JPH1188243A - Data carrier - Google Patents
Data carrierInfo
- Publication number
- JPH1188243A JPH1188243A JP9242483A JP24248397A JPH1188243A JP H1188243 A JPH1188243 A JP H1188243A JP 9242483 A JP9242483 A JP 9242483A JP 24248397 A JP24248397 A JP 24248397A JP H1188243 A JPH1188243 A JP H1188243A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- transmission
- load
- voltage
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 74
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 239000003990 capacitor Substances 0.000 claims description 17
- 238000004891 communication Methods 0.000 abstract description 5
- 238000009499 grossing Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、データキャリアに
関し、質問機と応答機(データキャリア)との間で信号
の授受行う非接触式ICカード型のデータキャリアに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data carrier and, more particularly, to a non-contact type IC card type data carrier for exchanging signals between an interrogator and a transponder (data carrier).
【0002】[0002]
【従来の技術】質問機と応答機のカードとの間で、電磁
結合方式又は電磁誘導方式等により信号の授受を行う方
式のデータキャリアシステム(例えば、「非接触式IC
カードシステム」として実用化が進められている)が広
く知られている。特に、搬送波を応答機側で整流して、
応答機の電力として使用する無電池方式の非接触式IC
カードシステムがIDカード用、搬送物の認識用タグ等
として広く用いられる様になってきた。2. Description of the Related Art A data carrier system (for example, a "non-contact IC") for transmitting and receiving signals between an interrogator and a card of an answering machine by an electromagnetic coupling system or an electromagnetic induction system.
Practical application as a "card system") is widely known. In particular, the carrier is rectified on the transponder side,
Battery-free non-contact IC used as power for transponders
A card system has been widely used as an ID card, a tag for recognizing a conveyed article, and the like.
【0003】このような電磁結合方式の非接触式ICカ
ードシステムにおいては、質問機は、OSC(発振器)
で発生させた搬送波を送信データに応じて変調し、その
変調波をドライバー回路で増幅し、アンテナコイルを駆
動して応答機に送信する。応答機は、アンテナコイルで
質問機からの信号を受信すると、整流回路で搬送波を整
流して内部で使用する電力を得るとともに、復調回路で
受信信号を復調してデータ処理回路に送り、データ処理
回路でデータ処理を行う。図3に従来のデータキャリア
システムの一例を示す。In such an electromagnetic coupling type non-contact IC card system, the interrogator is an OSC (oscillator).
Is modulated according to the transmission data, the modulated wave is amplified by a driver circuit, and the antenna coil is driven and transmitted to the transponder. When the transponder receives the signal from the interrogator with the antenna coil, the rectifier circuit rectifies the carrier wave to obtain the power to be used internally, and the demodulation circuit demodulates the received signal and sends it to the data processing circuit for data processing. Data processing is performed by the circuit. FIG. 3 shows an example of a conventional data carrier system.
【0004】ところで、応答機で使用する電力は質問機
から受信した信号を整流回路で整流して発生している
が、得られる電力は応答機のアンテナコイル31と質問
機のアンテナコイル17の距離に応じて変化する。一般
的には応答機のアンテナコイル31と質問機のアンテナ
コイル17の距離が近い方がより大きな誘導起電力を得
る事が出来る。The power used by the transponder is generated by rectifying a signal received from the interrogator by a rectifier circuit. The power obtained is the distance between the antenna coil 31 of the transponder and the antenna coil 17 of the interrogator. It changes according to. Generally, when the distance between the antenna coil 31 of the transponder and the antenna coil 17 of the interrogator is shorter, a larger induced electromotive force can be obtained.
【0005】通信可能距離を長く取ろうとすると、最大
通信可能距離で充分な電力が得られるようにアンテナコ
イルの大きさや質問機での送信電力の大きさ等が設定さ
れる。すると今度は応答機のアンテナコイル31と質問
機のアンテナコイル17の距離が近い場合に得られる電
力が大きくなり過ぎてデータキャリア内の素子の耐圧を
大きくしなければならないと言う問題が発生する。In order to increase the communicable distance, the size of the antenna coil and the magnitude of the transmission power at the interrogator are set so that sufficient power can be obtained at the maximum communicable distance. Then, there arises a problem that when the distance between the antenna coil 31 of the transponder and the antenna coil 17 of the interrogator is short, the power obtained becomes too large and the withstand voltage of the element in the data carrier must be increased.
【0006】従来はこの問題を解決するために、電圧検
出回路40を用いて整流回路の出力を監視し、整流回路
の出力が所定電圧よりも大きくなった場合には整流回路
の入力に過電圧防止用負荷回路38’を接続して受信信
号電流をこの過電圧防止用負荷回路38’に流して熱と
して消費することにより、過電圧の発生を防止してい
た。Conventionally, in order to solve this problem, the output of the rectifier circuit is monitored using a voltage detection circuit 40, and when the output of the rectifier circuit exceeds a predetermined voltage, an overvoltage protection is applied to the input of the rectifier circuit. The overload protection circuit 38 'is connected, and the reception signal current is supplied to the overvoltage prevention load circuit 38' and consumed as heat, thereby preventing overvoltage.
【0007】またデータキャリアから質問機へデータを
送信する場合には、応答機のアンテナコイル31に並列
に可変負荷手段としてのトランジスタ37を接続し、こ
のトランジスタを送信データで駆動する事によりアンテ
ナコイル31を流れる電流を変化させ、アンテナコイル
31と質問機のアンテナコイル17との結合状態を変化
させる事によりデータを送信していた。When data is transmitted from the data carrier to the interrogator, a transistor 37 as a variable load means is connected in parallel with the antenna coil 31 of the transponder, and this transistor is driven by the transmission data to thereby transmit the antenna coil. The data is transmitted by changing the current flowing through the antenna 31 and changing the coupling state between the antenna coil 31 and the antenna coil 17 of the interrogator.
【0008】応答機の電源としてのアンテナコイル31
から見ると負荷としてこの送信用負荷と、先述の過電圧
防止用負荷回路の2つの負荷回路が接続されていること
になる。[0008] Antenna coil 31 as a power supply of the transponder
This means that two load circuits, ie, the load for transmission and the above-mentioned load circuit for overvoltage prevention are connected as loads.
【0009】[0009]
【発明が解決しようとする課題】データ送信時には通常
のデータ処理時よりも数倍の電力が消費される。通常こ
の電力は整流回路33の平滑コンデンサ33bに蓄積さ
れた電荷で賄われるが、過電圧防止用負荷回路38’を
制御する電圧検出回路40が通常のデータ処理に必要な
電圧よりも高い電圧の発生を検出して、過電圧防止用負
荷回路38’が活性状態にある時に、データ送信のモー
ドに切り替わった場合に平滑コンデンサに蓄積された電
荷がデータ送信を維持するのに充分な電荷量でなかった
時にはデータ送信の途中で、電力不足になり、通信がス
トップする恐れがあった。特に質問機と応答機の距離が
応答限界距離に近い時には平滑コンデンサ33bに蓄積
された電荷が通常のデータ処理には充分であるが、デー
タ送信には不充分な場合にはこの問題が起こりやすくな
る。When transmitting data, several times more power is consumed than during normal data processing. Normally, this electric power is covered by the electric charge stored in the smoothing capacitor 33b of the rectifier circuit 33, but the voltage detection circuit 40 for controlling the overvoltage prevention load circuit 38 'generates a voltage higher than the voltage required for normal data processing. When the overvoltage protection load circuit 38 'is in the active state and the mode is switched to the data transmission mode, the electric charge accumulated in the smoothing capacitor is not sufficient to maintain the data transmission. Sometimes, during the data transmission, there is a danger of power shortage and communication stop. In particular, when the distance between the interrogator and the transponder is close to the response limit distance, the charge accumulated in the smoothing capacitor 33b is sufficient for normal data processing. Become.
【0010】この問題は一つの質問機で複数の応答機に
対応するマルチ対応のデータキャリアシステムの場合に
特に問題となる。一台でもこの様に不安定な応答機が存
在するとこの応答機に対して何回もデータ送信要求を繰
り返すためにシステム全体が止まってしまうと言う現象
が起こるからである。この問題を解決するには平滑コン
デンサ33bを大きくするか、平滑コンデンサ33bに
蓄積された電荷で充分な短い期間に送信データを分割し
て送信し、分割送信の間に平滑コンデンサに充電を行う
方法が考えられるが、前者では応答機のサイズが大きく
成るとともにコストも増大すると言う別の問題が発生
し、後者では一台の応答機とのデータのやりとりに長時
間有し、搬送システム等の用途に用いた場合等には、搬
送システム内の応答機を付着する物体の移動速度を制限
せざるを得ないと言った問題を発生させている。This problem is particularly problematic in the case of a multi-support data carrier system in which a single interrogator supports a plurality of transponders. This is because, if at least one such transponder exists, a phenomenon occurs that the entire system stops because data transmission requests are repeated many times for this transponder. In order to solve this problem, a method of increasing the size of the smoothing capacitor 33b or dividing the transmission data for a sufficiently short period with the electric charge stored in the smoothing capacitor 33b and transmitting the divided data and charging the smoothing capacitor during the divided transmission is used. However, the former has another problem that the size of the transponder increases and the cost increases.The latter has a long time for exchanging data with one transponder, and is used for transport systems. In such a case, a problem arises in that the moving speed of the object attached to the transponder in the transport system must be limited.
【0011】本発明は、上記問題を解決し、応答機が通
信距離限界付近で動作する場合に充分な送信電力を確保
できるデータキャリアを提供する事を目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a data carrier capable of securing a sufficient transmission power when a transponder operates near a communication distance limit.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
の本発明のデータキャリアは、送受信コイルとこれに接
続された同調コンデンサを備えた同調回路と、同調回路
の出力端に発生する信号を整流する整流回路と、整流回
路の出力電圧を検出する電圧検出手段と、整流回路の出
力によって電力が供給され、送信信号を出力する信号処
理回路と、制御信号入力端子に入力される制御信号に応
じた負荷を同調回路の出力端に与える第1の負荷手段
と、送信信号に応じた負荷を同調回路の出力端に与える
第2の負荷手段と、送信信号の論理値に応じて選択的に
第1の負荷手段の制御信号入力端子に電圧検出手段の出
力を供給する切換手段とを備える。A data carrier according to the present invention for achieving the above object comprises a tuning circuit having a transmitting / receiving coil and a tuning capacitor connected thereto, and a signal generated at an output terminal of the tuning circuit. A rectifier circuit for rectifying, a voltage detecting means for detecting an output voltage of the rectifier circuit, a signal processing circuit which is supplied with power by an output of the rectifier circuit and outputs a transmission signal, and a control signal input to a control signal input terminal. First load means for applying a corresponding load to the output terminal of the tuning circuit, second load means for applying a load corresponding to the transmission signal to the output terminal of the tuning circuit, and selectively according to the logical value of the transmission signal. Switching means for supplying an output of the voltage detection means to a control signal input terminal of the first load means.
【0013】応答機が通信距離限界付近で動作する場合
は整流回路の出力電圧が低下し、電圧検出手段がこの出
力電圧の低下を検出し、第1の負荷手段のインピーダン
スを増加させること等によって第1の負荷手段による負
荷を減少させ、第1の負荷手段での電力消費を減少さ
せ、データ送信等の電力消費の大きな動作を可能にす
る。When the transponder operates near the communication distance limit, the output voltage of the rectifier circuit decreases, and the voltage detecting means detects the decrease of the output voltage and increases the impedance of the first load means. The load of the first load means is reduced, the power consumption of the first load means is reduced, and operations with large power consumption such as data transmission can be performed.
【0014】また、一つの形態として、切換手段は送信
信号が一方の論理値を示す場合に第1の負荷手段の制御
信号入力端子に電圧検出手段の出力を供給し、他方の論
理値を示す場合に第1の負荷手段を非動作状態にする信
号を供給する。ここで第2の負荷手段は一方の論理値の
送信信号が供給された場合に負荷を増大させ、他方の論
理値の送信信号が供給された場合に負荷を減少させる。
このようにすることにより、第1の負荷手段もデータ送
信用の負荷として使用する事ができより効率的なデータ
送信が可能となる。In one embodiment, the switching means supplies the output of the voltage detecting means to the control signal input terminal of the first load means when the transmission signal indicates one logical value, and indicates the other logical value. In such a case, a signal for disabling the first load means is supplied. Here, the second load means increases the load when the transmission signal of one logical value is supplied, and decreases the load when the transmission signal of the other logical value is supplied.
By doing so, the first load means can also be used as a load for data transmission, and more efficient data transmission becomes possible.
【0015】[0015]
【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。図1は本発明の第1の実施の形態のデータ
キャリアを用いたデータキャリアシステムの構成を示す
図である。図において、質問機10は搬送波の基本信号
を発生する発振回路11と、発振回路11からの基本信
号をそれぞれ異なる分周比で分周して第1、第2の搬送
波を発生する分周回路12、13、と第1、第2の搬送
波から1つの搬送波を選択して出力する選択回路15
と、出力増幅器16、アンテナコイル17、および同調
コンデンサ18を備える。質問機10は更に、送信信号
を生成する内部処理回路19と、アンテナコイル17で
受信した信号を処理する復調回路20を備える。この図
では復調回路20の入力をアンテナコイル17とした
が、アンテナコイル17と同心に別途受信コイルを設け
てもよい。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a data carrier system using a data carrier according to the first embodiment of the present invention. In the figure, an interrogator 10 includes an oscillating circuit 11 for generating a basic signal of a carrier, and a frequency dividing circuit for dividing the basic signal from the oscillating circuit 11 at different frequency division ratios to generate first and second carrier waves. A selection circuit 15 for selecting and outputting one carrier from the first and second carriers 12 and 13;
And an output amplifier 16, an antenna coil 17, and a tuning capacitor 18. The interrogator 10 further includes an internal processing circuit 19 for generating a transmission signal and a demodulation circuit 20 for processing a signal received by the antenna coil 17. In this figure, the input of the demodulation circuit 20 is the antenna coil 17, but a receiving coil may be separately provided concentrically with the antenna coil 17.
