JPH1186630A - Get electrolyte - Google Patents

Get electrolyte

Info

Publication number
JPH1186630A
JPH1186630A JP9250161A JP25016197A JPH1186630A JP H1186630 A JPH1186630 A JP H1186630A JP 9250161 A JP9250161 A JP 9250161A JP 25016197 A JP25016197 A JP 25016197A JP H1186630 A JPH1186630 A JP H1186630A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
swollen
electrolyte
gel electrolyte
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9250161A
Other languages
Japanese (ja)
Other versions
JP3841127B2 (en
Inventor
Yuichi Aihara
雄一 相原
Morikatsu Arai
盛勝 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP25016197A priority Critical patent/JP3841127B2/en
Publication of JPH1186630A publication Critical patent/JPH1186630A/en
Application granted granted Critical
Publication of JP3841127B2 publication Critical patent/JP3841127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a good ionic conductivity and a satisfactory thermal stability, even at a high temperature by holding a polyvinylidene fluoride swollen with a nonaqueous electrolyte or a copolymer thereof by a cross-linked polymer formed by polymerizing a radiation polymerizable monomer having a bofunctoinal or more acryloyl group, and forming it into a solid. SOLUTION: A polyvinylidene fluoride which is superior in ionic conductivity is dispersed in a nonaqueous electrolyte in particle size. Although the polyvinylidene fluoride is insoluble in a general solvent used for lithium battery at ordinary temperature, or only a low molecule contained therein in an extremely trace amount is dissolved, the polyvinylidene fluoride is swollen when dispersed in such a solvent or electrolyte. The swollen polyvinylidene fluoride is held by a chemically cross-linked polymer and formed into a solid. Thus, the fusion by heating can be avoided, and a quick ion transport can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電技術に用いら
れる電解質の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrolyte used in a power storage technology.

【0002】[0002]

【従来の技術】近年、エレクトロニクス分野の発展に伴
い電子機器の小型化がめざましい。特に携帯電話やPH
Sなどの携帯機器類や小型パーソナルコンピュータの需
要拡大は著しく、これらの機器類の軽薄短小化に伴い電
源となる電池においても高機能化に加えて小型化・薄形
化が求められている。このような背景において小型で高
容量が期待できるリチウム電池が注目されている。最近
では携帯電話などの電源にリチウムイオン二次電池が使
用されており、情報時代の注目技術としてリチウム電池
の研究が盛んに行われている。
2. Description of the Related Art In recent years, with the development of the electronics field, miniaturization of electronic equipment has been remarkable. Especially mobile phones and PH
The demand for portable devices such as S and small personal computers has been remarkably increasing, and as these devices have become lighter and thinner, there has been a demand for a battery as a power supply to have not only high functionality but also small size and thin shape. Under such a background, a lithium battery that is small and can be expected to have a high capacity has attracted attention. Recently, lithium-ion secondary batteries have been used as power sources for mobile phones and the like, and research on lithium batteries has been actively conducted as a technology of interest in the information age.

【0003】リチウム電池に関しては安全性が重要とさ
れており、安全弁やPTC素子をはじめ、セパレータに
関しても高温で電流を遮断するような設計がとられてい
る。また、他方では溶媒の不燃化などが最近の研究対象
となっている。中でも高分子固体電解質を用いたリチウ
ム電池は、引火性の低いポリマーを電解質に用いること
から次世代のリチウム電池として注目されている。しか
しながら小型電子機器に関しては常温作動が必須とされ
ることから、常温で比較的高いイオン伝導性を有すると
共に形状が固体であるゲル電解質が有望とされている。
現状においてはポリエチレンオキサイドを用いたゲル電
解質では、常温において 1.5×10-3Scm-1のイオン伝導
性を示すことがAiharaらにより J. Power Sources 65
(1997) 143-147 に報告されている。これまでの研究で
平衡膨潤度以下のポリエチレンオキサイドのゲル電解質
は液体の電解質とは全く挙動が異なり、伝導度はアレニ
ウスの式に従わずVTFなどの関係式で説明される。詳
細に関しては検討中であるが、ゲル電解質の構造的な相
互作用に加えてポリマーとイオンとのアフィニティーを
考慮する必要があると思われる。
[0003] Safety is considered important for lithium batteries, and separators, such as safety valves and PTC elements, are also designed to cut off current at high temperatures. On the other hand, non-combustibility of solvents has been the subject of recent research. Among them, a lithium battery using a solid polymer electrolyte has attracted attention as a next-generation lithium battery because a polymer having low flammability is used for the electrolyte. However, since operation at room temperature is essential for small electronic devices, a gel electrolyte which has relatively high ionic conductivity at room temperature and is solid in shape is promising.
At present, gel electrolytes using polyethylene oxide show an ion conductivity of 1.5 × 10 −3 Scm −1 at room temperature by Aihara et al., J. Power Sources 65
(1997) 143-147. In previous studies, a gel electrolyte of polyethylene oxide having a degree of swelling equal to or less than the equilibrium swelling degree is completely different from a liquid electrolyte, and the conductivity is described by a relational expression such as VTF without following Arrhenius equation. Although details are under study, it may be necessary to consider the affinity between the polymer and ions in addition to the structural interaction of the gel electrolyte.

【0004】[0004]

【発明が解決しようとする課題】ゲル電解質全体のイオ
ン伝導度を向上させようとした場合、ゲル電解質はポリ
マーの分子骨格構造としてドナー性のエーテル酸素はむ
しろ必要なく、溶媒分子や溶質分子との相互作用の少な
い骨格が好ましいといえる。その観点から現在ではフル
オロポリマーが見直されている。ポリフッ化ビニリデン
に関しては、TsuchidaらがElectrochem. Acta, 28 (198
3)でその検討を報告している。しかしながら、ポリフッ
化ビニリデンは熱可逆性であり、高温では溶液状態にな
ってしまうことから、それ自体単独での使用は困難であ
った。
In order to improve the ionic conductivity of the entire gel electrolyte, the gel electrolyte does not need ether oxygen as a donor as a molecular skeleton structure of the polymer. It can be said that a skeleton having little interaction is preferable. From that viewpoint, fluoropolymers are currently being reviewed. Regarding polyvinylidene fluoride, Tsuchida et al., Electrochem. Acta, 28 (198
Section 3) reports the study. However, since polyvinylidene fluoride is thermoreversible and becomes a solution at high temperatures, it has been difficult to use polyvinylidene fluoride by itself.

【0005】本発明は上記問題点に鑑みなされたもので
あり、イオン伝導性に優れ、且つ、熱安定性のよいゲル
電解質を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a gel electrolyte having excellent ionic conductivity and good thermal stability.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め、本発明においてはイオン伝導性の優れたポリフッ化
ビニリデンを粒子サイズで非水電解液に分散させてゲル
電解質を形成する。ポリフッ化ビニリデンはN-メチル2-
ピロリドンなどの一部の溶媒には可溶であることは知ら
れているが、常温においてはリチウム電池に用いられる
一般的な溶媒には不溶又は極微量含まれている低分子が
溶解するのみである。そのような溶媒あるいは電解液に
分散させた場合にはポリフッ化ビニリデン粒子は膨潤す
る。この膨潤した状態を本発明においては単純にポリマ
ー粒子の膨潤したゲル電解質とする。このゲル電解質は
通常の物理ゲルと同様であるので加熱により溶融する。
しかし、このゲル電解質を架橋性ポリマーのマトリクス
で覆うことで膜全体としては溶融を免れることが可能と
なる。即ち、イオン移動の速いポリフッ化ビニリデンの
ゲル電解質を化学架橋されたポリマーで保持することに
より、膜としての物理的安定性を保持できると同時に速
いイオン移動が可能となる。
In order to solve the above-mentioned problems, in the present invention, polyvinylidene fluoride having excellent ion conductivity is dispersed in a non-aqueous electrolyte in a particle size to form a gel electrolyte. Polyvinylidene fluoride is N-methyl 2-
It is known that it is soluble in some solvents such as pyrrolidone, but at room temperature, common solvents used for lithium batteries are insoluble or only a small amount of small molecules contained in trace amounts are dissolved. is there. When dispersed in such a solvent or an electrolytic solution, polyvinylidene fluoride particles swell. In the present invention, this swollen state is simply referred to as a swollen gel electrolyte of polymer particles. Since this gel electrolyte is similar to a normal physical gel, it is melted by heating.
However, by covering this gel electrolyte with a matrix of a crosslinkable polymer, it becomes possible to avoid melting of the whole film. That is, by holding the gel electrolyte of polyvinylidene fluoride, which has a fast ion transfer, with a chemically cross-linked polymer, it is possible to maintain the physical stability as a membrane and at the same time, it is possible to perform a fast ion transfer.

【0007】[0007]

【発明の実施の形態】本発明では、架橋したポリマー
に、非水電解液で膨潤したポリフッ化ビニリデン又はそ
のコポリマーを保持させて固体状に形成したことを特徴
とするゲル電解質である。また、前記架橋したポリマー
が、2官能以上のアクリロイル基を有する放射線重合性
のモノマーを重合させて形成されたゲル電解質であり、
前記架橋したポリマーが、ポリエーテル主鎖を有する多
官能アクリレートを架橋して形成されたゲル電解質であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, there is provided a gel electrolyte comprising a cross-linked polymer and polyvinylidene fluoride or a copolymer thereof swollen with a non-aqueous electrolyte, which is formed in a solid state. Further, the cross-linked polymer is a gel electrolyte formed by polymerizing a radiation-polymerizable monomer having a bifunctional or more acryloyl group,
The crosslinked polymer is a gel electrolyte formed by crosslinking a polyfunctional acrylate having a polyether main chain.

【0008】[0008]

【実施例】以下、本発明の詳細について実施例により説
明するが、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

【0009】(本発明1)ポリフッ化ビニリデン粉末0.
5gを1mol のリチウムテトラフルオロボレートのγブチ
ロラクトン電解液4.0gに分散させた。これに分子量1100
0 の2官能アクリル酸エステルを0.5g溶解させた。この
液をバーコーターで金属箔上に塗布し、電子線照射によ
りラジカル重合を行った。形成した膜を金属箔より剥が
して所定の形状にポンチを用いて打抜いた。
(Invention 1) Polyvinylidene fluoride powder
5 g was dispersed in 4.0 g of 1 mol lithium tetrafluoroborate electrolyte solution of γ-butyrolactone. This has a molecular weight of 1100
0.5 g of the bifunctional acrylate of No. 0 was dissolved. This liquid was applied on a metal foil with a bar coater, and radical polymerization was performed by electron beam irradiation. The formed film was peeled from the metal foil and punched into a predetermined shape using a punch.

【0010】(比較例1)分子量約11000 のポリエチレ
ングリコールジアクリレート1.0gを1mol のリチウムテ
トラフルオロボレートのγブチロラクトン電解液4.0gに
溶解させ、この液をバーコーターで金属箔上に塗布し、
電子線照射によりラジカル重合を行った。形成した膜を
金属箔より剥がして所定の形状にポンチを用いて打抜い
た。
Comparative Example 1 1.0 g of polyethylene glycol diacrylate having a molecular weight of about 11,000 was dissolved in 4.0 g of 1 mol of lithium tetrafluoroborate γ-butyrolactone electrolytic solution, and this solution was applied on a metal foil with a bar coater.
Radical polymerization was performed by electron beam irradiation. The formed film was peeled from the metal foil and punched into a predetermined shape using a punch.

【0011】(比較例2)本発明1に用いたポリフッ化
ビニリデン粉末1.0gを1mol のリチウムテトラフルオロ
ボレートのγブチロラクトン電解液4.0gに分散させたも
のを液体伝導度測定用セルにいれ90℃で加熱し、30分後
一様に透明になったことを確認して室温まで徐冷してセ
ル中でゲル化させた。
(Comparative Example 2) A dispersion of 1.0 g of the polyvinylidene fluoride powder used in the present invention 1 in 4.0 g of 1 mol of lithium tetrafluoroborate γ-butyrolactone electrolyte was placed in a cell for measuring liquid conductivity at 90 ° C. After heating for 30 minutes, it was confirmed that the mixture became uniformly transparent after 30 minutes, and the mixture was gradually cooled to room temperature and gelled in the cell.

【0012】本発明1、比較例1、2の電解質をイオン
伝導度を測定する所定のセルに固定した。各々、室温〜
−20℃までイオン伝導度を測定した。測定はソーラー
トロン社のインピーダンスアナライザーとしてモデル12
86のインターフェースとモデル1255を使用し、交流測定
で1000000Hz 〜10Hzを測定した。また、熱に伴う形状変
形を調べるため各々の膜を100 ℃のホットプレート上に
おいて加熱を行った。イオン伝導度を測定した結果をア
レニウスプロットしたものを図1に示す。比較例2が最
も高いイオン伝導を示し、本発明1は比較例1よりも高
いイオン伝導を示すことが分かった。比較例2は溶媒お
よび溶質との相互作用の強い化学架橋ポリマーが存在し
ないことがその高いイオン伝導の原因と考えられる。本
発明においては従来のポリエーテル系ゲルと比較してポ
リフッ化ビニリデンの高いイオン伝導移送部、即ち伝導
パスを有するため比較例1よりもイオン伝導が高かった
と考えられる。
The electrolytes of the present invention 1 and comparative examples 1 and 2 were fixed in a predetermined cell for measuring ionic conductivity. Each room temperature ~
The ionic conductivity was measured up to −20 ° C. Measurements were made using Solartron impedance analyzer model 12
Using an 86 interface and a model 1255, AC measurement was performed at 10000 Hz to 10 Hz. Each film was heated on a hot plate at 100 ° C. in order to examine the shape deformation due to heat. FIG. 1 shows an Arrhenius plot of the result of measuring the ionic conductivity. Comparative Example 2 showed the highest ion conductivity, and it was found that Invention 1 exhibited higher ion conductivity than Comparative Example 1. In Comparative Example 2, the absence of a chemically crosslinked polymer having strong interaction with a solvent and a solute is considered to be the cause of the high ionic conductivity. In the present invention, it is considered that the ionic conduction was higher than that of Comparative Example 1 due to the presence of a conduction path, that is, a conduction path of polyvinylidene fluoride, which was higher than that of the conventional polyether-based gel.

【0013】つぎに各々の膜を100 ℃のホットプレート
上において加熱による形状変化を確認し、その結果を表
1に示す。
Next, a change in shape due to heating of each film on a hot plate at 100 ° C. was confirmed. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】比較例2に関してはホットプレート上で直
に液状化してしまった。本発明1に関しては膜の色が薄
い乳白色から透明になったものの膜の形状は維持され
た。比較例1は何の変化も認められなかった。以上のこ
とから、ゲル電解質膜単独での使用を考えた場合、比較
例2は不向きであると考えられる。熱的に安定な本発明
1と比較例1を比較すると、イオン伝導において本発明
1は優ることから、本発明は熱的に安定であり、かつ、
高いイオン伝導を発現可能であることが確認できる。
With respect to Comparative Example 2, it was directly liquefied on a hot plate. With respect to the present invention 1, although the color of the film was changed from light milky white to transparent, the shape of the film was maintained. In Comparative Example 1, no change was observed. From the above, it is considered that Comparative Example 2 is not suitable when the use of the gel electrolyte membrane alone is considered. Comparing the thermally stable invention 1 with the comparative example 1, the invention 1 is superior in ionic conduction, so that the invention is thermally stable, and
It can be confirmed that high ionic conduction can be exhibited.

【0016】[0016]

【発明の効果】本発明ゲル電解質は熱的に安定であり、
高いイオン伝導を有し、その工業的価値は大である。
The gel electrolyte of the present invention is thermally stable,
It has high ionic conductivity and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明及び比較例1、2の電解質のイオン伝導
度を測定した結果を示した図である。
FIG. 1 is a view showing the results of measuring the ionic conductivity of the electrolyte of the present invention and Comparative Examples 1 and 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 架橋したポリマーに、非水電解液で膨潤
したポリフッ化ビニリデン又はそのコポリマーを保持さ
せて固体状に形成したことを特徴とするゲル電解質。
1. A gel electrolyte comprising a cross-linked polymer and polyvinylidene fluoride or a copolymer thereof swollen with a non-aqueous electrolyte, formed in a solid state.
【請求項2】 前記架橋したポリマーが、2官能以上の
アクリロイル基を有する放射線重合性のモノマーを重合
させて形成された請求項1記載のゲル電解質。
2. The gel electrolyte according to claim 1, wherein the crosslinked polymer is formed by polymerizing a radiation polymerizable monomer having an acryloyl group having two or more functional groups.
【請求項3】 前記架橋したポリマーが、ポリエーテル
主鎖を有する多官能アクリレートを架橋して形成された
請求項1記載のゲル電解質。
3. The gel electrolyte according to claim 1, wherein the crosslinked polymer is formed by crosslinking a polyfunctional acrylate having a polyether main chain.
JP25016197A 1997-09-16 1997-09-16 Gel electrolyte Expired - Fee Related JP3841127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25016197A JP3841127B2 (en) 1997-09-16 1997-09-16 Gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25016197A JP3841127B2 (en) 1997-09-16 1997-09-16 Gel electrolyte

Publications (2)

Publication Number Publication Date
JPH1186630A true JPH1186630A (en) 1999-03-30
JP3841127B2 JP3841127B2 (en) 2006-11-01

Family

ID=17203737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25016197A Expired - Fee Related JP3841127B2 (en) 1997-09-16 1997-09-16 Gel electrolyte

Country Status (1)

Country Link
JP (1) JP3841127B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125620B2 (en) * 2000-11-30 2006-10-24 Mti Microfuel Cells, Inc. Fuel cell membrane and fuel cell system with integrated gas separation
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012133701A1 (en) 2011-03-31 2012-10-04 ダイキン工業株式会社 Electric double-layer capacitor and non-aqueous electrolyte for electric double-layer capacitor
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2015083747A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
DE102017223219A1 (en) 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery and module
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018123359A1 (en) 2016-12-27 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2018186068A1 (en) 2017-04-04 2018-10-11 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
EP3435472A1 (en) 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019039130A1 (en) 2017-08-25 2019-02-28 ダイキン工業株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2019093161A1 (en) 2017-11-09 2019-05-16 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019102722A1 (en) 2017-11-21 2019-05-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
EP3509156A1 (en) 2014-07-16 2019-07-10 Daikin Industries, Ltd. Electrolyte solution
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150896A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019159703A1 (en) 2018-02-16 2019-08-22 ダイキン工業株式会社 Electrolysis solution, electrochemical device, lithium-ion secondary battery, and module
WO2019188207A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, module and compound
WO2019188210A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2019208246A1 (en) 2018-04-27 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019220764A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium-ion secondary battery, and module
WO2019220829A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2020054548A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
WO2020054546A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
EP3667804A1 (en) 2014-11-21 2020-06-17 Daikin Industries, Limited Electrolyte solution containing unsaturated cyclic carbonates, electrochemical device and lithium-ion secondary battery comprising the same
WO2020137367A1 (en) 2018-12-25 2020-07-02 ダイキン工業株式会社 Electrolytic solution for lithium-ion secondary battery, lithium-ion secondary battery, and module
WO2020175513A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Compound, electrolytic solution additive, electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2020175522A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module and compound
WO2020175511A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2020246580A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution for alkali metal ion secondary battery, alkali metal ion secondary battery and module
WO2020246579A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution, secondary battery, and module
WO2021020005A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Alkali metal electrode treatment agent, electrolytic solution for alkali metal secondary battery, alkali metal electrode, alkali metal secondary battery, and module
WO2021095574A1 (en) 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device
EP3849009A1 (en) 2016-07-22 2021-07-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
WO2021235358A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound
WO2022172951A1 (en) 2021-02-10 2022-08-18 ダイキン工業株式会社 Compound, composition, electrochemical device, lithium ion secondary battery and module
WO2024095797A1 (en) 2022-11-04 2024-05-10 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and lithium ion secondary battery

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125620B2 (en) * 2000-11-30 2006-10-24 Mti Microfuel Cells, Inc. Fuel cell membrane and fuel cell system with integrated gas separation
WO2012002037A1 (en) 2010-06-30 2012-01-05 ダイキン工業株式会社 Binder composition for electrode
WO2012133701A1 (en) 2011-03-31 2012-10-04 ダイキン工業株式会社 Electric double-layer capacitor and non-aqueous electrolyte for electric double-layer capacitor
WO2013157504A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013157503A1 (en) 2012-04-17 2013-10-24 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2014038343A1 (en) 2012-09-04 2014-03-13 ダイキン工業株式会社 Electrolyte solution and electrochemical device
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2015083747A1 (en) 2013-12-05 2015-06-11 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
EP3435472A1 (en) 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
EP3509156A1 (en) 2014-07-16 2019-07-10 Daikin Industries, Ltd. Electrolyte solution
EP3667804A1 (en) 2014-11-21 2020-06-17 Daikin Industries, Limited Electrolyte solution containing unsaturated cyclic carbonates, electrochemical device and lithium-ion secondary battery comprising the same
EP3750884A1 (en) 2014-11-21 2020-12-16 Daikin Industries, Ltd. Novel fluorinated unsaturated cyclic carbonate and process for producing the same
EP3849009A1 (en) 2016-07-22 2021-07-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
DE102017223219A1 (en) 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery and module
WO2018123359A1 (en) 2016-12-27 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2018186068A1 (en) 2017-04-04 2018-10-11 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019039130A1 (en) 2017-08-25 2019-02-28 ダイキン工業株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
WO2019093161A1 (en) 2017-11-09 2019-05-16 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
EP4053959A1 (en) 2017-11-21 2022-09-07 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019102722A1 (en) 2017-11-21 2019-05-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019150896A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019159703A1 (en) 2018-02-16 2019-08-22 ダイキン工業株式会社 Electrolysis solution, electrochemical device, lithium-ion secondary battery, and module
WO2019188207A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, module and compound
WO2019188210A1 (en) 2018-03-27 2019-10-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019208246A1 (en) 2018-04-27 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019220829A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
EP4060782A1 (en) 2018-05-14 2022-09-21 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
WO2019220764A1 (en) 2018-05-14 2019-11-21 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium-ion secondary battery, and module
JPWO2020054546A1 (en) * 2018-09-14 2021-02-15 株式会社クレハ Resin dispersion electrolyte, polymer gel electrolyte and its manufacturing method, and secondary battery and its manufacturing method
WO2020054546A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
JPWO2020054548A1 (en) * 2018-09-14 2021-02-15 株式会社クレハ Resin dispersion electrolyte, polymer gel electrolyte and its manufacturing method, and secondary battery and its manufacturing method
KR20210043712A (en) * 2018-09-14 2021-04-21 가부시끼가이샤 구레하 Resin dispersion electrolyte, polymer gel electrolyte, and manufacturing method thereof, and secondary battery and manufacturing method thereof
KR20210054564A (en) * 2018-09-14 2021-05-13 가부시끼가이샤 구레하 Resin dispersion electrolyte, polymer gel electrolyte, and manufacturing method thereof, and secondary battery and manufacturing method thereof
WO2020054548A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
WO2020137367A1 (en) 2018-12-25 2020-07-02 ダイキン工業株式会社 Electrolytic solution for lithium-ion secondary battery, lithium-ion secondary battery, and module
WO2020175522A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module and compound
WO2020175511A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
WO2020175513A1 (en) 2019-02-27 2020-09-03 ダイキン工業株式会社 Compound, electrolytic solution additive, electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2020246580A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution for alkali metal ion secondary battery, alkali metal ion secondary battery and module
WO2020246579A1 (en) 2019-06-05 2020-12-10 ダイキン工業株式会社 Electrolyte solution, secondary battery, and module
WO2021020005A1 (en) 2019-07-31 2021-02-04 ダイキン工業株式会社 Alkali metal electrode treatment agent, electrolytic solution for alkali metal secondary battery, alkali metal electrode, alkali metal secondary battery, and module
WO2021095574A1 (en) 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device
WO2021235358A1 (en) 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound
WO2022172951A1 (en) 2021-02-10 2022-08-18 ダイキン工業株式会社 Compound, composition, electrochemical device, lithium ion secondary battery and module
JP2022122846A (en) * 2021-02-10 2022-08-23 ダイキン工業株式会社 Compound, composition, electrochemical device, lithium ion secondary battery, and module
WO2024095797A1 (en) 2022-11-04 2024-05-10 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3841127B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3841127B2 (en) Gel electrolyte
WO2020143259A1 (en) Preparation and application of polycarbonate-based polymer electrolyte
CN107346833B (en) Composite solid polymer electrolyte film and preparation method thereof
EP0938755B1 (en) Highly conductive ion exchange polymer and process
CN109608592B (en) Cross-linking polymerization preparation method of polyion liquid solid electrolyte
CN109346767A (en) A kind of solid polymer electrolyte and its application in lithium metal battery
EP2063435A1 (en) Novel polymer electrolyte and electrochemical device
CN109244537A (en) Composite solid electrolyte, preparation method and its application
CN104966848A (en) Polymer for lithium ion battery, preparation method of polymer, lithium ion battery gel electrolyte and preparation method thereof
Song et al. Thermally stable gel polymer electrolytes
CN108878971A (en) A kind of polymer dielectric and solid lithium battery with pectinate texture
TWI467828B (en) Solid electrolyte and lithium based cell using the same
CN111647345B (en) Lithium ion battery negative electrode polymer protective coating and preparation method and application thereof
Liu et al. Preparation of a PVdF-HFP/polyethylene composite gel electrolyte with shutdown function for lithium-ion secondary battery
Li et al. A stretchable ionic conductive elastomer for high‐areal‐capacity lithium‐metal batteries
Gao et al. Proton conducting heteropoly acid based electrolyte for high rate solid electrochemical capacitors
CN108448065A (en) A kind of preparation method of the lithium anode of bend resistance
Zhang et al. Li-ion battery with poly (acrylonitrile-methyl methacrylate)-based microporous gel electrolyte
CN103165937B (en) Solid electrolyte and use the lithium-base battery of this solid electrolyte
Chen et al. Overcharge protection for high voltage lithium cells using two electroactive polymers
Sannier et al. Lithium metal batteries operating at room temperature based on different PEO-PVdF separator configurations
JP4802443B2 (en) Proton exchanger, proton exchange membrane, and fuel cell using the same
CN115986205A (en) Functional quasi-solid polymer electrolyte and preparation method and application thereof
Zhao et al. The polymer composite electrolyte with polyethylene oxide-grafted graphene oxide as fillers toward stable highcurrent density lithium metal anodes
Doeff et al. The use of redox polymerization electrodes in lithium batteries with liquid electrolytes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees