), and then the pulse detector (200) again outputs the target power (P 2 ). , A predicted power (R) is calculated from the current power (P) corresponding to the number of pulses per fixed time, and the predicted power (R) is compared with a set reference power (P 0 ). When the predicted power (R) exceeds the reference power (P 0 ), one (No. n) of the plurality of air conditioners (No. 1 to No. 8) is turned off and automatically returned after a predetermined time (t) has elapsed. A signal to be transmitted is transmitted to the air conditioner (No. n) side, and when the predicted power (R) calculated next exceeds the reference power (P 0 ), a plurality of air conditioners (No. 1 to No. 8) are generated. Out of the air conditioners (No. n + 1), which are turned off, are sequentially turned off, and a signal for automatically returning after a predetermined time (t) elapses is output from the air conditioner. Opportunity of (No.n + 1) control sending to the side, and performs repeatedly until the predicted power (R) becomes the reference power (P 0) less.

【0009】更に、請求項4に記載の発明は、請求項2
又は3に記載の制御部(13)は、複数の空調機(N
o.1〜No.8)のうち稼働中の空調機が所定値より
小さいか否かを判断し、小さい場合には、前記空調機を
オフする制御を開始しないことを特徴とする。
Further, the invention according to claim 4 is the invention according to claim 2.
Or the control unit (13) according to 3 includes a plurality of air conditioners (N
o. 1 to No. 8) It is characterized in that it is determined whether or not the operating air conditioner is smaller than a predetermined value, and when it is smaller, the control for turning off the air conditioner is not started.

【0010】なお、カッコ内の記号は図面を参照した後
述の、発明の実施の形態の説明における対応要素又は対
応事項等を示すものである。
The symbols in parentheses indicate corresponding elements or items in the description of the embodiments of the present invention, which will be described later with reference to the drawings.

【0011】請求項1に記載のデマンド監視制御方法に
よれば、現在電力から予測電力を算出し、該予測電力を
予め記憶部に設定された当月の目標電力と比較し、予測
電力が目標電力を超えると、従来例で示したように警報
を発するのではなく空調機をオフにする信号を自動的に
その空調機側に発信するものであるので、それにしたが
い現在電力は低下し、予測電力も低下する。これによ
り、目標電力以下に抑えることができる。
According to the demand monitoring control method of the present invention, the predicted power is calculated from the current power, and the predicted power is compared with a target power for the current month set in a storage unit in advance. Is exceeded, the signal to turn off the air conditioner is automatically sent to the air conditioner side instead of issuing an alarm as shown in the conventional example, so the current power decreases accordingly, and the predicted power Also decrease. As a result, the power can be suppressed to the target power or less.

【0012】請求項2に記載のデマンド監視制御装置に
よれば、複数の空調機をオン/オフ制御するスイッチ機
能がそれぞれ接続された制御部は、現在電力から予測電
力を算出し、予測電力を当月の目標電力と比較し、予測
電力が目標電力を超えると、複数の空調機のうち1つを
オフにし所定時間経過後自動復帰させる信号をその空調
機側に発信し、更に次に算出した予測電力が目標電力を
超えると、複数の空調機のうちオフにした次の空調機を
順次オフにし所定時間経過後自動復帰させる信号をその
空調機側に発信する制御を、予測電力が目標電力以下に
なるまで繰り返して行うので、特に夏期に使用電力のピ
ーク値を目標電力以下に抑えることができ、更に他の次
期においても使用電力を各月の目標電力以下に抑えるこ
とができるので、総合的に電力経費の低減を図ることが
できる。
According to the demand monitoring control device of the second aspect, the control unit to which the switch function for controlling on / off of the plurality of air conditioners is connected respectively calculates the predicted power from the current power and calculates the predicted power. When the predicted power exceeds the target power in comparison with the target power of the current month, a signal to turn off one of the plurality of air conditioners and automatically return after a predetermined time has elapsed is transmitted to the air conditioner side, and further calculated next. When the predicted power exceeds the target power, control is performed to sequentially turn off the next air conditioner that has been turned off among the plurality of air conditioners and transmit a signal to the air conditioner to automatically return after a predetermined time has elapsed. Since the repetition is performed until the following, the peak value of the power consumption can be suppressed to the target power or less particularly in the summer season, and the power consumption can be suppressed to the target power of each month even in the other next period, If manner it is possible to reduce power costs.

【0013】また、空調機は自動的に人材を必要とする
ことなくオフにされるので需要者側の負担は従来例に比
較して小さい。更にオフにする空調機は同じ空調機では
なく、複数の空調機のうち所定の順次に従ってオフされ
るので室内の循環効率に特に支障をきたすことはない。
Further, since the air conditioner is automatically turned off without requiring human resources, the burden on the consumer side is smaller than in the conventional example. Further, the air conditioners to be turned off are not the same air conditioners, but are turned off according to a predetermined sequence among a plurality of air conditioners, so that there is no particular problem with the circulation efficiency in the room.

【0014】また、請求項3に記載の発明によれば、制
御部は、予測電力を直接当月の目標電力と比較するので
はなく、当月の目標電力に対する防波提の役割を果たす
第2目標電力を、初期段階で一定時間当たりのパルス数
に対応した現在電力から予測電力を算出し、その予測電
力に応じて算出する。そして、第2目標電力と当月の目
標電力のうち小さい方を基準電力とした後、再度、新た
に予測電力を算出し、その予測電力を設定された基準電
力と比較し、予測電力が基準電力を超えると、複数の空
調機のうち1つをオフにし所定時間経過後自動復帰させ
る信号をその空調機側に発信し、更に次に算出した予測
電力が基準電力を超えると、前記複数の空調機のうちオ
フにした次の空調機を順次オフにし所定時間経過後自動
復帰させる信号をその空調機側に発信する制御を、予測
電力が基準電力以下になるまで繰り返して行うものであ
る。このように、最終の目標値となる当月の目標電力に
対する防波提として第2目標電力が設定されているの
で、請求項2に記載の発明の効果に加えて、きめ細かい
制御が可能になり一層効率的に節電を図ることができ
る。
According to the third aspect of the present invention, the control unit does not directly compare the predicted power with the target power of the current month, but plays a role of providing a breakwater to the target power of the current month. In the initial stage, the predicted power is calculated from the current power corresponding to the number of pulses per fixed time at the initial stage, and is calculated according to the predicted power. Then, after the smaller of the second target power and the target power of the current month is set as the reference power, a new predicted power is calculated again, and the predicted power is compared with the set reference power. Is exceeded, a signal to automatically turn off one of the plurality of air conditioners and automatically return after a predetermined time elapses is transmitted to the air conditioner side. The control of transmitting a signal to automatically turn off the next air conditioner that has been turned off among the air conditioners and automatically returning the air conditioner after a predetermined time has elapsed to the air conditioner side is repeatedly performed until the predicted power becomes equal to or less than the reference power. In this way, since the second target power is set as a breakwater against the target power of the current month, which is the final target value, in addition to the effect of the invention described in claim 2, fine control becomes possible. Power can be saved efficiently.

【0015】更に、請求項4に記載の発明によれば、制
御部は、前記複数の空調機のうち稼働中の空調機が所定
値より小さいか否かを判断し、小さい場合には、空調機
をオフする制御を開始しないので、制御過剰となること
を防止することができ、実際の空調機の稼働状況に応じ
た制御が可能となる。後述する発明の実施の形態に対応
して記載すれば、この複数の空調機のうち稼働中の空調
機が所定値より小さいか否かの判断は、制御開始率Sに
基づき導かれる数値であるところの制御開始電力SWで
あり、その判断は、ステップ13(図2)で行われてい
る。
Further, according to the invention described in claim 4, the control unit determines whether the operating air conditioner among the plurality of air conditioners is smaller than a predetermined value. Since the control for turning off the air conditioner is not started, it is possible to prevent the control from being excessive, and it is possible to perform the control according to the actual operating condition of the air conditioner. According to an embodiment of the invention described below, the determination as to whether the operating air conditioner among the plurality of air conditioners is smaller than a predetermined value is a numerical value derived based on the control start rate S. However, the control start power SW is determined in step 13 (FIG. 2).

【0016】[0016]

【発明の実施の形態】図面を参照して、本発明の実施形
態に係るデマンド監視制御装置について説明する。図1
は本実施形態に係るデマンド監視制御装置100の構成
概要を示すブロック図である。このデマンド監視制御装
置100は、RAMなどが組み込まれた記憶部11と、
制御パターンが入力されたROM12と、装置全体を制
御する制御部に相当するCPU13と、時計装置CT
と、10秒タイマTMと、操作表示部16等から構成さ
れていて、CPU13には、電力会社の電力量測定用計
器のパルス発振器200から30分単位で出力されるパ
ルスを検出するパルス検出器201からの検出信号が入
力されている。また、CPU13と複数の空調機(本実
施形態例ではNo.1〜No.8の8台とした)とは図
示しないインターフェイスを介して接続されていて、C
PU13には複数の空調機をオン/オフ制御するスイッ
チ機能が付与されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A demand monitoring control device according to an embodiment of the present invention will be described with reference to the drawings. FIG.
FIG. 1 is a block diagram illustrating a schematic configuration of a demand monitoring control device 100 according to the present embodiment. The demand monitoring control device 100 includes a storage unit 11 having a built-in RAM and the like,
A ROM 12 to which a control pattern is input, a CPU 13 corresponding to a control unit for controlling the entire device, a clock device CT
And a 10-second timer TM, an operation display unit 16 and the like. The CPU 13 has a pulse detector for detecting a pulse output every 30 minutes from the pulse oscillator 200 of the electric energy measuring instrument of the electric power company. The detection signal from 201 is input. Further, the CPU 13 and a plurality of air conditioners (eight units No. 1 to No. 8 in this embodiment) are connected via an interface (not shown).
The PU 13 is provided with a switch function for controlling on / off of a plurality of air conditioners.

【0017】次に図2及び図3を参照して、図1に示す
CPU13のデマンド監視制御に関する処理内容につい
て説明する。CPU13は、電源がオンされると装置全
体の初期化を行う(ステップ1;「以下、カッコ内では
ステップという語を省略する」)。そして、ユーザーが
入力するデータの読込みを行う(2)。入力されるデー
タとしては、年月日,時刻,チャンネル数(空調機の点
数を示すもので本実施形態例では8機としている),月
別の目標電力P1の12個分,ベース電力P3(一切遮断
できない空調機以外の負荷設備の電力値),制御率θ
(負荷制御の基本となる数値),制御開始率S(設定し
た割合以上の空調機が稼働していれば制御を行うと判断
するための数値),PCT比(合成変成比を示すもの
で、現在電力Pを算出する前記(1)式で使用される数
値),制御開始電力SW(この数値以下に第2目標電力
2がなった場合には負荷制御を行わないと判断するた
めの基準値であり、SW=P3+(P1−P3)×Sから
導かれる定数である),パルス定数(現在電力Pを算出
する前記(1)式で使用される数値),負荷制御時間t
(空調機負荷の遮断時間)があげられる。なお、データ
の入力は操作表示部16を介して行われる。
Next, with reference to FIG. 2 and FIG. 3, the processing contents of the demand monitoring control of the CPU 13 shown in FIG. 1 will be described. When the power is turned on, the CPU 13 initializes the entire device (Step 1; "Hereinafter, the word" step "is omitted in parentheses)". Then, data input by the user is read (2). The data to be input, date, time, number of channels (that is eight planes in the present embodiment in which shows the number of air conditioner), 12 pieces of the target power P 1 of the month, the base power P 3 (Electricity value of load equipment other than air conditioner that cannot be shut off at all), control rate θ
(A basic value of load control), a control start rate S (a numerical value for determining that control is performed if an air conditioner is operating at a set rate or more), and a PCT ratio (indicating a combined metamorphic ratio, The current power P is calculated (the numerical value used in the equation (1)), the control start power SW (a criterion for determining that the load control is not to be performed when the second target power P 2 is less than the numerical value). Value, which is a constant derived from SW = P 3 + (P 1 −P 3 ) × S), pulse constant (numerical value used in equation (1) for calculating current power P), load control time t
(Interruption time of air conditioner load). The input of data is performed via the operation display unit 16.

【0018】データの読込み後、時計装置CTの0点調
整を行い、時計装置CTを0分00秒からスタートさせ
る(3)。時計装置CTの0点調整は、電力会社で定め
られる例えば30分周期の起点に一致するように手動で
セットすることで行われ、これに対応して時計装置CT
がスタートする。次に、CPU13は、各空調機に対し
て復帰許可信号を発信し(4)、後述する処理に使用さ
れるレジスタMに1をセットする(5)。ここで、復帰
許可信号を発信するのは、前の時限からオンからオフに
制御中の空調機が残っていれば初期演算の段階で正確性
を期すことができないのでこれを避けるためにすべての
空調機を非制御とする(第1回目のときには制御中の空
調機はない)。
After the reading of the data, the clock device CT is adjusted to the zero point, and the clock device CT is started from 0 minute 00 seconds (3). The zero point adjustment of the clock device CT is performed by manually setting the clock device CT so as to coincide with, for example, a starting point of a 30-minute cycle determined by an electric power company.
Starts. Next, the CPU 13 transmits a return permission signal to each air conditioner (4), and sets 1 to a register M used for processing described later (5). Here, the return permission signal is transmitted when the air conditioner being controlled from on to off from the previous time period remains accurate at the initial calculation stage. The air conditioner is not controlled (at the first time, no air conditioner is being controlled).

【0019】次に、CPU13は、パルス検出器201
からの信号を受信し(6)、その入力パルス数から、従
来例で示した(1)式に基づいて現在電力Pを算出し
(7)、(2)式から予測電力Rを算出する(8)。そ
して、得られた予測電力RをレジスタR0にセットし
(9)、その値から第2目標電力P2を、P2=R−Rθ
から算出し(10)、第2目標電力P2を予め設定され
た当月の目標電力P1と比較する(11)。
Next, the CPU 13 comprises a pulse detector 201
(6), the current power P is calculated from the number of input pulses based on the equation (1) shown in the conventional example (7), and the predicted power R is calculated from the equation (2) ( 8). Then, the obtained predicted power R is set in the register R 0 (9), and from the value, the second target power P 2 is calculated as P 2 = R−Rθ
Calculated from (10), comparing the current month to the target power P 1 to the second target power P 2 set in advance (11).

【0020】そして、第2目標電力P2が目標電力P1
超えると基準電力P0として目標電力P1をセットするが
(12)、第2目標電力P2が目標電力P1以下になると
第2目標電力P2を更に制御開始電力SWと比較し(1
3)、制御開始電力SWより大きければ基準電力P0
して第2目標電力P2をセットするが(14)、第2目
標電力P2が制御開始電力SW以下であると非制御状態
となりステップ37に進む。つまり、目標電力P1に対
して防波提的な役割を果たす第2目標電力P2を設定
し、図4(a)に示すように、第2目標電力P2が目標
電力P1を超えない限りは第2目標電力P2を基準電力P
0として、予測電力Rがその基準電力P0(=第2目標電
力P2)を超える場合には予測電力Rを基準電力P0にす
る制御を行い、逆に、図4(b)に示すように、第2目
標電力P2が目標電力P1以下になる場合には目標電力P
1を基準電力P0として、予測電力Rがその基準電力P0
(=目標電力P1)を超える場合には予測電力Rを基準
電力P0にする制御を行うものである。なお、第2目標
電力P2が制御開始電力SW以下の場合には実際の空調
機の稼働状況に応じたきめ細かい制御を可能とするた
め、非制御状態にするものである。
[0020] Then, the second target power P 2 is set target power P 1 as the reference power P 0 exceeds the target power P 1 (12), when the second target power P 2 is less than the target power P 1 The second target power P 2 is further compared with the control start power SW (1
3), but sets the second target power P 2 as the reference power P 0 is larger than the control start power SW (14), becomes a second target power P 2 is less than the control start power SW and uncontrolled Step 37 Proceed to. In other words, set the breakwater Hisage specific role second target power P 2 relative to the target power P 1, as shown in FIG. 4 (a), the second target power P 2 exceeds the target power P 1 Unless otherwise, the second target power P 2 is used as the reference power P
When the predicted power R exceeds the reference power P 0 (= second target power P 2 ), control is performed to set the predicted power R to the reference power P 0 , and conversely, as shown in FIG. As described above, when the second target power P 2 is equal to or less than the target power P 1 , the target power P
Assuming that 1 is the reference power P 0 , the predicted power R is the reference power P 0
When (= target power P 1 ) is exceeded, control is performed to set the predicted power R to the reference power P 0 . Incidentally, when the second target power P 2 is less than the control start power SW in order to enable fine control in accordance with the operating condition of the actual air conditioner is for the non-controlled state.

【0021】基準電力P0に目標電力P1又は第2目標電
力P2がセットされると、時計装置CTが20秒経過す
るまで待ち(15)、経過すると10秒タイマTMをス
タートさせ(16)、10秒タイマTMがオーバーする
まで(35)以下の処理を行う。すなわち、パルス検出
器201からの信号を受信し(17)、その入力パルス
数から、従来例で示した(1)式に基づいて現在電力P
を算出し(18)、(2)式から予測電力Rを算出する
(19)。そして、得られた予測電力Rを設定された基
準電力P0と比較し(20)、予測電力Rが基準電力P0
より大きく、かつ時計装置CTがステップ33,34で
27分00秒経過したことを示すフラグFが1でなけれ
ば(F=0)、ステップ23以下のデマンド制御を行う
(21)。あるいは、予測電力Rが基準電力P0より大
きく、かつフラグFが1であっても基準電力P0のセッ
トされた内容が目標電力P1であれば、ステップ23以
下のデマンド制御を行う(21,22)。
When the target power P 1 or the second target power P 2 is set to the reference power P 0 , the clock device CT waits for 20 seconds to elapse (15), and after that, starts the 10-second timer TM (16). ) The following processing is performed until the 10 second timer TM is over (35). That is, a signal from the pulse detector 201 is received (17), and the current power P is calculated from the number of input pulses based on the equation (1) shown in the conventional example.
Is calculated (18), and the predicted power R is calculated from the equation (2) (19). Then, the obtained predicted power R is compared with the set reference power P 0 (20), and the predicted power R is set to the reference power P 0.
If the flag F, which is larger and indicates that the clock device CT has passed 27 minutes 00 seconds in steps 33 and 34, is not 1 (F = 0), the demand control in step 23 and subsequent steps is performed (21). Alternatively, the predicted power R is greater than the reference power P 0, and the flag F is if there is also a reference power P set contents the target power P 1 0 1, the following demand control step 23 (21 , 22).

【0022】デマンド制御は、先ずレジスタnにレジス
タMをセットし(23)、No.nに対応する空調機は
現在オン(稼働中)の状態であるか否かを判断する(2
4)。なお、当初は前述したステップ5でMには1がセ
ットされているので、No.1の空調機がオンか否かが
判断される。No.1の空調機がオフであれば、レジス
タnは1インクレメントされ(25)、No.2の空調
機がオンであるか否か判断され、同様の処理を繰り返し
いずれかの空調機がオンされていることが確認されるま
で点数分(8個分)の空調機についてオンされているか
否か判断される(26,27)。そして、いずれかの空
調機がオンされていることを確認すると(ステップ13
で第2目標電力P2は制御開始電力SWよりも大きいと
いう条件は満足しているのでいずれかの空調機はオンさ
れている)、レジスタMにレジスタnに1インクレメン
トした数をセットし(28)、この数が点数の8を超え
るようであればレジスタMに元の1をセットした後(2
9,30)、CPU13は、オン状態のNo.nの空調
機を強制的にオフにし、予め入力された負荷制御時間t
秒経過後に自動的にオンされる復帰許可信号を同時に発
信する(31)。このように空調機1機をオンからオフ
したことにともない現在電力Pとそれに関連する予測電
力Rが低下する。
In the demand control, first, a register M is set in a register n (23), and It is determined whether or not the air conditioner corresponding to n is currently on (operating) (2).
4). Since M is initially set to 1 in step 5 described above, No. It is determined whether the first air conditioner is on. No. If the air conditioner of No. 1 is off, the register n is incremented by one (25), and It is determined whether the second air conditioner is on or not, and the same process is repeated to check whether the air conditioners for the number of points (eight air conditioners) are on until it is confirmed that any air conditioner is on. It is determined whether or not it is (26, 27). When it is confirmed that any of the air conditioners is turned on (step 13)
Therefore, the condition that the second target electric power P 2 is larger than the control start electric power SW is satisfied, so that one of the air conditioners is turned on.) 28) If this number exceeds the score of 8, the original 1 is set in the register M (2
9, 30), the CPU 13 outputs the No. n of the air conditioner is forcibly turned off, and the load control time t input in advance
A return permission signal that is automatically turned on after a lapse of seconds is simultaneously transmitted (31). As described above, the current power P and the predicted power R associated therewith decrease as one air conditioner is turned off from on.

【0023】次に、CPU13は、時計装置CTが30
分00秒又は27分00秒経過したか否かを判断し(3
2,33)、27分00秒を経過していない限りステッ
プ35に進み、10秒タイマTMがオーバーしたか否か
を判断する。そして、10秒タイマTMがオーバーする
と、上述したステップ16〜20の処理を繰り返して行
い、また予測電力Rが基準電力P0より大きく、かつフ
ラグFが1でなければ、あるいは、予測電力Rが基準電
力P0より大きく、かつフラグFが1であっても基準電
力P0のセットされた内容が目標電力P1であれば、ステ
ップ23以下のデマンド制御を行い(21,22)、前
回オンからオフに制御した空調機とは異なる空調機でオ
ンのものをオフに強制的に制御し、負荷制御時間t秒経
過後に自動的にオンされる復帰許可信号を同時に発信す
る(23〜31)。このように前回のオフにした空調機
と合わせて計2機の空調機をオンからオフしたことにと
もない現在電力Pとそれに関連する予測電力Rが更に低
下する。
Next, the CPU 13 determines that the clock
It is determined whether minutes 00 seconds or 27 minutes 00 seconds have elapsed (3.
(2, 33) Unless 27 minutes and 00 seconds have elapsed, the process proceeds to step 35, and it is determined whether or not the 10-second timer TM has exceeded. When the 10-second timer TM is over, the processing of the above-mentioned steps 16 to 20 is repeated, and the predicted power R is larger than the reference power P 0 and the flag F is not 1, or the predicted power R is If the set content of the reference power P 0 is larger than the reference power P 0 and the set content of the reference power P 0 is the target power P 1 , the demand control of step 23 and thereafter is performed (21, 22), and the previous ON is performed. The air conditioner that is different from the air conditioner that was controlled to be turned off is forcibly controlled to be turned off, and a return permission signal that is automatically turned on after the elapse of the load control time t seconds is simultaneously transmitted (23 to 31). . As described above, the current power P and the predicted power R related thereto are further reduced due to the total of two air conditioners being turned off from on in addition to the air conditioners that were turned off last time.

【0024】すなわち、10秒毎に予測電力Rが基準電
力P0より大きいか否か等によるデマンド制御が必要か
否かの判断を行い(20〜22)、デマンド制御が必要
であると判断すると、予め定めた制御順位(本実施形態
例ではNo.1→No.2→・・・→No.7→No.
8→No.1→・・)に基づき、稼働中の空調機をオフ
に制御しt秒経過後に自動復帰させる信号を発信し、予
測電力Rが基準電力P0以下になるまで次位の稼働中の
空調機をオフに制御しt秒経過後に自動復帰させる信号
を発信させる。
That is, it is determined every 10 seconds whether demand control is necessary based on whether the predicted power R is greater than the reference power P 0 (20 to 22), and if it is determined that demand control is required, , A predetermined control order (No. 1 → No. 2 →... → No. 7 → No.
8 → No. 1 → ..), a signal to control the operating air conditioner to be turned off and to automatically return after t seconds elapse is transmitted, and the next operating air conditioner until the predicted power R becomes equal to or less than the reference power P 0. Is turned off and a signal for automatically returning after t seconds has elapsed is transmitted.

【0025】そして、ステップ33で時計装置CTが2
7分00秒経過したことが判断されると、フラグFに1
がセットされるので(34)、その後時計装置CTが3
0分00秒経過するまでには、予測電力Rが基準電力P
0より大きく、かつ基準電力P0のセットされた内容が目
標電力P1の場合に限り、以下のデマンド制御を行う
(20〜22)。これは、27分00秒から30分00
秒までの3分間には次時限の30分の初期演算の正確さ
を期するため新たな制御信号を可能な限り発信しないよ
うにしている。したがって負荷制御時間tも3分以内で
あることが好ましい。なお、たとえ時計装置CTが27
分00秒経過したからといって月別の目標電力P1を予
測電力Rが超える場合にも何ら制御しないのでは1年間
の電力使用量のピーク値を超えることもあり得るため第
2目標電力P2が目標電力P1よりも大きい場合には制御
対象とした。
Then, at step 33, the clock CT is set to 2
When it is determined that 7:00 seconds have elapsed, the flag F is set to 1
Is set (34), and then the clock CT sets 3
By the time 0:00, the predicted power R is equal to the reference power P
Greater than 0, and only if the set contents of the reference power P 0 of the target power P 1, performs the following demand control (20 to 22). This is from 27 minutes 00 seconds to 30 minutes 00
In order to ensure the accuracy of the initial calculation for the next time period of 30 minutes, new control signals are not transmitted as much as possible within 3 minutes up to the second. Therefore, it is preferable that the load control time t is also within 3 minutes. Note that even if the clock device CT is 27
Even if the predicted power R exceeds the monthly target power P 1 even after the lapse of the minute 00 seconds, if no control is performed, the peak value of the power consumption for one year may be exceeded. 2 is greater than the target power P 1 was controlled.

【0026】ステップ32で時計装置CTが30分00
秒経過したことが判断されると、時計装置CTが再び0
分00秒からスタートされ(36)、同様の処理が行わ
れる。また、ステップ13で第2目標電力P2が制御開
始電力SW以下であると非制御状態となりステップ37
に進み、時計装置CTが30分00秒経過したことが判
断されると、時計装置CTが再び0分00秒からスター
トされ(36)、同様の処理が行われる。
In step 32, the clock CT is set to 30 minutes 00.
When it is determined that the second has elapsed, the clock device CT is reset to 0 again.
Starting from minute 00 seconds (36), similar processing is performed. Further, the step 37 becomes uncontrolled and the second target power P 2 is less than the control start power SW in step 13
When it is determined that the clock device CT has passed 30 minutes and 00 seconds, the clock device CT is started again from 0 minutes and 00 seconds (36), and the same processing is performed.

【0027】このように予測電力Rが基準電力P0を超
えると、稼働中の空調機を自動的にオフにさせて電力を
低下させこれにより特に夏期に使用電力のピーク値を基
準電力P0以下に抑えることができ、更に他の次期にお
いても使用電力を基準電力P0以下に抑えることができ
るので、総合的に電力経費の低減を図ることができる。
As described above, when the predicted power R exceeds the reference power P 0 , the operating air conditioner is automatically turned off to reduce the power, thereby reducing the peak value of the used power especially in summer in the reference power P 0. The power consumption can be suppressed to the reference power P 0 or less even in another next period, so that the power cost can be reduced comprehensively.

【0028】本実施形態例では、目標電力P1の防波提
として第2目標電力P2を設けたが、特に第2目標電力
2を設けることなく、目標電力P1をそのまま基準電力
0として10秒毎に予測電力Rと比較し、予測電力R
が目標電力P1より大きいと上述したデマンド制御(2
3〜31)を行うようにしてもよい。なお、この場合に
は、27分00秒から30分00秒までの3分間には次
時限の30分の初期演算の正確さを期するため新たな制
御信号を可能な限り発信しないというような処理は特に
行わない。
[0028] In this embodiment, the second target power P 2 but was provided as breakwater Hisage target power P 1, in particular the second target power P 2 to without providing the target power P 1 as it is the reference power P Compared to the predicted power R every 10 seconds as 0 , the predicted power R
Demand control (2 but described above with larger target power P 1
3 to 31) may be performed. In this case, a new control signal is not transmitted as much as possible during the three minutes from 27:00 to 30:30 in order to ensure the accuracy of the initial calculation of the next time period of 30 minutes. No processing is performed.

【0029】[0029]

【発明の効果】以上のとおり、請求項1に記載のデマン
ド監視制御方法によれば、現在電力から予測電力を算出
し、該予測電力を予め記憶部に設定された当月の目標電
力と比較し、予測電力が目標電力を超えると、従来例で
示したように警報を発するのではなく空調機をオフにす
る信号を自動的にその空調機側に発信するものであるの
で、それにしたがい現在電力は低下し、予測電力も低下
する。これにより、目標電力以下に抑えることができ
る。
As described above, according to the demand monitoring control method of the first aspect, the predicted power is calculated from the current power, and the predicted power is compared with the target power for the current month set in the storage unit in advance. If the predicted power exceeds the target power, a signal to turn off the air conditioner is automatically sent to the air conditioner side instead of issuing an alarm as shown in the conventional example. And the predicted power also decreases. As a result, the power can be suppressed to the target power or less.

【0030】請求項2に記載のデマンド監視制御装置に
よれば、予測電力が目標電力を超えると、複数の空調機
のうち1つをオフにし所定時間経過後自動復帰させる信
号をその空調機側に発信し、更に次に算出した予測電力
が目標電力を超えると、複数の空調機のうちオフにした
次の空調機を順次オフにし所定時間経過後自動復帰させ
る信号をその空調機側に発信する制御を、予測電力が目
標電力以下になるまで繰り返して行うので、特に夏期に
使用電力のピーク値を目標電力以下に抑えることがで
き、更に他の次期においても使用電力を各月の目標電力
以下に抑えることができるので、総合的に電力経費の低
減を図ることができる。また、空調機は自動的に人材を
必要とすることなくオフにされるので需要者側の負担は
従来例に比較して小さい。更にオフにする空調機は同じ
空調機ではなく、複数の空調機のうち所定の順次に従っ
てオフされるので室内の循環効率に特に支障をきたすこ
とはない。
According to the demand monitoring control device of the second aspect, when the predicted power exceeds the target power, a signal for turning off one of the plurality of air conditioners and automatically returning after a predetermined time has elapsed is output to the air conditioner side. If the predicted power calculated next exceeds the target power, a signal is sent to the air conditioner to automatically turn off the next air conditioner that was turned off among the plurality of air conditioners and to automatically return after a predetermined time has elapsed. Control is repeatedly performed until the predicted power is equal to or less than the target power, so that the peak value of the power consumption can be suppressed to the target power or less particularly in the summer season, and the power consumption in the next period is also reduced to the target power of each month. Since it can be suppressed to the following, it is possible to comprehensively reduce the power cost. In addition, since the air conditioner is automatically turned off without requiring human resources, the burden on the consumer side is smaller than in the conventional example. Further, the air conditioners to be turned off are not the same air conditioners, but are turned off according to a predetermined sequence among a plurality of air conditioners, so that there is no particular problem with the circulation efficiency in the room.

【0031】また、請求項3に記載の発明によれば、最
終の目標値となる当月の目標電力に対する防波提として
第2目標電力が設定されているので、請求項2に記載の
発明の効果に加えて、きめ細かい制御が可能になり一層
効率的に節電を図ることができる。
According to the third aspect of the present invention, the second target power is set as a breakwater for the target power of the current month, which is the final target value. In addition to the effects, fine control can be performed, and power can be saved more efficiently.

【0032】更に、請求項4に記載の発明によれば、制
御部は、前記複数の空調機のうち稼働中の空調機が所定
値より小さいか否かを判断し、小さい場合には、空調機
をオフする制御を開始しないので、制御過剰となること
を防止することができ、実際の空調機の稼働状況に応じ
た制御が可能となる。
Further, according to the fourth aspect of the present invention, the control unit determines whether or not the operating air conditioner among the plurality of air conditioners is smaller than a predetermined value. Since the control for turning off the air conditioner is not started, it is possible to prevent the control from being excessive, and it is possible to perform the control according to the actual operating condition of the air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るデマンド監視制御装置
の構成概要を示すブロック図である。
FIG. 1 is a block diagram illustrating a schematic configuration of a demand monitoring control device according to an embodiment of the present invention.

【図2】図1に示すCPU13の処理内容を示すフロー
チャートである。
FIG. 2 is a flowchart showing processing contents of a CPU 13 shown in FIG.

【図3】図1に示すCPU13の処理内容を示すフロー
チャートである。
FIG. 3 is a flowchart showing processing contents of a CPU 13 shown in FIG.

【図4】目標電力P1と第2目標電力P2との関係を示す
模式図であり、(a)は第2目標電力P2が目標電力P1
以下の場合、(b)は第2目標電力P2が目標電力P1
り大きい場合を示す。
Figure 4 is a schematic diagram showing the relationship between the target power P 1 and the second target power P 2, (a) is the target power P 1 and the second target power P 2
If:, (b) the second target power P 2 shows a larger than the target power P 1.

【図5】電気使用量の月別推移を示すグラフである。FIG. 5 is a graph showing monthly changes in electricity usage.

【図6】時間当りの予測電力Rと目標電力P1との関係
を示すグラフである。
6 is a graph showing the relationship between the predicted power R and the target power P 1 per hour.

【符号の説明】[Explanation of symbols]

11 記憶部 12 ROM 13 CPU 16 操作表示部 100 デマンド監視制御装置 200 パルス発振器 201 パルス検出器 No.1〜No.8 空調機 CT 時計装置 TM 10秒タイマ 11 storage unit 12 ROM 13 CPU 16 operation display unit 100 demand monitoring control device 200 pulse oscillator 201 pulse detector No. 1 to No. 8 Air conditioner CT clock device TM 10 second timer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02J 3/00 H02J 3/00 A ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI H02J 3/00 H02J 3/00 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電力会社の電力量測定用計器のパルス発振
器から送られるパルス信号を検出するパルス検出器から
の信号を入力し、一定時間当たりのパルス数に対応した
現在電力から予測電力を算出し、該予測電力を予め記憶
部に設定された各月別の目標電力のうち当月の目標電力
と比較し、予測電力が目標電力を超えると、空調機をオ
フにする信号をその空調機側に発信することを特徴とす
るデマンド監視制御方法。
1. A signal from a pulse detector for detecting a pulse signal sent from a pulse generator of a meter for measuring electric energy of a power company is input, and a predicted power is calculated from a present power corresponding to the number of pulses per a certain time. Then, the predicted power is compared with the target power of the current month among the target powers for each month set in the storage unit in advance, and when the predicted power exceeds the target power, a signal to turn off the air conditioner is sent to the air conditioner side. A demand monitoring control method characterized by transmitting.
【請求項2】電力会社の電力量測定用計器のパルス発振
器から送られるパルス信号を検出するパルス検出器及び
複数の空調機をオン/オフ制御するスイッチ機能が制御
部にそれぞれ接続されたデマンド監視制御装置であっ
て、 前記制御部は、前記パルス検出器からの信号が入力さ
れ、一定時間当たりのパルス数に対応した現在電力から
予測電力を算出し、予測電力を予め記憶部に設定された
各月別の目標電力のうち当月の目標電力と比較し、予測
電力が目標電力を超えると、前記複数の空調機のうち1
つをオフにし所定時間経過後自動復帰させる信号をその
空調機側に発信し、更に次に算出した予測電力が目標電
力を超えると、前記複数の空調機のうちオフにした次の
空調機を順次オフにし所定時間経過後自動復帰させる信
号をその空調機側に発信する制御を、予測電力が目標電
力以下になるまで繰り返して行うことを特徴とするデマ
ンド監視制御装置。
2. A demand monitor, wherein a pulse detector for detecting a pulse signal sent from a pulse oscillator of a meter for measuring electric energy of a power company and a switch function for controlling on / off of a plurality of air conditioners are connected to a control unit, respectively. The control device, wherein the control unit receives a signal from the pulse detector, calculates predicted power from current power corresponding to the number of pulses per fixed time, and sets the predicted power in the storage unit in advance. The target power for each month is compared with the target power for the current month, and when the predicted power exceeds the target power, one of the plurality of air conditioners is output.
One of the plurality of air conditioners is turned off, and a signal for automatically returning after a predetermined time elapses is transmitted to the air conditioner side.If the predicted power calculated next exceeds the target power, the next air conditioner turned off among the plurality of air conditioners is turned off. A demand monitoring and control device characterized in that a control for sequentially transmitting signals to be automatically turned off and automatically returning after a predetermined time elapses to the air conditioner side is repeatedly performed until predicted power becomes equal to or less than target power.
【請求項3】電力会社の電力量測定用計器のパルス発振
器から送られるパルス信号を検出するパルス検出器及び
複数の空調機をオン/オフ制御するスイッチ機能が制御
部にそれぞれ接続されたデマンド監視制御装置であっ
て、 前記制御部は、前記パルス検出器からの信号が入力さ
れ、初期段階で一定時間当たりのパルス数に対応した現
在電力から予測電力を算出し、その予測電力に応じた第
2目標電力を算出し、該第2目標電力を予め記憶部に設
定された各月別の目標電力のうち当月の目標電力と比較
し第2目標電力の方が目標電力より大きいと、目標電力
を基準電力とし、逆に第2目標電力の方が目標電力以下
であると第2目標電力の方を基準電力に設定した後、再
度、前記パルス検出器からの信号を入力し、一定時間当
たりのパルス数に対応した現在電力から予測電力を算出
し、その予測電力を前記設定された基準電力と比較し、
予測電力が基準電力を超えると、前記複数の空調機のう
ち1つをオフにし所定時間経過後自動復帰させる信号を
その空調機側に発信し、更に次に算出した予測電力が基
準電力を超えると、前記複数の空調機のうちオフにした
次の空調機を順次オフにし所定時間経過後自動復帰させ
る信号をその空調機側に発信する制御を、予測電力が基
準電力以下になるまで繰り返して行うことを特徴とする
デマンド監視制御装置。
3. A demand monitor in which a pulse detector for detecting a pulse signal sent from a pulse generator of a meter for measuring electric energy of a power company and a switch function for controlling on / off of a plurality of air conditioners are connected to the control unit. A control device, wherein the control unit receives a signal from the pulse detector, calculates a predicted power from a current power corresponding to the number of pulses per fixed time in an initial stage, and calculates a predicted power based on the predicted power. 2) Calculate the target power and compare the second target power with the target power of the current month among the target powers for each month preset in the storage unit. If the second target power is larger than the target power, the target power is calculated. If the second target power is less than or equal to the target power, the second target power is set to the reference power, and then the signal from the pulse detector is input again, and To the number of pulses Calculating the predicted power from the corresponding current power, comparing the predicted power with the set reference power,
When the predicted power exceeds the reference power, a signal for turning off one of the plurality of air conditioners and automatically returning after a predetermined time elapses is transmitted to the air conditioner, and the predicted power calculated next exceeds the reference power. And a control of sequentially transmitting to the air conditioner a signal for automatically turning off the next air conditioner that has been turned off among the plurality of air conditioners and automatically returning after a predetermined time elapses, until the predicted power becomes equal to or less than the reference power. A demand monitoring control device characterized by performing.
【請求項4】前記制御部は、前記複数の空調機のうち稼
働中の空調機が所定値より小さいか否かを判断し、小さ
い場合には、前記空調機をオフする制御を開始しないこ
とを特徴とする請求項2又は3に記載のデマンド監視制
御装置。
4. The control unit determines whether an operating air conditioner among the plurality of air conditioners is smaller than a predetermined value, and if not, does not start control to turn off the air conditioner. The demand monitoring control device according to claim 2 or 3, wherein:
JP25787897A 1997-09-04 1997-09-04 Demand monitoring and controlling device and method therefor Pending JPH1189117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25787897A JPH1189117A (en) 1997-09-04 1997-09-04 Demand monitoring and controlling device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25787897A JPH1189117A (en) 1997-09-04 1997-09-04 Demand monitoring and controlling device and method therefor

Publications (1)

Publication Number Publication Date
JPH1189117A true JPH1189117A (en) 1999-03-30

Family

ID=17312446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25787897A Pending JPH1189117A (en) 1997-09-04 1997-09-04 Demand monitoring and controlling device and method therefor

Country Status (1)

Country Link
JP (1) JPH1189117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267768A (en) * 2007-04-16 2008-11-06 Keiichi Ota Operation control device and operation control method for compressor
JP2009278795A (en) * 2008-05-15 2009-11-26 Tempearl Ind Co Ltd Life energy proper use supporting system
KR101495160B1 (en) * 2007-12-24 2015-03-02 엘지전자 주식회사 A Central Controller of Multi Air-conditioning System and A Power Control Method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267768A (en) * 2007-04-16 2008-11-06 Keiichi Ota Operation control device and operation control method for compressor
KR101495160B1 (en) * 2007-12-24 2015-03-02 엘지전자 주식회사 A Central Controller of Multi Air-conditioning System and A Power Control Method thereof
JP2009278795A (en) * 2008-05-15 2009-11-26 Tempearl Ind Co Ltd Life energy proper use supporting system

Similar Documents

Publication Publication Date Title
CN101598969B (en) Platform power management based on latency guidance
US6975947B2 (en) Power saving apparatus in an appliance
KR101538498B1 (en) Method and appratus for battery gaging in portable terminal
US20060143483A1 (en) Method and apparatus for power management by user needs
JP2000089864A (en) Power control method for computer system and its apparatus
CA2210424A1 (en) Method and apparatus for power management in a multifunction controller with an embedded micro-processor
US20010020940A1 (en) Information processor and power control method therefor
JP2007097310A (en) Grid connected system
JPH1189117A (en) Demand monitoring and controlling device and method therefor
JP2002352834A (en) Power generation controlling system and program
JP2002078227A (en) Charging controller for battery
CN116513966A (en) Crane control method and device, electronic equipment and crane
KR100942922B1 (en) Power Management Unit controlling Wake-up Sequence and Method thereof
JPH05260658A (en) Demand controller
JPH11110085A (en) Portable computer
JPH09261888A (en) Software-notification battery charging method
JP2003262380A (en) Electric power control device
JP3772783B2 (en) Demand control device
CN109814700A (en) Standby mode control system and control method of power management system
JPH05150872A (en) Power control method and electronic device
JP2003223914A (en) Fuel cell power generator
JP2003140782A (en) Computer system having power consumption referring function and its control method
JP6876990B2 (en) Water heater control system, water heater control method, and water heater control program
JP2004096972A (en) Method of automatically stopping and controlling uninterruptible power supply device
JPH05215793A (en) Method for integrating current consumption