【0016】応答機30は送受信コイル31と、送受信
コイル31に並列に接続された同調コンデンサ32と、
整流回路33と、FSK復調を行う復調回路34、内部
処理回路35、送信用変調回路36、送信用負荷トラン
ジスタ37、電圧調整用負荷トランジスタ38、スイッ
チ39、電圧検出回路40および電圧レギュレータ回路
41を有する。内部処理回路35は一般的な信号処理回
路と同様に、CPU35a、RAM35b、プログラム
等を記憶したROM35c、電気的に書き換え可能なE
EPROM35dおよびインタフェース35eを備えて
いる。なお、整流回路33で整流された電力は、復調回
路34、内部処理回路35、送信用変調回路36に供給
される。The transponder 30 includes a transmission / reception coil 31, a tuning capacitor 32 connected in parallel to the transmission / reception coil 31,
A rectifier circuit 33, a demodulation circuit 34 for performing FSK demodulation, an internal processing circuit 35, a transmission modulation circuit 36, a transmission load transistor 37, a voltage adjustment load transistor 38, a switch 39, a voltage detection circuit 40, and a voltage regulator circuit 41 Have. The internal processing circuit 35 includes a CPU 35a, a RAM 35b, a ROM 35c storing programs and the like, an electrically rewritable E
An EPROM 35d and an interface 35e are provided. The power rectified by the rectifier circuit 33 is supplied to a demodulation circuit 34, an internal processing circuit 35, and a transmission modulation circuit 36.
【0017】発振回路11はたとえば4MHzの基準信
号を生成する。この基準信号は第1、第2の分周回路1
2、13に供給され、第1の分周回路12で1/32に
分周された信号(125KHz)と第2の分周回路13
で1/34に分周された信号(117.6470588
KHz)が得られる。内部処理回路19が論理値“1”
のデータの送信を指示する場合には選択回路15で第1
の分周回路12の出力を選択して125KHzの信号を
出力増幅器16を介してアンテナコイル17に送る。一
方、内部処理回路19が論理値“0”のデータの送信を
指示する場合には選択回路15で第2の分周回路13の
出力を選択して117.6470588KHzの信号を
出力増幅器16を介してアンテナコイル17に送る。The oscillation circuit 11 generates a 4 MHz reference signal, for example. This reference signal is supplied to the first and second frequency dividers 1
2 and 13 and the signal (125 KHz) divided by the first frequency dividing circuit 12 to 1/32 and the second frequency dividing circuit 13
Divided by 1/34 (117.6470588)
KHz). The internal processing circuit 19 has a logical value “1”
When the transmission of the data is instructed, the selection circuit 15
And outputs a signal of 125 KHz to the antenna coil 17 via the output amplifier 16. On the other hand, when the internal processing circuit 19 instructs the transmission of data of the logical value “0”, the output of the second frequency dividing circuit 13 is selected by the selecting circuit 15 and the signal of 117.6470588 KHz is transmitted through the output amplifier 16. To the antenna coil 17.
【0018】データ送信後は応答機への電力送信の為に
選択回路15で第1の分周回路12の出力を選択して1
25KHzの信号を出力増幅器16を介してアンテナコ
イル17に送り続ける。応答機30の送受信コイル31
と同調コンデンサ32から構成される同調回路の同調周
波数は、125KHzと117.6470588KHz
の2つの周波数の中心、即ちルート(125KHz×1
17.6470588)=121.2678125KH
zに設定されている。従って、応答機30では論理値
“1”を受信する場合も論理値“0”を受信する場合も
ほぼ同じ強度の信号を受信する事が出来る。After the data transmission, the output of the first frequency dividing circuit 12 is selected by the selection circuit 15 for power transmission to the transponder, and
The signal of 25 KHz is continuously sent to the antenna coil 17 via the output amplifier 16. Transceiver coil 31 of transponder 30
The tuning frequency of the tuning circuit composed of the tuning capacitor 32 is 125 KHz and 117.6470588 KHz.
Center of the two frequencies, ie, the root (125 kHz × 1)
17.6470588) = 121.2678125KH
z. Therefore, the transponder 30 can receive a signal of almost the same strength both when receiving the logical value “1” and when receiving the logical value “0”.
【0019】応答機30での電力は送受信コイル31と
同調コンデンサ32から構成される同調回路で受信した
搬送波を整流回路33のダイオード33aおよび平滑コ
ンデンサ33bで直流に変換して使用している。内部処
理回路35で用いる電圧を更に安定させるために電圧レ
ギュレータ41が設けられている。電圧検出回路40は
整流回路33の出力電圧を検出している。The power in the transponder 30 is used by converting a carrier wave received by a tuning circuit composed of a transmitting / receiving coil 31 and a tuning capacitor 32 into a direct current by a diode 33a and a smoothing capacitor 33b of a rectifier circuit 33. A voltage regulator 41 is provided to further stabilize the voltage used in the internal processing circuit 35. The voltage detection circuit 40 detects the output voltage of the rectifier circuit 33.
【0020】応答機30から質問機10へデータ送信を
行う場合には、内部処理回路35の内部のCPUで発生
したデータがインタフェース35eを介して変調回路3
6に伝えられ、変調回路の出力に応じて送信用負荷トラ
ンジスタ37をオン・オフ動作させる。すると送受信コ
イル31に流れる電流が変化し、送受信コイル31とア
ンテナコイル17間の電磁結合の強さが変化する。質問
機10の復調回路20はアンテナコイル17の両端に発
生する電圧の変化、具体的には第1の分周回路14から
出力される125KHzの信号の振幅変化を検出して応
答機30からのデータを復調する。実際にはバンドパス
フィルタで、第1の分周回路14から出力される125
KHzの信号のサブバンドの振幅および位相の変化をと
らえて復調動作を行う。When data is transmitted from the transponder 30 to the interrogator 10, data generated by the CPU inside the internal processing circuit 35 is transmitted to the modulation circuit 3 via the interface 35e.
6 to turn on / off the transmission load transistor 37 according to the output of the modulation circuit. Then, the current flowing through the transmitting / receiving coil 31 changes, and the strength of the electromagnetic coupling between the transmitting / receiving coil 31 and the antenna coil 17 changes. The demodulation circuit 20 of the interrogator 10 detects a change in the voltage generated at both ends of the antenna coil 17, specifically, a change in the amplitude of the 125 KHz signal output from the first frequency divider 14, and Demodulate the data. Actually, it is a bandpass filter, and 125 output from the first frequency dividing circuit 14 is output.
The demodulation operation is performed by detecting changes in the amplitude and phase of the sub-band of the KHz signal.
【0021】応答機30と質問機10の距離が比較的近
い場合には、スイッチ39は電圧検出回路40と電圧調
整用負荷トランジスタ38のゲート端を結んでいる。電
圧検出回路40は整流回路33の出力電圧を検出して整
流回路33の出力電圧が一定値以上になると電圧調整用
負荷トランジスタ38を動作させ、送受および電圧調整
用負荷トランジスタ38から成る電流バイパス路を接続
し、このバイパス路に電流を流す事によって整流回路3
3に流れる電流を制限して電圧の上昇を抑える。When the distance between the transponder 30 and the interrogator 10 is relatively short, the switch 39 connects the voltage detection circuit 40 to the gate end of the voltage adjustment load transistor 38. The voltage detection circuit 40 detects the output voltage of the rectifier circuit 33, and operates the voltage adjustment load transistor 38 when the output voltage of the rectifier circuit 33 becomes equal to or more than a predetermined value. Rectifier circuit 3
3. The current flowing through 3 is limited to suppress an increase in voltage.
【0022】内部処理回路35はデータ送信時にはスイ
ッチ39を切換えて、電圧調整用負荷トランジスタ38
オフさせる。このことにより、送受信コイル31と同調
コンデンサ32から構成される同調回路の両端の電圧が
維持され、充分な送信用の電力を確保することができ
る。尚、応答機30と質問機10の距離が比較的近く同
調回路の発生する電圧が高い場合にスイッチ39を切り
替えて電圧検出回路40を切り離すと、送信データが論
理“0”の場合の同調回路の負荷が少なくなり電圧上昇
を招く恐れがあるので、図1に点線で示すように電圧検
出回路40の検出出力をインタフェース35eを介して
内部処理回路35に取り込み電圧検出回路40の出力が
一定値以上の場合にはスイッチ39の切換を行わない様
にする。The internal processing circuit 35 switches the switch 39 at the time of data transmission so that the voltage adjusting load transistor 38
Turn off. As a result, the voltage at both ends of the tuning circuit composed of the transmitting and receiving coil 31 and the tuning capacitor 32 is maintained, and sufficient power for transmission can be secured. When the voltage between the transponder 30 and the interrogator 10 is relatively short and the voltage generated by the tuning circuit is high, the switch 39 is switched to disconnect the voltage detection circuit 40. As a result, the detection output of the voltage detection circuit 40 is taken into the internal processing circuit 35 via the interface 35e, and the output of the voltage detection circuit 40 becomes a constant value, as indicated by a dotted line in FIG. In this case, the switch 39 is not switched.
【0023】若しくは、図2に示すように高電圧時の電
圧調整用負荷トランジスタ42を別途設け、同調回路の
出力電圧が高い場合にはよりインピーダンスの低い負荷
(電圧調整用負荷トランジスタ42)を同調回路の出力
端に接続し、同調回路の出力電圧が相対的に低い場合に
はインピーダンスの相対的に高い負荷(電圧調整用負荷
トランジスタ38)を同調回路の出力端に接続する様に
してもよい。Alternatively, as shown in FIG. 2, a voltage adjustment load transistor 42 at the time of high voltage is separately provided, and when the output voltage of the tuning circuit is high, a load with lower impedance (voltage adjustment load transistor 42) is tuned. When the output voltage of the tuning circuit is relatively low, a load having a relatively high impedance (the voltage adjustment load transistor 38) may be connected to the output terminal of the tuning circuit. .
【0024】以上のようにこの実施の形態によれば、デ
ータ送信時に電圧制限用の電圧調整用負荷トランジスタ
38が動作して送信動作に必要な電力が得られないとい
った問題が発生しない。次に本発明の第2の実施の形態
を説明する。この本発明の第2の実施の形態は構成は第
1の実施の形態のものと同じであるので図1をそのまま
用いて説明する。第1の実施の形態では、内部処理回路
35はデータ送信時にはスイッチ39を切換えて、電圧
調整用負荷トランジスタ38オフさせていたが、本実施
の形態では、内部処理回路35はデータ送信時にはスイ
ッチ39を切換えて送信データが論理“1”の場合には
電圧検出回路40と電圧調整用負荷トランジスタ38の
ゲート端を接続し、送信データが論理“0”の場合には
開放する。送信用負荷トランジスタ37も送信データが
論理“1”の場合にはオンし、送信データが論理“0”
の場合にはオフするように動作する。従って、送信デー
タが論理“1”の場合には送信用負荷はトランジスタ3
7とトランジスタ38の並列回路のインピーダンスにな
り、送信用負荷トランジスタ371つの場合のインピー
ダンスよりも小さな値となり、送受信コイル31の両端
の電圧変化を大きくする事ができ、より強いAM変調を
かける事が出来る。As described above, according to this embodiment, the problem that the voltage adjusting load transistor 38 for voltage limitation operates during data transmission and power required for the transmission operation cannot be obtained does not occur. Next, a second embodiment of the present invention will be described. Since the configuration of the second embodiment of the present invention is the same as that of the first embodiment, it will be described with reference to FIG. In the first embodiment, the internal processing circuit 35 switches the switch 39 at the time of data transmission to turn off the load transistor 38 for voltage adjustment. However, in the present embodiment, the internal processing circuit 35 switches the switch 39 at the time of data transmission. Is switched to connect the voltage detection circuit 40 to the gate end of the voltage adjusting load transistor 38 when the transmission data is logic "1", and open when the transmission data is logic "0". The transmission load transistor 37 is also turned on when the transmission data is logic “1”, and the transmission data is logic “0”.
It operates to turn off in the case of. Therefore, when the transmission data is logic “1”, the transmission load is the transistor 3
7 and the impedance of the parallel circuit of the transistor 38, which is smaller than the impedance of the transmission load transistor 371, the voltage change between both ends of the transmission and reception coil 31 can be increased, and stronger AM modulation can be applied. I can do it.
【0025】以上のようにこの実施の形態によれば、デ
ータ送信時に電圧制限用の電圧調整用負荷トランジスタ
38が動作して送信動作に必要な電力が得られないとい
った問題が発生しないとともに、電圧調整用負荷トラン
ジスタ38も送信用負荷として用いるのでより強いAM
変調をかける事が出来、データ送信距離を伸ばす事がで
きる。As described above, according to this embodiment, the problem that the voltage adjusting load transistor 38 for voltage limitation operates during data transmission and the power required for the transmission operation cannot be obtained does not occur. Since the adjustment load transistor 38 is also used as a transmission load, a stronger AM
Modulation can be applied, and the data transmission distance can be extended.
【0026】[0026]
【発明の効果】応答機が通信距離限界付近で動作する場
合に充分な送信電力を確保できるデータキャリアを提供
する事ができる。According to the present invention, it is possible to provide a data carrier capable of securing a sufficient transmission power when the transponder operates near the communication distance limit.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施の形態のデータキャリアを示すブ
ロック図である。FIG. 1 is a block diagram showing a data carrier according to an embodiment of the present invention.
【図2】本発明の実施の形態のデータキャリアの変形例
を示すブロック図である。FIG. 2 is a block diagram showing a modification of the data carrier according to the embodiment of the present invention.
【図3】従来のデータキャリアを示すブロック図であ
る。FIG. 3 is a block diagram showing a conventional data carrier.
10 質問機 11 発振回路 12 分周回路 13 分周回路 15 選択回路 17 アンテナコイル 18 同調コンデンサ 19 内部処理回路 20 復調回路 30 応答機 31 送受信コイル 32 同調コンデンサ 33 整流回路 35 内部処理回路 37 送信用負荷トランジスタ 38 電圧調整用負荷トランジスタ 39 スイッチ 40 電圧検出回路 41 電圧レギュレータ REFERENCE SIGNS LIST 10 Interrogator 11 Oscillator 12 Frequency divider 13 Frequency divider 15 Selection circuit 17 Antenna coil 18 Tuning capacitor 19 Internal processing circuit 20 Demodulation circuit 30 Transponder 31 Transceiver coil 32 Tuning capacitor 33 Rectifier circuit 35 Internal processing circuit 37 Transmission load Transistor 38 Load transistor for voltage adjustment 39 Switch 40 Voltage detection circuit 41 Voltage regulator
Claims (4)
ンデンサと、 前記送受信コイルで受信した信号を整流する整流回路
と、 前記整流回路の出力電力で駆動され、送信信号を前記送
受信コイルに供給する送信回路と、 整流された電圧を検出する電圧検出回路と、 前記整流回路の入力端間を結び、前記電圧検出回路の出
力に応じて流れる電流を変化させるバイパストランジス
タと、 前記送信信号の論理値に応じて前記電圧検出回路の出力
の前記バイパストランジスタへの供給を切り替える切換
手段を備えた事を特徴とするデータキャリア。1. A transmission / reception coil, a tuning capacitor connected thereto, a rectification circuit for rectifying a signal received by the transmission / reception coil, and a transmission signal driven by output power of the rectification circuit to supply a transmission signal to the transmission / reception coil. A transmission circuit, a voltage detection circuit that detects a rectified voltage, a bypass transistor that connects between input terminals of the rectification circuit, and changes a current that flows according to an output of the voltage detection circuit, and a logical value of the transmission signal. A data switching means for switching supply of the output of the voltage detection circuit to the bypass transistor in accordance with the data carrier.
ンデンサを備えた同調回路と、 前記同調回路の出力端に発生する信号を整流する整流回
路と、 前記整流回路の出力電圧を検出する電圧検出手段と、 前記整流回路の出力によって電力が供給され、送信信号
を出力する信号処理回路と、 制御信号入力端子に入力される制御信号に応じた負荷を
前記同調回路の出力端に与える第1の負荷手段と、 前記送信信号に応じた負荷を前記同調回路の出力端に与
える第2の負荷手段と、 前記送信信号の論理値に応じて選択的に前記第1の負荷
手段の前記制御信号入力端子に前記電圧検出手段の出力
を供給する切換手段と、を備えた事を特徴とするデータ
キャリア。2. A tuning circuit having a transmitting / receiving coil and a tuning capacitor connected thereto, a rectifying circuit for rectifying a signal generated at an output terminal of the tuning circuit, and a voltage detection detecting an output voltage of the rectifying circuit. Means, a signal processing circuit that is supplied with power by an output of the rectifier circuit and outputs a transmission signal, and a first circuit that applies a load corresponding to a control signal input to a control signal input terminal to an output terminal of the tuning circuit. Load means; second load means for applying a load corresponding to the transmission signal to an output terminal of the tuning circuit; and the control signal input of the first load means selectively according to a logical value of the transmission signal. A switching means for supplying an output of the voltage detecting means to a terminal.
送信信号が一方の論理値を示す場合に前記第1の負荷手
段の前記制御信号入力端子に前記電圧検出手段の出力を
供給し、他方の論理値を示す場合に前記第1の負荷手段
を非動作状態にする信号を供給する事を特徴とするデー
タキャリア。3. The switching means according to claim 2, wherein said switching means supplies an output of said voltage detecting means to said control signal input terminal of said first load means when said transmission signal indicates one logical value, and A data carrier for supplying a signal for disabling the first load means when the logical value indicates
は前記一方の論理値の送信信号が供給された場合に負荷
を増大させ、前記他方の論理値の送信信号が供給された
場合に負荷を減少させる事を特徴とするデータキャリ
ア。4. The apparatus according to claim 3, wherein the second load means increases a load when the transmission signal of the one logical value is supplied, and increases the load when the transmission signal of the other logical value is supplied. A data carrier characterized by reducing the load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24248397A JP3940939B2 (en) | 1997-09-08 | 1997-09-08 | Data carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24248397A JP3940939B2 (en) | 1997-09-08 | 1997-09-08 | Data carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1188243A true JPH1188243A (en) | 1999-03-30 |
JP3940939B2 JP3940939B2 (en) | 2007-07-04 |
Family
ID=17089765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24248397A Expired - Lifetime JP3940939B2 (en) | 1997-09-08 | 1997-09-08 | Data carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3940939B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001101364A (en) * | 1999-10-01 | 2001-04-13 | Fujitsu Ltd | Lsi for non-contact ic card |
JP2002109495A (en) * | 2000-10-04 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Contactless ic card and reader/writer |
WO2010032603A1 (en) * | 2008-09-19 | 2010-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and wireless tag using the same |
WO2010032573A1 (en) * | 2008-09-17 | 2010-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2011109902A (en) * | 2009-11-13 | 2011-06-02 | Panasonic Corp | Electric power supply system for vehicle |
JP2011130424A (en) * | 2009-11-20 | 2011-06-30 | Semiconductor Energy Lab Co Ltd | Modulation circuit and semiconductor device including the same |
JP2011172299A (en) * | 2010-02-16 | 2011-09-01 | Nec Tokin Corp | Non-contact power transmission and communication system |
JP2011223716A (en) * | 2010-04-08 | 2011-11-04 | Nec Tokin Corp | Non-contact power transmission and communication system, power transmitting apparatus and power receiving apparatus |
JP2012514896A (en) * | 2009-01-06 | 2012-06-28 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Communication over inductive links with dynamic loads. |
US8331873B2 (en) | 2007-03-22 | 2012-12-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9024482B2 (en) | 2011-01-20 | 2015-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Power feeding device and wireless power feeding system |
US9065302B2 (en) | 2010-12-24 | 2015-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Wireless power feeding system |
US9325205B2 (en) | 2011-03-04 | 2016-04-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for driving power supply system |
-
1997
- 1997-09-08 JP JP24248397A patent/JP3940939B2/en not_active Expired - Lifetime
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001101364A (en) * | 1999-10-01 | 2001-04-13 | Fujitsu Ltd | Lsi for non-contact ic card |
JP2002109495A (en) * | 2000-10-04 | 2002-04-12 | Matsushita Electric Ind Co Ltd | Contactless ic card and reader/writer |
US8331873B2 (en) | 2007-03-22 | 2012-12-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
EP2329429A4 (en) * | 2008-09-17 | 2015-07-29 | Semiconductor Energy Lab | Semiconductor device |
US8284579B2 (en) | 2008-09-17 | 2012-10-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
WO2010032573A1 (en) * | 2008-09-17 | 2010-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
WO2010032603A1 (en) * | 2008-09-19 | 2010-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and wireless tag using the same |
US9607975B2 (en) | 2008-09-19 | 2017-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and wireless tag using the same |
US8439270B2 (en) | 2008-09-19 | 2013-05-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and wireless tag using the same |
JP2012514896A (en) * | 2009-01-06 | 2012-06-28 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Communication over inductive links with dynamic loads. |
JP2011109902A (en) * | 2009-11-13 | 2011-06-02 | Panasonic Corp | Electric power supply system for vehicle |
JP2011130424A (en) * | 2009-11-20 | 2011-06-30 | Semiconductor Energy Lab Co Ltd | Modulation circuit and semiconductor device including the same |
US9768319B2 (en) | 2009-11-20 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Modulation circuit and semiconductor device including the same |
US9350295B2 (en) | 2009-11-20 | 2016-05-24 | Semiconductor Energy Laboratoty Co., Ltd. | Modulation circuit and semiconductor device including the same |
JP2014187873A (en) * | 2010-02-16 | 2014-10-02 | Nec Tokin Corp | Non-contact power transmission and communication system |
JP2011172299A (en) * | 2010-02-16 | 2011-09-01 | Nec Tokin Corp | Non-contact power transmission and communication system |
JP2011223716A (en) * | 2010-04-08 | 2011-11-04 | Nec Tokin Corp | Non-contact power transmission and communication system, power transmitting apparatus and power receiving apparatus |
US9065302B2 (en) | 2010-12-24 | 2015-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Wireless power feeding system |
US9024482B2 (en) | 2011-01-20 | 2015-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Power feeding device and wireless power feeding system |
US9837977B2 (en) | 2011-01-20 | 2017-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Power feeding device and wireless power feeding system |
US10491183B2 (en) | 2011-01-20 | 2019-11-26 | Semiconductor Energy Laboratory Co., Ltd. | Power feeding device and wireless power feeding system |
US9325205B2 (en) | 2011-03-04 | 2016-04-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for driving power supply system |
Also Published As
Publication number | Publication date |
---|---|
JP3940939B2 (en) | 2007-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1188241A (en) | Data carrier system | |
US11081905B2 (en) | Information processing apparatus, information processing method, and information processing system | |
EP1927072B1 (en) | Radio frequency identification device systems | |
US6664770B1 (en) | Wireless power transmission system with increased output voltage | |
US6021951A (en) | Wireless IC card and IC card reader communication system | |
US9054548B2 (en) | Contactless power feeding system | |
JP3646472B2 (en) | Non-contact type IC card and transmission / reception circuit | |
CN106340976B (en) | Wireless power transmission device and Wireless power transmission system | |
JP5491331B2 (en) | Communication mode setting device | |
JP3940939B2 (en) | Data carrier | |
JP2001238372A (en) | Power transmission system, electromagnetic field generator, and electromagnetic field receiver | |
JP2004222285A (en) | Circuit for delivering electric power from high frequency electromagnetic field sent from base station | |
NO881341L (en) | ELECTRONIC DATA COMMUNICATION SYSTEM. | |
US6731199B1 (en) | Non-contact communication system | |
US6118367A (en) | Data carrier system | |
WO2008153242A1 (en) | Power saving active tag and reader including the capability of ordinary wake up and of transmission to distance | |
JP2009271920A (en) | Recharge of active transponder | |
JP2020161935A (en) | Wireless communication device | |
EP1141879B1 (en) | Data carrier with load modulation means and with improved power supply in the process of load modulation | |
JP4198819B2 (en) | Antenna resonance circuit device for contactless transmission system | |
JP3862112B2 (en) | Data carrier | |
US6807400B2 (en) | Batteryless transponder | |
US20220407566A1 (en) | Impedance matching in near-field rf communication devices | |
JPH11298368A (en) | Data carrier system and interrogator for data carrier system | |
JPH1145319A (en) | Data carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070321 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |