JPH118410A - Electrode of n-type nitride semiconductor - Google Patents
Electrode of n-type nitride semiconductorInfo
- Publication number
- JPH118410A JPH118410A JP16072697A JP16072697A JPH118410A JP H118410 A JPH118410 A JP H118410A JP 16072697 A JP16072697 A JP 16072697A JP 16072697 A JP16072697 A JP 16072697A JP H118410 A JPH118410 A JP H118410A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- electrode material
- nitride semiconductor
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 22
- 239000007772 electrode material Substances 0.000 claims abstract description 71
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 239000010936 titanium Substances 0.000 claims description 14
- 239000010931 gold Substances 0.000 claims description 13
- 239000010948 rhodium Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- 239000010408 film Substances 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 15
- 239000007789 gas Substances 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 10
- 229910002601 GaN Inorganic materials 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000000137 annealing Methods 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- KSOCVFUBQIXVDC-FMQUCBEESA-N p-azophenyltrimethylammonium Chemical compound C1=CC([N+](C)(C)C)=CC=C1\N=N\C1=CC=C([N+](C)(C)C)C=C1 KSOCVFUBQIXVDC-FMQUCBEESA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は発光ダイオード(LE
D)、レーザーダイオード(LD)あるいは他の電子デ
バイス、パワーデバイス、受光デバイス等に使用される
窒化ガリウム系化合物半導体(InXAlYGa
1-X-YN、0≦X≦1、0≦Y≦1、X+Y≦1)から
なる素子の電極に係り、特にn型窒化ガリウム系化合物
半導体層(以下、n型層という。)に形成される電極
(負電極)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (LE).
D), gallium nitride based compound semiconductors (In x Al Y Ga) used for laser diodes (LD) or other electronic devices, power devices, light receiving devices, etc.
1-XYN , 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, X + Y ≦ 1), and is particularly formed on an n-type gallium nitride-based compound semiconductor layer (hereinafter referred to as an n-type layer). Electrode (negative electrode).
【0002】[0002]
【従来の技術】近年、実用レベルの青色発光ダイオード
や、室温での連続発振が可能な青色レーザが実現されて
いる。そして発光ダイオードを用いた高光度フルカラー
の高画質化や、レーザを用いたディジタルビデオディス
ク(DVD)あるいは他の電子デバイス、パワーデバイ
ス、受光デバイスなどの光ディスクの高密度記録の短波
長青色発光素子の実現化のために、更なる開発が進めら
れている。その開発の一つに発光効率の向上がある。発
光効率は、窒化物半導体層と電極との接触抵抗率が低く
オーミック接触が良好であると、順方向電圧が下がり、
それによって向上する。本発明者等は、n型窒化物半導
体層(以下単にn型層という)とオーミック接触が良好
であるn型層の電極(以下n電極という)として、特開
平7−45867号公報に記載のチタンとアルミニウム
からなるn電極を開示している。しかしこの公報に記載
の電極は、アルミニウムが酸化されやすいことから、ボ
ンディング時にワイヤーからできるボールとn電極との
接着強度が弱くなり易い傾向にある。2. Description of the Related Art In recent years, practically available blue light emitting diodes and blue lasers capable of continuous oscillation at room temperature have been realized. High-luminance full-color high-quality images using light-emitting diodes, and short-wavelength blue light-emitting elements for high-density recording of optical disks such as digital video disks (DVDs) or other electronic devices, power devices, and light-receiving devices using lasers. Further development is underway for realization. One of the developments is improvement of luminous efficiency. The luminous efficiency is such that when the contact resistivity between the nitride semiconductor layer and the electrode is low and the ohmic contact is good, the forward voltage decreases,
It improves. The present inventors have disclosed an electrode of an n-type layer having good ohmic contact with an n-type nitride semiconductor layer (hereinafter simply referred to as an n-type layer) (hereinafter referred to as an n-electrode) described in JP-A-7-45867. An n-electrode made of titanium and aluminum is disclosed. However, in the electrode described in this publication, since aluminum is easily oxidized, the bonding strength between the ball formed of a wire and the n-electrode at the time of bonding tends to be weak.
【0003】また、本発明者等は、特開平7−2211
03号公報に、チタン(Ti)、アルミニウム(Al)
及びAlより高融点の金属からなるn電極を開示した。
この技術は、オーミック接触が良好であると共に電極の
耐久性を向上させることができる。The present inventors have disclosed in Japanese Patent Laid-Open No. 7-2211.
No. 03 discloses titanium (Ti), aluminum (Al)
And an n-electrode made of a metal having a higher melting point than Al.
This technique has good ohmic contact and can improve the durability of the electrode.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記技術はL
EDにおいては良好であるが、LEDよりも電流密度が
高く電極での発熱が大きいLDでは電極が変質しやす
く、素子の寿命が低下し十分満足できるものでない。そ
こで本発明の目的は、n型層に形成するn電極がn型層
との好ましいオーミック接触を得ると共に、過酷な使用
条件でも変質しにくいn電極を提供することにある。[0005] However, the above-mentioned technique is not suitable for L.
Although good in EDs, in LDs having a higher current density and larger heat generation at the electrodes than LEDs, the electrodes are apt to deteriorate, and the life of the element is reduced, which is not satisfactory. Accordingly, an object of the present invention is to provide an n-electrode formed on an n-type layer, which obtains a favorable ohmic contact with the n-type layer, and which is hardly deteriorated even under severe use conditions.
【0005】[0005]
【課題を解決するための手段】即ち、本発明の目的は、
下記(1)〜(3)の構成によって達成することができ
る。 (1) n型窒化物半導体層表面に形成された電極にお
いて、該電極が少なくとも、チタン(Ti)、ジルコニ
ウム(Zr)及びタングステン(W)の少なくとも1種
からなる第一の電極材料、アルミニウム(Al)、ケイ
素(Si)及びゲルマニウム(Ge)の少なくとも1種
からなる第二の電極材料、並びにロジウム(Rh)から
なる第三の電極材料を含有することを特徴とするn型窒
化物半導体の電極。 (2) 前記電極の第四の電極材料として、金(Au)
を含有することを特徴とする前記(1)に記載のn型窒
化物半導体の電極。That is, the object of the present invention is to
This can be achieved by the following configurations (1) to (3). (1) In an electrode formed on the surface of an n-type nitride semiconductor layer, the electrode is at least a first electrode material made of at least one of titanium (Ti), zirconium (Zr) and tungsten (W); Al), a second electrode material comprising at least one of silicon (Si) and germanium (Ge), and a third electrode material comprising rhodium (Rh). electrode. (2) As a fourth electrode material of the electrode, gold (Au)
The electrode of the n-type nitride semiconductor according to the above (1), comprising:
【0006】つまり、本発明は、n電極の材料として上
記特定の金属の組み合わせ、特にRhを組み合わせて用
いることにより、良好なオーミック接触及び酸化等によ
る電極の劣化を防止し、電極の耐久性の向上を可能にし
た。また電極の最上にAuを設けることにより、酸化等
の電極の変質を良好に防止でき、更にボールとn電極と
の接着性を向上させることができ好ましい。That is, according to the present invention, by using a combination of the above-mentioned specific metals, particularly Rh in combination as the material of the n-electrode, it is possible to prevent the electrode from being deteriorated due to good ohmic contact and oxidation and to improve the durability of the electrode. Improved. Also, by providing Au on the top of the electrode, deterioration of the electrode such as oxidation can be prevented well, and the adhesion between the ball and the n-electrode can be improved, which is preferable.
【0007】[0007]
【実施の形態】本発明のn電極は、第一〜第三の電極材
料、更に本発明の効果を良好とするために第四の電極材
料から構成される。また本発明の効果を阻害しない範囲
であればその他の金属を含有してもよい。第一の電極材
料は、Ti、Zr及びWの少なくとも1種であり、第二
の電極材料は、Al、Si及びGeの少なくとも1種で
あり、第三の電極材料は、Rhである。二種以上からな
る第一の電極材料及び第二の電極材料は、一種でも二種
以上の金属を用いてもよい。BEST MODE FOR CARRYING OUT THE INVENTION The n-electrode of the present invention is composed of first to third electrode materials, and further a fourth electrode material for improving the effect of the present invention. Other metals may be contained as long as the effects of the present invention are not impaired. The first electrode material is at least one of Ti, Zr, and W, the second electrode material is at least one of Al, Si, and Ge, and the third electrode material is Rh. As the first electrode material and the second electrode material composed of two or more kinds, one kind or two or more kinds of metals may be used.
【0008】本発明のn電極は、第一の電極材料〜第三
の電極材料からなる金属薄膜を積層して形成される。こ
こで本発明における電極材料は、いずれもn型窒化物半
導体に接して形成されてもよく、また各電極材料の積層
順は特に限定されない。また電極形成時に、同一の電極
材料を二度以上用いてもよい。電極材料の積層順として
は、例えば第一の電極材料がn型層に接して積層され、
第一の電極材料の上に第二の電極材料が積層され、最後
に第三の電極材料が積層されている積層順等を挙げるこ
とができる。また、同一の電極材料を二度以上用いる積
層順として、例えば第一、第二、第一、そして最後に第
三の順で各電極材料を積層する積層順等が挙げられる。
このように積層されていると、再現性良くオーミック接
触が得られるため好ましい。また、上記の積層順で第三
の電極材料がn型層から最も遠い、つまりn電極の最上
に積層されていると、第三の電極材料であるRhが第二
の電極材料より高融点であり、且つ酸化されにくいため
電極の酸化を防止するのに効果的である。[0008] The n-electrode of the present invention is formed by laminating a metal thin film comprising a first electrode material to a third electrode material. Here, any of the electrode materials in the present invention may be formed in contact with the n-type nitride semiconductor, and the stacking order of each electrode material is not particularly limited. Further, the same electrode material may be used twice or more when forming the electrodes. As the lamination order of the electrode materials, for example, the first electrode material is laminated in contact with the n-type layer,
The order in which the second electrode material is stacked on the first electrode material and the third electrode material is stacked last can be exemplified. In addition, as the stacking order in which the same electrode material is used twice or more, for example, a stacking order in which each electrode material is stacked in a first, second, first, and finally third order is exemplified.
Such lamination is preferable because ohmic contact can be obtained with good reproducibility. Further, when the third electrode material is farthest from the n-type layer in the above-described lamination order, that is, when the third electrode material is laminated on the uppermost layer of the n-electrode, Rh as the third electrode material has a higher melting point than the second electrode material. Since it is present and hardly oxidized, it is effective in preventing the oxidation of the electrode.
【0009】また二種以上の金属を電極材料として用い
る場合、例えば第一の電極材料として二種以上の金属を
用いる場合は、電極形成時に一種ずつ金属をそれぞれ積
層し多層膜とするかあるいは二種以上の金属を合金化し
て積層する。また第一〜第三の電極材料はいずれの組み
合わせでもよい。例えば各電極材料の組み合わせの一例
として[Ti、Al、Rh]、[Ti、Si、Rh]、
[Zr、Al、Rh]、[(Ti−W)、Ge、R
h]、[W、(Al−Si)、Rh]、[Ti、Al、
Ti、Rh]、等の組み合わせをとることができる。上
記の各電極材料の組み合わせはほんの一例を示したにす
ぎず、本発明はこれに限定されない。また上記の各電極
材料の組み合わせにおける電極形成時の積層順は種々可
能である。また上記の例で第一の電極材料がTiとWの
二種の金属を用いる等、第一及び第二の電極材料が二種
以上の金属を用いる場合の各金属の割合は、特に限定さ
れるものではなく、任意に変更することができる。金属
の割合の調節は、例えば2種以上の金属を第一の電極材
料とする場合を例に取ると、各金属を積層する場合には
金属薄膜の膜厚を調整し、あるいは合金化されて積層さ
れる場合には合金の各金属の割合を調節する。When two or more metals are used as the electrode material, for example, when two or more metals are used as the first electrode material, one metal may be laminated one by one at the time of forming the electrode to form a multilayer film. More than one kind of metal is alloyed and laminated. The first to third electrode materials may be in any combination. For example, [Ti, Al, Rh], [Ti, Si, Rh],
[Zr, Al, Rh], [(Ti-W), Ge, R
h], [W, (Al-Si), Rh], [Ti, Al,
Ti, Rh], and the like. The combinations of the above electrode materials are merely examples, and the present invention is not limited to these. In addition, the order of lamination at the time of electrode formation in the combination of the above-mentioned respective electrode materials can be variously changed. Further, in the above example, when the first and second electrode materials use two or more metals, for example, the first electrode material uses two metals of Ti and W, the ratio of each metal is particularly limited. It is not a thing and can be changed arbitrarily. Adjustment of the ratio of the metal, for example, in the case where two or more kinds of metals are used as the first electrode material, when each metal is laminated, the thickness of the metal thin film is adjusted or alloyed. When laminated, the proportion of each metal in the alloy is adjusted.
【0010】更に本発明は、電極の第四の電極材料とし
て、金(Au)を含有することが効果を得る上で好まし
い。Auからなる第四の電極材料は、上記第一〜第三の
電極材料とともに電極を形成する際、各材料の積層順は
特に限定されないが、好ましくはn型層から最も遠いn
電極の最上に形成される。Auは電極の酸化を防止しワ
イヤーからできるボールとの接着強度を強くすることが
できる。Further, the present invention preferably contains gold (Au) as a fourth electrode material of the electrode in order to obtain the effect. When forming an electrode together with the first to third electrode materials, the fourth electrode material made of Au is not particularly limited in the order of lamination of each material, but is preferably n farthest from the n-type layer.
Formed on top of the electrode. Au can prevent the oxidation of the electrode and increase the bonding strength with the ball formed from the wire.
【0011】上記のように第一の電極材料から第三の電
極材料を積層した後、あるいは第一の電極材料から第四
の電極材料を積層した後、積層した電極材料と窒化物半
導体層との接触を良くしてオーミック接触を得るためア
ニーリング処理をする。その際、第一及び第二の電極材
料が二種以上の金属を用い且つ各金属を多層膜として積
層してあると、多層膜はアニーリング条件(主として
熱)や電極材料の膜厚等により多層膜の一部、または全
部が合金化する。また各積層されたそれぞれの電極材料
の間で合金が起こっている場合もある。本発明で言う合
金化は、各金属が均一に混合している訳でなく渾然一体
となった状態である。また合金化されていない場合であ
っても金属の薄膜がはっきり分離されている訳ではな
く、各電極材料の接触面付近でわずかな金属の移動が起
こり、微視的に見ると各電極材料の接触面で本発明で言
う合金化が生じている場合がある。After laminating the first electrode material to the third electrode material as described above, or laminating the first electrode material to the fourth electrode material, the laminated electrode material and the nitride semiconductor layer An annealing process is performed to improve the contact and obtain an ohmic contact. At this time, if the first and second electrode materials use two or more kinds of metals and each metal is laminated as a multilayer film, the multilayer film may have a multilayer structure depending on the annealing conditions (mainly heat) and the thickness of the electrode material. Part or all of the film is alloyed. In some cases, alloying may occur between the respective electrode materials stacked. The alloying according to the present invention is a state in which the metals are not mixed uniformly but are united. Even when it is not alloyed, the metal thin film is not necessarily separated clearly, and a small amount of metal movement occurs near the contact surface of each electrode material, and when viewed microscopically, each electrode material The alloying referred to in the present invention may occur on the contact surface.
【0012】本発明においてn電極の厚さは、各電極材
料の積層後の膜厚の総膜厚であり、各電極材料の膜厚を
変えることにより、n電極の膜厚が調整される。第一の
電極材料の膜厚は、10nm〜200nm、好ましくは
10nm〜50nmである。この範囲であるとn型層と
オーミックが得られやすい。第二の電極材料の膜厚は、
50nm〜500nm、好ましくは100nm〜200
nmである。この範囲であるとn型層と好ましいオーミ
ックが得られると共に、熱に対しても安定な電極が得ら
れる。第三の電極材料の膜厚は、100nm〜1000
nm、好ましくは300nm〜500nmである。この
範囲であると電極の酸化が防止でき更に、接着強度が向
上する。第四の電極材料の膜厚は、100nm〜1μ
m、好ましくは200nm〜500nmである。この範
囲であると電極の酸化の防止が良好となると共に、n電
極の最上に第四の電極材料が用いられるとボールとの接
着強度が向上する。In the present invention, the thickness of the n-electrode is the total thickness of each electrode material after lamination, and the thickness of the n-electrode is adjusted by changing the thickness of each electrode material. The film thickness of the first electrode material is 10 nm to 200 nm, preferably 10 nm to 50 nm. Within this range, an ohmic contact with the n-type layer is easily obtained. The film thickness of the second electrode material is
50 nm to 500 nm, preferably 100 nm to 200
nm. Within this range, a preferable ohmic with the n-type layer can be obtained, and an electrode that is stable against heat can be obtained. The thickness of the third electrode material is 100 nm to 1000 nm.
nm, preferably 300 nm to 500 nm. Within this range, oxidation of the electrode can be prevented, and the adhesive strength can be improved. The thickness of the fourth electrode material is 100 nm to 1 μm.
m, preferably 200 nm to 500 nm. Within this range, the prevention of oxidation of the electrodes will be good, and the use of the fourth electrode material on the top of the n-electrode will improve the bonding strength with the ball.
【0013】本発明において、n電極の形成方法は、第
一〜第三あるいは第四の電極材料を積層して行われる。
各電極材料の積層順は、上記したように特に限定され
ず、好ましい積層順は、第一、第二、第三続いて第四の
各電極材料を積層して電極を形成することが好ましい。
そしてこれらの電極材料は、金属あるいは合金を、例え
ば蒸着、スパッタ等の装置を用いて積層され電極を形成
する。二種以上の金属を電極材料とする第一及び第二の
電極材料の場合、一種ずつの金属を積層した多層膜は、
アニーリング処理により合金化していることがある。In the present invention, the method for forming the n-electrode is performed by laminating first to third or fourth electrode materials.
The order of lamination of each electrode material is not particularly limited as described above, and a preferable lamination order is to form an electrode by laminating first, second, third, and fourth electrode materials.
These electrode materials are laminated with a metal or an alloy using an apparatus such as vapor deposition or sputtering to form an electrode. In the case of the first and second electrode materials using two or more kinds of metals as electrode materials, a multilayer film in which one kind of metal is laminated,
It may be alloyed by annealing.
【0014】本発明は、上記第一〜第三の電極材料を積
層後、あるいは第一〜第四の電極材料を積層後、良好な
オーミック接触を得るために、アニーリング処理を行
う。アニーリング温度は、400℃以上、好ましくは6
00℃以上であり、上限は特に限定されないが好ましく
は1200℃以下である。400℃以上でアニーリング
をすると抵抗率が下がり始め好ましいオーミック接触が
得られ、また1200℃以下であると窒化物半導体の分
解を防止することができ好ましい。In the present invention, after laminating the first to third electrode materials or laminating the first to fourth electrode materials, an annealing treatment is performed to obtain a good ohmic contact. The annealing temperature is 400 ° C. or higher, preferably 6 ° C.
The temperature is not lower than 00 ° C, and the upper limit is not particularly limited, but is preferably not higher than 1200 ° C. Annealing at a temperature of 400 ° C. or higher is preferable because the resistivity starts to decrease and a preferable ohmic contact is obtained. When the temperature is 1200 ° C. or lower, decomposition of the nitride semiconductor can be prevented, which is preferable.
【0015】本発明において、電極が形成される窒化物
半導体は、有機金属気相成長法(MOCVD、MOVP
E)、ハイドライド気相成長法(HDCVD)等の気相
成長法を用いて成長される。n電極はn型の窒化物半導
体に、p電極はp型の窒化物半導体にそれぞれ形成され
る。ここでn型あるいはp型とは、n型あるいはp型の
不純物が含有された窒化物半導体を示す。また、本発明
のn電極はいずれの層構成を有する窒化物半導体にも適
用させることができる。また本発明のn電極とともにp
型層に形成されるp電極はいずれのものでもよい。In the present invention, a nitride semiconductor on which an electrode is formed is formed by metal organic chemical vapor deposition (MOCVD, MOVP).
E), using a vapor phase growth method such as a hydride vapor phase growth method (HDCVD). The n-electrode is formed on an n-type nitride semiconductor, and the p-electrode is formed on a p-type nitride semiconductor. Here, n-type or p-type refers to a nitride semiconductor containing n-type or p-type impurities. Further, the n-electrode of the present invention can be applied to a nitride semiconductor having any layer configuration. In addition, p together with the n-electrode of the present invention
The p-electrode formed on the mold layer may be any one.
【0016】[0016]
【実施例】以下、実施例において本発明を更に詳細に説
明するが、本発明はこれに限定されるものではない。 [実施例1]本発明に係る実施例1は図4に示す窒化物
半導体素子(LD素子)の作成例であり、以下の手順で
作製される。まず、サファイア(C面)よりなる基板1
0を反応容器内にセットし、容器内を水素で十分置換し
た後、水素を流しながら、基板の温度を1050℃まで
上昇させ、基板のクリーニングを行う。続いて、温度を
510℃まで下げ、キャリアガスに水素、原料ガスにア
ンモニア(NH3)とTMG(トリメチルガリウム)と
を用い、基板10上にGaNよりなるバッファ層11を
約200オングストロームの膜厚で成長させる。EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. [Embodiment 1] Embodiment 1 according to the present invention is an example of producing the nitride semiconductor device (LD device) shown in FIG. 4, and is produced by the following procedure. First, a substrate 1 made of sapphire (C-plane)
After 0 is set in the reaction vessel and the inside of the vessel is sufficiently replaced with hydrogen, the temperature of the substrate is increased to 1050 ° C. while flowing hydrogen to clean the substrate. Subsequently, the temperature was lowered to 510 ° C., and a buffer layer 11 made of GaN was formed on the substrate 10 to a film thickness of about 200 Å using hydrogen as a carrier gas, ammonia (NH 3 ) and TMG (trimethylgallium) as a source gas. Grow with.
【0017】バッファ層11成長後、TMGのみ止め
て、温度を1050℃まで上昇させる。1050℃にな
ったら、同じく原料ガスにTMG、アンモニアガスを用
い、キャリア濃度1×1018/cm3アンドープGaNよ
りなる第2のバッファ層112を5μmの膜厚で成長さ
せる。第2のバッファ層112はInXAlYGa1-X-Y
N(0≦X、0≦Y、X+Y≦1)で構成でき、その組
成は特に問うものではないが、好ましくはアンドープで
Al(Y値)が0.1以下のAlYGa1-YN、最も好ま
しくはアンドープのGaNとする。続いて、1050℃
でTMG、アンモニア、不純物ガスにシランガス(Si
H 4)を用い、Siを1×1019/cm3ドープしたn型G
aNよりなるn側コンタクト層12を1μmの膜厚で成
長させる。このn側コンタクト層12は超格子で形成す
るとさらに好ましい。After growing the buffer layer 11, only TMG is stopped.
To raise the temperature to 1050 ° C. 1050 ℃
If you use TMG and ammonia gas as raw material gas
No, carrier concentration 1 × 1018/cmThreeUndoped GaN
A second buffer layer 112 having a thickness of 5 μm.
Let The second buffer layer 112 is made of InXAlYGa1-XY
N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1)
The composition is not particularly limited, but is preferably undoped.
Al (Y value) of 0.1 or lessYGa1-YN, most preferred
Or undoped GaN. Subsequently, 1050 ° C
Silane gas (Si) as TMG, ammonia, impurity gas
H Four) Using 1 × 1019/cmThreeDoped n-type G
An n-side contact layer 12 of aN is formed with a thickness of 1 μm.
Lengthen. This n-side contact layer 12 is formed of a superlattice.
Is more preferable.
【0018】次に、温度を800℃にして、原料ガスに
TMG、TMI(トリメチルインジウム)、アンモニ
ア、不純物ガスにシランガスを用い、Siを5×1018
/cm3ドープしたIn0.1Ga0.9Nよりなるクラック防
止層13を500オングストロームの膜厚で成長させ
る。Next, the temperature is set to 800 ° C., and TMG, TMI (trimethylindium) and ammonia are used as raw material gases, silane gas is used as impurity gas, and Si is used as 5 × 10 18.
An anti-crack layer 13 made of In 0.1 Ga 0.9 N doped with / cm 3 is grown to a thickness of 500 Å.
【0019】そして、温度を1050℃にして、TMA
(トリメチルアルミニウム)、TMG、アンモニア、シ
ランガスを用い、Siを5×1018/cm3ドープしたn
型Al0.2Ga0.8Nよりなる第1の層を20オングスト
ロームの膜厚で成長させ、続いて、TMA、シランを止
め、アンドープGaNよりなる第2の層を20オングス
トロームの膜厚で成長させる。そして、この操作をそれ
ぞれ100回繰り返し、総膜厚0.4μmの超格子層よ
りなるn側クラッド層14を成長させる。Then, the temperature was raised to 1050 ° C.
(Trimethylaluminum), TMG, ammonia, silane gas and doped with Si at 5 × 10 18 / cm 3
A first layer of type Al 0.2 Ga 0.8 N is grown to a thickness of 20 Å, followed by stopping TMA and silane, and a second layer of undoped GaN is grown to a thickness of 20 Å. This operation is repeated 100 times to grow the n-side cladding layer 14 composed of a superlattice layer having a total film thickness of 0.4 μm.
【0020】続いて、1050℃でアンドープGaNよ
りなるn側光ガイド層15を0.1μmの膜厚で成長さ
せる。次に、TMG、TMI、アンモニア、シランガス
を用いて活性層16を成長させる。活性層16は温度を
800℃に保持して、まずSiを8×1018/cm3でド
ープしたIn0.2Ga0.8Nよりなる井戸層を25オング
ストロームの膜厚で成長させる。次にTMIのモル比を
変化させるのみで同一温度で、Siを8×10 18/cm3
ドープしたIn0.01Ga0.99Nよりなる障壁層を50オ
ングストロームの膜厚で成長させる。この操作を2回繰
り返し、最後に井戸層を積層した総膜厚175オングス
トロームの多重量子井戸構造(MQW)の活性層16を
成長させる。Then, at 1050 ° C., undoped GaN
The n-side light guide layer 15 is grown to a thickness of 0.1 μm.
Let Next, TMG, TMI, ammonia, silane gas
Is used to grow the active layer 16. The active layer 16
While maintaining the temperature at 800 ° C., first, 8 × 1018/cmThreeIn
In0.2Ga0.825 Å of N well layer
It is grown with a storm film thickness. Next, the molar ratio of TMI
8 × 10 18/cmThree
Doped In0.01Ga0.9950 barrier layers made of N
It grows with the thickness of the ungstrom. Repeat this operation twice.
Repeatedly, finally, a total thickness of 175 Å
The active layer 16 of the multiple quantum well structure (MQW)
Let it grow.
【0021】次に、温度を1050℃に上げ、原料ガス
にTMG、TMA、アンモニア、不純物ガスにCp2M
g(シクロペンタジエニルマグネシウム)を用い、活性
層よりもバンドギャップエネルギーが大きく、Mgを1
×1020/cm3ドープしたp型Al0.3Ga0.7Nよりな
るp側キャップ層17を300オングストロームの膜厚
で成長させる。続いて、1050℃で、バンドギャップ
エネルギーがp側キャップ層17よりも小さい、アンド
ープGaNよりなるp側光ガイド層18を0.1μmの
膜厚で成長させる。Next, the temperature was increased to 1050 ° C., and TMG, TMA, ammonia was used as a source gas, and Cp 2 M was used as an impurity gas.
g (cyclopentadienyl magnesium), the band gap energy is larger than that of the active layer, and Mg is 1
A p-side cap layer 17 made of p-type Al 0.3 Ga 0.7 N doped with × 10 20 / cm 3 is grown to a thickness of 300 Å. Subsequently, at 1050 ° C., a p-side light guide layer 18 of undoped GaN having a band gap energy smaller than that of the p-side cap layer 17 is grown to a thickness of 0.1 μm.
【0022】続いて、TMG、TMA、アンモニア、C
p2Mgを用い、1050℃でMgを1×1020/cm3ド
ープしたp型Al0.2Ga0.8Nよりなる第1の層を20
オングストロームの膜厚で成長させ、続いてTMAのみ
を止め、Mgを1×1020/cm3ドープしたp型GaN
よりなる第2の層を20オングストロームの膜厚で成長
させる。そしてこの操作をそれぞれ100回繰り返し、
総膜厚0.4μmの超格子層よりなるp側クラッド層1
9を形成する。最後に、1050℃で、p側クラッド層
19の上に、Mgを2×1020/cm3ドープしたp型G
aNよりなるp側コンタクト層20を150オングスト
ロームの膜厚で成長させる。Subsequently, TMG, TMA, ammonia, C
A first layer made of p-type Al 0.2 Ga 0.8 N doped with Mg at 1 × 10 20 / cm 3 at 1050 ° C. was formed using p 2 Mg.
P-type GaN doped with Mg at 1 × 10 20 / cm 3 , grown only with Å thickness
A second layer is grown with a thickness of 20 Angstroms. And this operation is repeated 100 times,
P-side cladding layer 1 composed of a superlattice layer having a total thickness of 0.4 μm
9 is formed. Finally, at 1050 ° C., p-type G doped with 2 × 10 20 / cm 3 of Mg is formed on the p-side cladding layer 19.
A p-side contact layer 20 made of aN is grown to a thickness of 150 Å.
【0023】反応終了後、温度を室温まで下げ、さらに
窒素雰囲気中、ウェーハを反応容器内において、700
℃でアニーリングを行い、p型層をさらに低抵抗化す
る。アニーリング後、ウェーハを反応容器から取り出
し、図1に示すように、RIE装置により最上層のp側
コンタクト層20と、p側クラッド層19とをエッチン
グして、4μmのストライプ幅を有するリッジ形状とす
る。After the reaction is completed, the temperature is lowered to room temperature, and the wafer is placed in a nitrogen atmosphere in a reaction vessel.
Anneal at ℃ to further reduce the resistance of the p-type layer. After the annealing, the wafer is taken out of the reaction container, and as shown in FIG. I do.
【0024】次にリッジ表面にマスクを形成し、図1に
示すように、ストライプ状のリッジに対して左右対称に
して、n側コンタクト層12の表面を露出させる。Next, a mask is formed on the surface of the ridge, and as shown in FIG. 1, the surface of the n-side contact layer 12 is exposed symmetrically with respect to the stripe-shaped ridge.
【0025】次にp側コンタクト層20のストライプリ
ッジ最表面のほぼ全面にNiとAuよりなるp電極21
を形成する。一方、Tiを10nmと、Alを200n
mと、Rhを200nmと、Auを200nmの膜厚で
順に蒸着してn電極23をストライプ状のn側コンタク
ト層12のほぼ全面に形成する。p電極14を形成後、
マスクを除去し、ウェーハをアニーリング装置に入れ、
不活性ガス雰囲気中600℃で10分間アニーリングす
る。Next, a p-electrode 21 made of Ni and Au is formed on almost the entire outermost surface of the stripe ridge of the p-side contact layer 20.
To form On the other hand, Ti is 10 nm and Al is 200 n.
m, Rh are deposited in a thickness of 200 nm and Au is deposited in a thickness of 200 nm in this order, and an n-electrode 23 is formed on almost the entire surface of the n-side contact layer 12 in a stripe shape. After forming the p-electrode 14,
Remove the mask, put the wafer in the annealing equipment,
Anneal at 600 ° C. for 10 minutes in an inert gas atmosphere.
【0026】次に、図1に示すようにp電極21と、n
電極23との間に露出した窒化物半導体層の表面にSi
O2よりなる絶縁膜25を形成し、この絶縁膜25を介
してp電極21と電気的に接続したpパッド電極22、
及びnパッド電極24を形成する。以上のようにして、
n電極とp電極とを形成したウェーハを研磨装置に移送
し、ダイヤモンド研磨剤を用いて、窒化物半導体を形成
していない側のサファイア基板1をラッピングし、基板
の厚さを50μmとする。ラッピング後、さらに細かい
研磨剤で1μmポリシングして基板表面を鏡面状とす
る。Next, as shown in FIG.
The surface of the nitride semiconductor layer exposed between the electrode 23 and Si
An insulating film 25 made of O 2 is formed, and a p pad electrode 22 electrically connected to the p electrode 21 via the insulating film 25 is formed.
And an n-pad electrode 24 are formed. As described above,
The wafer on which the n-electrode and the p-electrode have been formed is transferred to a polishing apparatus, and the sapphire substrate 1 on which the nitride semiconductor is not formed is wrapped using a diamond abrasive to reduce the thickness of the substrate to 50 μm. After lapping, the substrate surface is mirror-finished by polishing with a finer abrasive at 1 μm.
【0027】基板研磨後、研磨面側をスクライブして、
ストライプ状の電極に垂直な方向でバー状に劈開し、劈
開面に共振器を作製する。共振器面にSiO2とTiO2
よりなる誘電体多層膜を形成し、最後にp電極に平行な
方向で、バーを切断してレーザチップとした。次にチッ
プをフェースアップ(基板とヒートシンクとが対向した
状態)でヒートシンクに設置し、それぞれの電極をワイ
ヤーボンディングして、LD素子を作製した。このLD
素子を室温でレーザ発振を試みたところ、室温におい
て、しきい値電流密度2.9kA/cm2、しきい値電圧
4.4Vで良好なオーミック接触が得られた。更にこの
LD素子より無造作に100個抽出し、40℃、90%
RHの高温高湿状態で連続発振をさせたところ、いずれ
の素子も10時間以上の寿命を示し、高湿でも電極が変
質することなく十分な耐久性を有することがわかった。After the substrate is polished, the polished surface side is scribed,
Cleavage is performed in a bar shape in a direction perpendicular to the stripe-shaped electrodes, and a resonator is formed on the cleavage plane. SiO 2 and TiO 2 on the resonator surface
A dielectric multilayer film was formed, and finally the bar was cut in a direction parallel to the p-electrode to form a laser chip. Next, the chip was placed on the heat sink face up (in a state where the substrate and the heat sink faced each other), and the respective electrodes were wire-bonded to produce an LD element. This LD
When the device was subjected to laser oscillation at room temperature, favorable ohmic contact was obtained at room temperature with a threshold current density of 2.9 kA / cm 2 and a threshold voltage of 4.4 V. In addition, 100 LDs are randomly extracted from this LD element, and 40%, 90%
When continuous oscillation was performed in a high-temperature, high-humidity state of RH, it was found that all of the elements exhibited a life of 10 hours or more, and that the electrodes had sufficient durability even in high humidity without being deteriorated.
【0028】[実施例2]実施例1において、n型Ga
Nコンタクト層の表面に形成する電極を、Zrを60n
m、Siを30nm、Rhを200nm、Auを200
nmの膜厚で順に蒸着した他は同様にして行ったとこ
ろ、同様に良好なオーミック接触が得られた。更に、実
施例1と同様に高温高湿状態で連続発振をさせたとこ
ろ、実施例1と同様に良好な結果が得られた。[Embodiment 2] In Embodiment 1, n-type Ga
An electrode formed on the surface of the N contact layer is formed by
m, Si 30 nm, Rh 200 nm, Au 200
A similar ohmic contact was obtained in the same manner except that the film was sequentially deposited with a film thickness of nm. Further, when continuous oscillation was performed in a high-temperature and high-humidity state as in Example 1, good results were obtained as in Example 1.
【0029】[実施例3]実施例1において、n型Ga
Nコンタクト層の表面に形成する電極を、Tiを40n
m、Alを150nm、Tiを30nm、Rhを200
nm、Auを200nmの膜厚で順に蒸着した他は同様
にして行ったところ、同様に良好なオーミック接触が得
られた。更に、実施例1と同様に高温高湿状態で連続発
振をさせたところ、実施例1とほぼ同様の結果が得られ
た。[Embodiment 3] In Embodiment 1, n-type Ga
The electrode formed on the surface of the N contact layer is
m, Al 150 nm, Ti 30 nm, Rh 200
When a similar ohmic contact was obtained, the same procedure was performed except that nm and Au were sequentially deposited to a thickness of 200 nm. Furthermore, when continuous oscillation was performed in a high-temperature and high-humidity state as in Example 1, almost the same results as in Example 1 were obtained.
【0030】[比較例1]実施例1において、n型Ga
Nコンタクト層の表面に形成する電極を、Tiを10n
m、Siを50nm、Auを200nmの膜厚で順に蒸
着した他は同様にして行ったところ、同様に良好なオー
ミック接触が得られたものも、実施例1と同様に高温高
湿状態で連続発振をさせたところ、1時間未満しか連続
発振できなかった。Comparative Example 1 In Example 1, n-type Ga
An electrode formed on the surface of the N contact layer is made of 10n of Ti.
m, Si were deposited in the order of 50 nm and Au was deposited in the order of 200 nm. The same procedure was performed except that a good ohmic contact was obtained. Oscillation resulted in continuous oscillation for less than one hour.
【0031】[0031]
【発明の効果】本発明は、n型窒化物半導体層と非常に
好ましいオーミック接触を有し、過酷な条件で発光素子
が使用されても、変質しにくく素子の寿命特性が良好な
n電極を提供することができる。According to the present invention, an n-electrode which has a very favorable ohmic contact with an n-type nitride semiconductor layer, is hardly deteriorated even when a light emitting device is used under severe conditions, and has a good device life characteristic. Can be provided.
【図1】本発明のn電極を設けることのできる一実施形
態である窒化物半導体発光素子の構造を示す模式断面図
である。FIG. 1 is a schematic cross-sectional view showing a structure of a nitride semiconductor light emitting device according to an embodiment in which an n-electrode according to the present invention can be provided.
10・・・・基板 11・・・・バッファ層 112・・・・第2のバッファ層 12・・・・n側コンタクト層 13・・・・クラック防止層 14・・・・n側クラッド層(超格子層) 15・・・・n側光ガイド層 16・・・・活性層 17・・・・キャップ層 18・・・・p側光ガイド層 19・・・・p側クラッド層(超格子層) 20・・・・p側コンタクト層 21・・・・p電極 22・・・・pパッド電極 23・・・・n電極 24・・・・nパッド電極 25・・・・絶縁膜 10 substrate 11 buffer layer 112 second buffer layer 12 n-side contact layer 13 crack preventing layer 14 n-cladding layer ( ... N-side light guide layer 16... Active layer 17... Cap layer 18... P-side light guide layer 19. 20) p-side contact layer 21 p-electrode 22 p-pad electrode 23 n-electrode 24 n-pad electrode 25 insulating film
Claims (2)
極において、該電極が少なくとも、チタン、ジルコニウ
ム及びタングステンの少なくとも1種からなる第一の電
極材料、アルミニウム、ケイ素及びゲルマニウムの少な
くとも1種からなる第二の電極材料、並びにロジウムか
らなる第三の電極材料を含有することを特徴とするn型
窒化物半導体の電極。1. An electrode formed on the surface of an n-type nitride semiconductor layer, wherein the electrode is at least one of a first electrode material made of at least one of titanium, zirconium and tungsten, and at least one of aluminum, silicon and germanium. An electrode of an n-type nitride semiconductor, comprising a second electrode material comprising: and a third electrode material comprising rhodium.
含有することを特徴とする請求項1に記載のn型窒化物
半導体の電極。2. The n-type nitride semiconductor electrode according to claim 1, wherein gold is contained as a fourth electrode material of said electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16072697A JPH118410A (en) | 1997-06-18 | 1997-06-18 | Electrode of n-type nitride semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16072697A JPH118410A (en) | 1997-06-18 | 1997-06-18 | Electrode of n-type nitride semiconductor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001341208A Division JP3941464B2 (en) | 2001-11-06 | 2001-11-06 | Manufacturing method of nitride semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH118410A true JPH118410A (en) | 1999-01-12 |
Family
ID=15721145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16072697A Pending JPH118410A (en) | 1997-06-18 | 1997-06-18 | Electrode of n-type nitride semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH118410A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003077862A (en) * | 2001-09-06 | 2003-03-14 | Toyoda Gosei Co Ltd | n-TYPE ELECTRODE FOR III NITRIDE-SYSTEM COMPOUND SEMICONDUCTOR ELEMENT |
JP2006156639A (en) * | 2004-11-29 | 2006-06-15 | Sharp Corp | Semiconductor laser element, optical disc apparatus, and light transmission system |
US7135714B2 (en) | 2000-06-30 | 2006-11-14 | Kabushiki Kaisha Toshiba | Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element |
JP2007258327A (en) * | 2006-03-22 | 2007-10-04 | Mitsubishi Cable Ind Ltd | Nitride semiconductor light emitting diode |
EP1868251A1 (en) * | 2005-04-08 | 2007-12-19 | Mitsubishi Cable Industries, Ltd. | Semiconductor element and method for manufacturing same |
JP5242156B2 (en) * | 2005-06-03 | 2013-07-24 | 古河電気工業株式会社 | III-V nitride compound semiconductor device and electrode forming method |
US8981420B2 (en) | 2005-05-19 | 2015-03-17 | Nichia Corporation | Nitride semiconductor device |
EP2763192A4 (en) * | 2011-09-30 | 2015-06-24 | Soko Kagaku Co Ltd | Nitride semiconductor element and method for producing same |
JP2022172366A (en) * | 2018-10-17 | 2022-11-15 | 日機装株式会社 | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device |
-
1997
- 1997-06-18 JP JP16072697A patent/JPH118410A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355212B2 (en) | 2000-06-30 | 2008-04-08 | Kabushiki Kaisha Toshiba | Light emitting element |
US7135714B2 (en) | 2000-06-30 | 2006-11-14 | Kabushiki Kaisha Toshiba | Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element |
US7138665B2 (en) | 2000-06-30 | 2006-11-21 | Kabushiki Kaisha Toshiba | Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element |
US7138664B2 (en) | 2000-06-30 | 2006-11-21 | Kabushiki Kaisha Toshiba | Semiconductor device having a light emitting element |
US7179671B2 (en) | 2000-06-30 | 2007-02-20 | Kabushiki Kaisha Toshiba | Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element |
US7221002B2 (en) | 2000-06-30 | 2007-05-22 | Kabushiki Kaisha Toshiba | Light emitting element, method of manufacturing the same, and semiconductor device having light emitting element |
US7872274B2 (en) | 2001-09-06 | 2011-01-18 | Toyoda Gosei Co., Ltd. | n-Electrode for III group nitride based compound semiconductor element |
JP2003077862A (en) * | 2001-09-06 | 2003-03-14 | Toyoda Gosei Co Ltd | n-TYPE ELECTRODE FOR III NITRIDE-SYSTEM COMPOUND SEMICONDUCTOR ELEMENT |
JP2006156639A (en) * | 2004-11-29 | 2006-06-15 | Sharp Corp | Semiconductor laser element, optical disc apparatus, and light transmission system |
EP1868251A1 (en) * | 2005-04-08 | 2007-12-19 | Mitsubishi Cable Industries, Ltd. | Semiconductor element and method for manufacturing same |
EP1868251A4 (en) * | 2005-04-08 | 2009-05-27 | Mitsubishi Chem Corp | Semiconductor element and method for manufacturing same |
US8012783B2 (en) | 2005-04-08 | 2011-09-06 | Mitsubishi Chemical Corporation | Semiconductor element and method for manufacturing same |
US8981420B2 (en) | 2005-05-19 | 2015-03-17 | Nichia Corporation | Nitride semiconductor device |
JP5242156B2 (en) * | 2005-06-03 | 2013-07-24 | 古河電気工業株式会社 | III-V nitride compound semiconductor device and electrode forming method |
JP2007258327A (en) * | 2006-03-22 | 2007-10-04 | Mitsubishi Cable Ind Ltd | Nitride semiconductor light emitting diode |
EP2763192A4 (en) * | 2011-09-30 | 2015-06-24 | Soko Kagaku Co Ltd | Nitride semiconductor element and method for producing same |
US9281439B2 (en) | 2011-09-30 | 2016-03-08 | Soko Kagaku Co., Ltd. | Nitride semiconductor element and method for producing same |
JP2022172366A (en) * | 2018-10-17 | 2022-11-15 | 日機装株式会社 | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4325232B2 (en) | Nitride semiconductor device | |
JP4378070B2 (en) | Nitride semiconductor device | |
JP3282174B2 (en) | Nitride semiconductor light emitting device | |
JP4947035B2 (en) | Nitride semiconductor device | |
JP6079628B2 (en) | Nitride semiconductor light emitting device | |
JP3223832B2 (en) | Nitride semiconductor device and semiconductor laser diode | |
JPWO2005122290A1 (en) | Nitride semiconductor light emitting device | |
JPH11219910A (en) | Method of growing nitride semiconductor and nitride semiconductor element | |
JP2007234648A (en) | Method of manufacturing nitride semiconductor light-emitting element | |
JP5047508B2 (en) | Manufacturing method of nitride semiconductor light emitting device | |
JPH10145000A (en) | Nitride semiconductor element and its manufacture | |
JP3651260B2 (en) | Nitride semiconductor device | |
JPH1065213A (en) | Nitride semiconductor element | |
JP2005209925A (en) | Lamination semiconductor substrate | |
JP4043087B2 (en) | Nitride semiconductor device manufacturing method and nitride semiconductor device | |
JPH10145006A (en) | Compound semiconductor device | |
JPH118410A (en) | Electrode of n-type nitride semiconductor | |
JP2000196201A (en) | Nitride semiconductor laser element | |
JP3951973B2 (en) | Nitride semiconductor device | |
JP3847000B2 (en) | Nitride semiconductor device having nitride semiconductor layer with active layer on nitride semiconductor substrate and method for growing the same | |
JP4423969B2 (en) | Nitride semiconductor multilayer substrate and nitride semiconductor device and nitride semiconductor laser device using the same | |
JP3434162B2 (en) | Nitride semiconductor device | |
JP3537984B2 (en) | Nitride semiconductor laser device | |
JPH11195812A (en) | Nitride semiconductor light-emitting element | |
JP3941464B2 (en) | Manufacturing method of nitride semiconductor light emitting device |