JPH1186881A - Alkaline dry battery - Google Patents

Alkaline dry battery

Info

Publication number
JPH1186881A
JPH1186881A JP23681397A JP23681397A JPH1186881A JP H1186881 A JPH1186881 A JP H1186881A JP 23681397 A JP23681397 A JP 23681397A JP 23681397 A JP23681397 A JP 23681397A JP H1186881 A JPH1186881 A JP H1186881A
Authority
JP
Japan
Prior art keywords
dry battery
alkaline dry
positive electrode
bottomed cylindrical
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23681397A
Other languages
Japanese (ja)
Inventor
Natsuki Toyoda
夏樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP23681397A priority Critical patent/JPH1186881A/en
Publication of JPH1186881A publication Critical patent/JPH1186881A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To prevent a possibility of causing liquid leakage due to heat generation by a large electric current flow, when an alkaline dry battery is externally short-circuited erroneously, as well as to prevent the deterioration of an ordinary general discharge characteristic. SOLUTION: Thermoplastic resin powder, for example, low density polyethylene having a melting point of not more than 130 deg.C is arranged in a layer shape at least in one place among an interface between a hollow cylindrical positive electrode mix 2 and a bottomed cylindrical separator 3 of an alkaline dry battery, an interface between the bottomed cylindrical separator 3 and a gel-like zinc negative electrode 4 and the inside of the bottomed cylindrical separator. If the battery is heated abnormally, a thermoplastic resin softens and melts, and controls heat generation by cutting off electric current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は安全性を向上させた
アルカリ乾電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery with improved safety.

【0002】[0002]

【従来の技術】アルカリ乾電池はマンガン乾電池と比較
して大電流特性に優れており、従来より比較的大電流用
途に使用されることが多いが、近年の急激な電子機器の
小型化及び携帯機器化により、従来以上の大電流用途が
拡大した。そのニーズに対応するため電池性能も大電流
特性をアップすることが望まれている。
2. Description of the Related Art Alkaline batteries are superior in high current characteristics to manganese batteries and are often used for relatively high current applications. As a result, applications for higher currents than before have been expanded. In order to meet such needs, it is desired that the battery performance also has a large current characteristic.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、単に大
電流特性を向上させると、誤って外部短絡した際に大電
流が流れ、短時間の内に発熱して封口体の軟化や電解液
の沸騰による液漏れの恐れがあり、非常に危険である。
リチウム電池等では多孔性ポリエチレンフィルムをセパ
レータに用い、外部短絡の異常発熱時にポリエチレンフ
ィルムが溶融することにより孔が閉塞して電流を遮断
し、発熱温度を制御するというものがある。しかしなが
ら、アルカリ乾電池の場合には、多孔性ポリエチレンフ
ィルムを使用すると、内部抵抗の増加によって一般放電
特性が大幅に低下するという問題がある。
However, if the high current characteristic is simply improved, a large current will flow when an external short circuit occurs accidentally, and heat will be generated within a short time, resulting in softening of the sealing body or boiling of the electrolyte. There is a risk of liquid leakage, which is very dangerous.
In a lithium battery or the like, there is a type in which a porous polyethylene film is used as a separator, and holes are closed due to melting of the polyethylene film at the time of abnormal heat generation due to an external short circuit, thereby interrupting current and controlling the heat generation temperature. However, in the case of an alkaline dry battery, when a porous polyethylene film is used, there is a problem in that general discharge characteristics are significantly reduced due to an increase in internal resistance.

【0004】本発明は上記状況に鑑みてなされたもの
で、その一般用途での放電性能を低下させることなく、
外部短絡の異常発熱時には過剰に流れる電流を遮断して
発熱を制御し、漏液のない安全なアルカリ乾電池を提供
することを目的とするものである。
[0004] The present invention has been made in view of the above circumstances, without reducing the discharge performance for general use,
It is an object of the present invention to provide a safe alkaline dry battery with no liquid leakage by interrupting an excessively flowing current when abnormal heat is generated due to an external short circuit and controlling heat generation.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、正極
端子を兼ねる有底円筒の正極缶と、その正極缶内に配置
された中空円筒状の正極合剤と、有底円筒状のセパレー
タを介して前記正極合剤の中空部に充填されたゲル状亜
鉛負極とを備えるアルカリ乾電池において、融点が13
0℃以下である熱可塑性樹脂粉末を、前記中空円筒状の
正極合剤と前記有底円筒状のセパレータとの界面、前記
有底円筒状のセパレータと前記ゲル状亜鉛負極との界面
及び前記有底円筒状のセパレータ内部の内の少なくとも
一ヶ所に層状に配設したことを特徴とする。
That is, the present invention relates to a bottomed cylindrical positive electrode can serving also as a positive electrode terminal, a hollow cylindrical positive electrode mixture disposed in the positive electrode can, and a bottomed cylindrical separator. And a gelled zinc negative electrode filled into the hollow portion of the positive electrode mixture through
The thermoplastic resin powder having a temperature of 0 ° C. or less is mixed with the interface between the hollow cylindrical positive electrode mixture and the bottomed cylindrical separator, the interface between the bottomed cylindrical separator and the gelled zinc negative electrode, and It is characterized in that it is disposed in a layered manner at least at one position in the inside of the bottom cylindrical separator.

【0006】アルカリ乾電池の絶縁ガスケットは、一般
にナイロン66またはポリプロピレンが使用されてい
る。それらの4.6kg/cm2 での熱変形温度は、ナ
イロン66では240℃、ポリプロピレンでは90〜1
15℃である。また18.6kg/cm2 での熱変形温
度は、ナイロン66の場合でも70℃まで低下する。一
方、40%KOH水溶液の沸点は135℃であるので、
電池の温度が135℃以上に上昇した場合には電解液が
沸騰し、絶縁ガスケットは電解液の沸騰による内部ガス
圧の上昇と温度の影響を受けて変形し、液漏れを起こす
ことがある。
Generally, nylon 66 or polypropylene is used for an insulating gasket of an alkaline dry battery. The heat distortion temperature at 4.6 kg / cm 2 is 240 ° C. for nylon 66 and 90 to 1 for polypropylene.
15 ° C. The heat distortion temperature at 18.6 kg / cm 2 is reduced to 70 ° C. even for nylon 66. On the other hand, since the boiling point of the 40% KOH aqueous solution is 135 ° C.,
When the temperature of the battery rises to 135 ° C. or higher, the electrolytic solution boils, and the insulating gasket is deformed under the influence of the rise of the internal gas pressure due to the boiling of the electrolytic solution and the temperature, which may cause liquid leakage.

【0007】本発明では、熱可塑性樹脂を所定の位置に
配設しており、熱可塑性樹脂は優れた絶縁性と一定温度
で溶融し軟化する特徴を有している。したがってこの特
性を利用して異常発熱時の温度制御を行ない、その融点
に応じて最高発熱温度を制御することができる。すなわ
ち、融点が130℃以下の熱可塑性樹脂粉末を上記所定
の位置に配設しているので、電池が異常発熱して熱可塑
性樹脂の融点以上の温度になった時に、熱可塑性樹脂が
軟化溶融し、近傍の活物質粉末と密着したり、セパレー
タの孔を塞ぎ、その結果電流を遮断するので、発熱を制
御することができる。
In the present invention, a thermoplastic resin is disposed at a predetermined position, and the thermoplastic resin has excellent insulating properties and a characteristic of melting and softening at a certain temperature. Therefore, by utilizing this characteristic, temperature control at the time of abnormal heat generation can be performed, and the maximum heat generation temperature can be controlled according to the melting point. That is, since the thermoplastic resin powder having a melting point of 130 ° C. or less is disposed at the predetermined position, when the battery abnormally generates heat and reaches a temperature equal to or higher than the melting point of the thermoplastic resin, the thermoplastic resin softens and melts. Then, the active material powder comes into close contact with the nearby active material powder or closes the holes of the separator, and as a result, current is cut off, so that heat generation can be controlled.

【0008】熱可塑性樹脂の中でも低密度ポリエチレン
(以下、LDPEと記す)は融点が105〜120℃程
度であり、電解液の沸点が135℃であるので、本発明
において好ましい素材である。LDPE粉末の平均粒径
は20〜200μmが好ましい。20μm未満ではLD
PE層が緻密になり電池の内部抵抗を増大させ、200
μmを越えるとLDPE粉末層の厚みが増しゲル状亜鉛
負極時の充填量が減少するため、一般放電特性に悪影響
を及ぼすものと考えられる。またその時の付着量は10
〜100g/m2 程度が好ましい。10g/m2 未満で
は少量すぎて電流を遮断する効果が期待できないし、ま
た100g/m2 以上ではLDPE粉末層の厚みが増し
ゲル状亜鉛負極の充填量の減少と、内部抵抗を増大させ
るため、一般放電特性に悪影響を及ぼす。
[0008] Among thermoplastic resins, low-density polyethylene (hereinafter referred to as LDPE) has a melting point of about 105 to 120 ° C and a boiling point of an electrolyte of 135 ° C, and is therefore a preferred material in the present invention. The average particle size of the LDPE powder is preferably from 20 to 200 μm. LD is less than 20μm
The dense PE layer increases the internal resistance of the battery,
If the thickness exceeds μm, it is considered that the thickness of the LDPE powder layer increases and the filling amount of the gelled zinc negative electrode decreases, which adversely affects general discharge characteristics. The amount of adhesion at that time is 10
About 100 g / m 2 is preferable. If it is less than 10 g / m 2 , the effect of interrupting the current cannot be expected because it is too small, and if it is 100 g / m 2 or more, the thickness of the LDPE powder layer increases, the filling amount of the gelled zinc negative electrode decreases, and the internal resistance increases. Adversely affect general discharge characteristics.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例について、
図面を参照しながら説明する。図1は、本発明のアルカ
リ乾電池の一実施例であるJIS規格LR6形(単3
形)アルカリ乾電池の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an alkaline dry battery according to the present invention, JIS standard LR6 type (AA).
FIG. 2 is a cross-sectional view of a (type) alkaline dry battery.

【0010】図1において、1は正極端子を兼ねる有底
円筒形での金属缶であり、この金属缶内には円筒状に加
圧成形した3個の正極合剤2が分割充填されている。正
極合剤2は二酸化マンガン粉末とカーボン粉末を混合
し、これを成形型を用いて所定の圧力で中空円筒状に加
圧成形したものである。また、正極合剤2の中空部には
アセタール化ポリビニルアルコール繊維の不織布からな
る有底円筒状のセパレータ3が配置されている。有底円
筒状のセパレータ3の外側には熱可塑性樹脂粉末層4が
配設されている。
In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can also serving as a positive electrode terminal, and three positive electrode mixtures 2 formed into a cylindrical shape by pressure are separately filled in the metal can. . The positive electrode mixture 2 is obtained by mixing a manganese dioxide powder and a carbon powder and pressing the mixture into a hollow cylinder at a predetermined pressure using a molding die. In the hollow portion of the positive electrode mixture 2, a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber is disposed. Outside the bottomed cylindrical separator 3, a thermoplastic resin powder layer 4 is provided.

【0011】このセパレータを介して、無汞化亜鉛合金
粉末、アルカリ電解液及びゲル化剤としてのポリアクリ
ル酸からなるゲル状亜鉛負極5が充填されている。ゲル
状亜鉛負極5内には真鍮製の負極集電棒6が、その先端
部をゲル状負極5に差し込むようにして装着されてい
る。負極集電棒6の上部外周及び金属缶1の上部内周面
には二重環状のポリアミド樹脂からなる絶縁ガスケット
7が配設されている。また、絶縁ガスケット7の二重環
状部の間にはリング状の金属板8が配設され、かつ金属
板8には負極端子を兼ねる帽子形の金属封口板9が集電
棒6の頭部に当接するように配設されている。そして、
金属缶1の開口縁を内方に屈曲させることによりガスケ
ット7及び金属封口板9で金属缶1内を密封口してい
る。
A gel zinc negative electrode 5 made of non-melonized zinc alloy powder, an alkaline electrolyte and polyacrylic acid as a gelling agent is filled through the separator. In the gelled zinc negative electrode 5, a negative electrode current collector rod 6 made of brass is mounted so that its tip is inserted into the gelled negative electrode 5. An insulating gasket 7 made of a double annular polyamide resin is provided on the outer periphery of the upper part of the negative electrode current collecting rod 6 and the inner peripheral surface of the upper part of the metal can 1. A ring-shaped metal plate 8 is disposed between the double annular portions of the insulating gasket 7, and a cap-shaped metal sealing plate 9 serving also as a negative electrode terminal is provided on the head of the current collecting rod 6 on the metal plate 8. It is arranged to abut. And
The inside edge of the metal can 1 is sealed by the gasket 7 and the metal sealing plate 9 by bending the opening edge of the metal can 1 inward.

【0012】(実施例1〜9)図1に示すアルカリ乾電
池のセパレータ3を僅かに水で湿らせ、その外側に平均
粒径20μm、100μm及び200μmのLDPE粉
末を、それぞれ10g/m2 、50g/m2 並びに10
0g/m2 になるように付着させ、LDPE粉末層4を
形成し乾燥した。このセパレータを、前記の中空円筒状
の正極合剤2中に配置し、その中にゲル状亜鉛負極を充
填し、JIS規格LR6形(単3形)アルカリ乾電池を
作製した。なお、使用したLDPE粉末の主な物性は、
融点:105℃、密度:0.918g/cm3 、メルト
フローレート:20g/10 min。
(Examples 1 to 9) The separator 3 of the alkaline dry battery shown in FIG. 1 was slightly moistened with water, and LDPE powders having an average particle diameter of 20 μm, 100 μm and 200 μm were coated on the outside thereof at 10 g / m 2 and 50 g, respectively. / M 2 and 10
The LDPE powder layer 4 was adhered so as to be 0 g / m 2 , and dried. This separator was placed in the hollow cylindrical positive electrode mixture 2 and filled with a gelled zinc negative electrode to produce a LR6 (AA) alkaline dry battery according to JIS. The main physical properties of the LDPE powder used are as follows:
Melting point: 105 ° C., density: 0.918 g / cm 3 , melt flow rate: 20 g / 10 min.

【0013】(比較例1)LDPE粉末を付着させない
セパレータを用いた以外は実施例1〜9と同様にして、
JIS規格LR6形(単3形)アルカリ乾電池を作製し
た。
Comparative Example 1 The procedure of Examples 1 to 9 was repeated except that a separator to which no LDPE powder was attached was used.
A JIS standard LR6 (AA) alkaline dry battery was produced.

【0014】(比較例2〜4)セパレータに平均粒径1
0μmのLDPE粉末を、10g/m2 、50g/m2
及び100g/m2 になるように付着させた以外は実施
例1〜9と同様にして、JIS規格LR6形(単3形)
アルカリ乾電池を作製した。
(Comparative Examples 2 to 4) A separator having an average particle size of 1
0 μm LDPE powder was added to 10 g / m 2 , 50 g / m 2
JIS standard LR6 type (AA type) in the same manner as in Examples 1 to 9 except that it was adhered so as to be 100 g / m 2.
An alkaline battery was prepared.

【0015】(比較例5〜10)セパレータに平均粒径
20μm、100μm及び200μmのLDPE粉末
を、5g/m2 並びに150g/m2 になるように付着
させた以外は実施例1〜9と同様にして、JIS規格L
R6形(単3形)アルカリ乾電池を作製した。
(Comparative Examples 5 to 10) Same as Examples 1 to 9 except that LDPE powder having an average particle size of 20 μm, 100 μm and 200 μm was attached to a separator so as to be 5 g / m 2 and 150 g / m 2. And JIS standard L
An R6 type (AA) alkaline battery was prepared.

【0016】(比較例11〜13)セパレータに平均粒
径300μmのLDPE粉末を、10g/m2 、50g
/m2 及び100g/m2 になるように付着させた以外
は実施例1〜9と同様にして、JIS規格LR6形(単
3形)アルカリ乾電池を作製した。
(Comparative Examples 11 to 13) LDPE powder having an average particle diameter of 300 μm was placed on a separator at 10 g / m 2 and 50 g.
A JIS standard LR6 (AA) alkaline dry battery was produced in the same manner as in Examples 1 to 9, except that the battery was adhered so as to be 100 g / m 2 and 100 g / m 2 .

【0017】(比較例14)多孔性ポリエチレンフィル
ムをセパレータに用いた以外は実施例1〜9と同様に、
JIS規格LR6形(単3形)アルカリ乾電池を作製し
た。
(Comparative Example 14) In the same manner as in Examples 1 to 9 except that a porous polyethylene film was used for the separator,
A JIS standard LR6 (AA) alkaline dry battery was produced.

【0018】以上のようにして作製した各LR6形アル
カリ乾電池について、漏液試験及び放電試験を実施し、
その結果を表1に示した、漏液試験は、100個の電池
について24時間外部短絡させた後、1週間放置して発
生した漏液個数を目視で計測した。放電試験は、10個
の電池について2Ω連続放電試験を実施し、比較例1の
終始電圧0.9Vまでの持続時間の平均値を100%と
した時の比率として示した。
A liquid leakage test and a discharge test were performed on each of the LR6 alkaline dry batteries prepared as described above.
The results are shown in Table 1. In the liquid leakage test, 100 batteries were externally short-circuited for 24 hours and then left for one week to visually measure the number of liquid leakages generated. In the discharge test, a 10Ω battery was subjected to a 2Ω continuous discharge test, and the ratio was expressed as a ratio when the average value of the duration up to the voltage of 0.9 V in Comparative Example 1 was 100%.

【0019】[0019]

【表1】 [Table 1]

【0020】この表1から、実施例1〜9の電池は漏液
試験での漏液発生はなく、2Ω連続放電特性もLDPE
粉末を付着しない比較例1と比べても遜色ないという良
好な結果が得られた。
From Table 1, it can be seen that the batteries of Examples 1 to 9 did not cause leakage in the liquid leakage test and had a 2Ω continuous discharge characteristic of LDPE.
A good result was obtained, which was comparable to that of Comparative Example 1 to which no powder was attached.

【0021】LDPE粉末の付着量が5g/m2 である
比較例5,7,9の電池は、外部短絡試験後1週間の漏
液発生個数が5個であり効果が現れていない。また、L
DPE粉末の付着量が150g/m2 である比較例6,
8,10の電池は、2Ω連続放電特性がLDPE粉末を
付着しない比較例1と比べて12〜20%低下してお
り、2Ω連続放電特性に悪影響を及ぼすことがうかがえ
る。
In the batteries of Comparative Examples 5, 7, and 9 in which the amount of the LDPE powder attached was 5 g / m 2 , the number of leaks occurring one week after the external short-circuit test was five, and no effect was exhibited. Also, L
Comparative Example 6 in which the amount of DPE powder attached was 150 g / m 2 .
In the batteries of Nos. 8 and 10, the 2Ω continuous discharge characteristics were reduced by 12 to 20% as compared with Comparative Example 1 in which the LDPE powder was not attached, indicating that the 2Ω continuous discharge characteristics were adversely affected.

【0022】LDPE粉末の平均粒径が実施例1〜9に
比べて小さい比較例2〜4の電池及びLDPE粉末の平
均粒径が実施例1〜9に比べて大きい比較例11〜13
の電池は、それぞれ2Ω連続放電特性の低下が10〜3
7%と大きく、これも悪影響を及ぼしている。さらに、
セパレータとして多孔性ポリエチレンフィルムを使用し
た比較例14の電池では2Ω連続放電特性が50%低下
している。
The batteries of Comparative Examples 2 to 4 in which the average particle diameter of the LDPE powder is smaller than those in Examples 1 to 9 and Comparative Examples 11 to 13 in which the average particle diameter of the LDPE powder is larger than those in Examples 1 to 9
In each of the batteries, the decrease in the continuous discharge characteristic of 2Ω was 10 to 3 times.
It is as large as 7%, which also has an adverse effect. further,
In the battery of Comparative Example 14 using the porous polyethylene film as the separator, the 2Ω continuous discharge characteristic was reduced by 50%.

【0023】なお、上記の実施例では、正極合剤とセパ
レータとの界面に熱可塑性樹脂粉末層を配設したが、セ
パレータとゲル状亜鉛負極との界面及びセパレータ内部
に熱可塑性樹脂粉末を配設した、上記実施例と同様な仕
様条件のJIS規格LR6形(単3形)アルカリ乾電池
を作製し、同様な試験を行い、上記実施例と同様な結果
が得られている。
In the above embodiment, the thermoplastic resin powder layer is provided at the interface between the positive electrode mixture and the separator. However, the thermoplastic resin powder is provided at the interface between the separator and the gelled zinc negative electrode and inside the separator. A JIS standard LR6 (AA) alkaline dry battery having the same specifications as the above embodiment was prepared and subjected to the same test, and the same result as the above embodiment was obtained.

【0024】[0024]

【発明の効果】以上説明したように、本発明のアルカリ
乾電池では、一般放電性能を犠牲にすることなく外部短
絡時の異常発熱を制御することができ、漏液を防止して
安全性及び性能を向上させることができる。
As described above, in the alkaline dry battery of the present invention, abnormal heat generation at the time of external short circuit can be controlled without sacrificing the general discharge performance. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すアルカリ乾電池の断面
図。
FIG. 1 is a cross-sectional view of an alkaline dry battery showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…金属缶、2…正極合剤、3…セパレータ、4…熱可
塑性樹脂粉末層、5…ゲル状亜鉛負極、6…負極集電
棒、7…絶縁ガスケット、8…リング状の金属板、9…
金属封口板。
DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Thermoplastic resin powder layer, 5 ... Gel zinc negative electrode, 6 ... Negative current collector rod, 7 ... Insulating gasket, 8 ... Ring-shaped metal plate, 9 …
Metal sealing plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極端子を兼ねる有底円筒の正極缶と、
その正極缶内に配置された中空円筒状の正極合剤と、有
底円筒状のセパレータを介して前記正極合剤の中空部に
充填されたゲル状亜鉛負極とを備えるアルカリ乾電池に
おいて、融点が130℃以下である熱可塑性樹脂粉末
を、前記中空円筒状の正極合剤と前記有底円筒状のセパ
レータとの界面、前記有底円筒状のセパレータと前記ゲ
ル状亜鉛負極との界面及び前記有底円筒状のセパレータ
内部の内の少なくとも一ヶ所に層状に配設したことを特
徴とするアルカリ乾電池。
1. A bottomed cylindrical positive electrode can also serving as a positive electrode terminal,
In an alkaline dry battery including a hollow cylindrical positive electrode mixture disposed in the positive electrode can and a gelled zinc negative electrode filled in a hollow portion of the positive electrode mixture via a bottomed cylindrical separator, the melting point is The thermoplastic resin powder having a temperature of 130 ° C. or less is mixed with the interface between the hollow cylindrical positive electrode mixture and the bottomed cylindrical separator, the interface between the bottomed cylindrical separator and the gelled zinc negative electrode, and An alkaline dry battery, wherein the alkaline dry battery is provided in a layered manner at least at one location inside a bottom cylindrical separator.
【請求項2】 前記熱可塑性樹脂粉末が平均粒径20〜
200μmの低密度ポリエチレン粉末であり、その付着
量が10〜100g/m2 である請求項1記載のアルカ
リ乾電池。
2. The thermoplastic resin powder has an average particle diameter of 20 to 20.
2. The alkaline dry battery according to claim 1, wherein the alkaline dry battery is a low-density polyethylene powder having a thickness of 200 [mu] m, and has an adhesion amount of 10 to 100 g / m < 2 >.
【請求項3】 前記熱可塑性樹脂が低密度ポリエチレン
である請求項1記載のアルカリ乾電池。
3. The alkaline dry battery according to claim 1, wherein said thermoplastic resin is a low density polyethylene.
JP23681397A 1997-09-02 1997-09-02 Alkaline dry battery Pending JPH1186881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23681397A JPH1186881A (en) 1997-09-02 1997-09-02 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23681397A JPH1186881A (en) 1997-09-02 1997-09-02 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JPH1186881A true JPH1186881A (en) 1999-03-30

Family

ID=17006171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23681397A Pending JPH1186881A (en) 1997-09-02 1997-09-02 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JPH1186881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824790B2 (en) 2004-04-28 2010-11-02 Eveready Battery Co., Inc. Housing for a sealed electrochemical battery cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824790B2 (en) 2004-04-28 2010-11-02 Eveready Battery Co., Inc. Housing for a sealed electrochemical battery cell

Similar Documents

Publication Publication Date Title
US4741979A (en) Battery separator assembly
US6443999B1 (en) Lithium cell with heat formed separator
US6623883B1 (en) Electrode having PTC function and battery comprising the electrode
US6579641B2 (en) Battery and process for preparing the same
JP2004006092A (en) Sealed type nickel zinc primary cell
US20010005562A1 (en) Battery and process for preparing the same
US6440605B1 (en) Electrode, method or producing electrode, and cell comprising the electrode
JP3786973B2 (en) Electrode, method for producing the electrode, and battery using the electrode
EP1104037A1 (en) Cell and method of producing the same
WO1999067839A1 (en) Cell and method of producing the same
JP4011636B2 (en) Battery and manufacturing method thereof
JPH1186881A (en) Alkaline dry battery
JP3552194B2 (en) Alkaline battery
US6696203B2 (en) Battery and electrode including an active material, an electrically conductive material and a conducting agent
JP4562984B2 (en) Sealed alkaline primary battery
JP2952033B2 (en) Alkaline batteries
JP3649792B2 (en) Sealed battery
JP2000173602A (en) Cylindrical alkaline battery
US20030090021A1 (en) Electrode, method of fabricating thereof, and battery using thereof
JP3331287B2 (en) Alkaline battery
JP2002042886A (en) Battery
JP2004139909A (en) Sealed nickel-zinc primary battery
KR100337116B1 (en) Battery and method of fabricating thereof
JPH11339750A (en) Battery
JPH02304863A (en) Nonaqueous electrolyte battery