JPH1182801A - Solenoid valve - Google Patents

Solenoid valve

Info

Publication number
JPH1182801A
JPH1182801A JP25118997A JP25118997A JPH1182801A JP H1182801 A JPH1182801 A JP H1182801A JP 25118997 A JP25118997 A JP 25118997A JP 25118997 A JP25118997 A JP 25118997A JP H1182801 A JPH1182801 A JP H1182801A
Authority
JP
Japan
Prior art keywords
valve
valve body
plunger
orifice
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25118997A
Other languages
Japanese (ja)
Inventor
Masayuki Imai
正幸 今井
Yoshiyuki Kume
義之 久米
Kazuhiro Miyamoto
和弘 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP25118997A priority Critical patent/JPH1182801A/en
Publication of JPH1182801A publication Critical patent/JPH1182801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid valve capable of switching a flow rate in three or more steps and capable of playing both parts of a flow rate switching valve and an expansion valve, although a structure is comparatively simple, costs are low, and manufacturing is facilitated. SOLUTION: This solenoid valve 1 is provided with a valve body 30 equipped with a valve chamber 32, an inlet 8, an outlet 9 and a valve seat 35, a plunger 20, and a solenoid 10 arranged on the outer periphery in order to move the plunger 20 back and forth in the directions approaching and parting from the seat 35. Plural orifices 51, 52, 36 are formed so that an effective cross section area becomes larger gradually in a passage from the inlet 8 to the outlet 9. Three valve elements are disposed so as to be moved in a direction parting from the valve seat 35 integrally or linking with the plunger 20. The flow rate of fluid flowing from the inlet 8 to the outlet 9 is switched at least in three steps by switching an applied voltage to the solenoid 20 at least in three steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、カーエア
コン等の冷凍サイクルに組み込むのに好適な電磁弁に係
り、特に、流量切り換え弁と膨張弁の両方の役目を担う
ことができるようにされたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solenoid valve suitable for being incorporated in a refrigeration cycle of, for example, a car air conditioner, and more particularly to a solenoid valve which can serve as both a flow switching valve and an expansion valve. About things.

【0002】[0002]

【従来の技術】例えば、カーエアコンの冷凍サイクルに
おいては、通常、冷媒通路がフロント側(運転席側)冷
房用とリア側冷房用とに分岐され、それら両通路にそれ
ぞれエバポレータが備えられ、それら両エバポレータの
上流側にそれぞれ膨張弁が配置されるが、特に、リア側
の膨張弁の上流側には、必要に応じてリア側冷媒通路を
開閉(冷房のON/OFF)すべく、電磁弁が配置され
ることが多い。しかしながら、従来、例えば、実公平3
−5739号公報に示す電磁弁は、単純に通路を開閉す
るだけで、流量調整は行えなかった。
2. Description of the Related Art For example, in a refrigeration cycle of a car air conditioner, a refrigerant passage is usually branched into a front side (driver's seat side) for cooling and a rear side for cooling, and both paths are provided with evaporators, respectively. An expansion valve is disposed on each of the upstream sides of the evaporators. In particular, on the upstream side of the rear expansion valve, a solenoid valve is provided to open and close the rear refrigerant passage (cooling ON / OFF) as necessary. Are often arranged. However, conventionally, for example,
In the solenoid valve disclosed in Japanese Patent No. 5739, the flow rate cannot be adjusted merely by opening and closing the passage.

【0003】この種の電磁弁を図9を参照しながら、以
下に簡単に説明する。図示例の電磁弁2は、弁室32、
流入口8、流出口9、及び弁座35を有する弁本体部3
0と、プランジャ20と、このプランジャ20を前記弁
座35に接近離隔する方向に進退させるべくその外周に
配置されたソレノイド10と、を備えている。
[0003] This type of solenoid valve will be briefly described below with reference to FIG. The illustrated solenoid valve 2 includes a valve chamber 32,
Valve body 3 having inlet 8, outlet 9, and valve seat 35
0, a plunger 20, and a solenoid 10 arranged on the outer periphery of the plunger 20 to move the plunger 20 toward and away from the valve seat 35.

【0004】前記ソレノイド10は、ヨーク13、コイ
ル14,吸引子(ステータ)15、止めネジ17、電源
ケーブル18、案内スリーブ12等からなっており、図
外の車載電源(バッテリ)からエアコン制御部を介して
所定の電圧(例えば5Vと12V)が印加されるように
なっている。前記弁本体部30に形成された弁室32の
中央には、先細り円筒状の弁座35が突設され、前記弁
室32に連なって冷媒流入口8が設けられるとともに、
前記弁座35に設けられた後段オリフィス36の下流に
冷媒流出口9が設けられている。
The solenoid 10 includes a yoke 13, a coil 14, a suction element (stator) 15, a set screw 17, a power cable 18, a guide sleeve 12, and the like. A predetermined voltage (for example, 5 V and 12 V) is applied via the. At the center of the valve chamber 32 formed in the valve body 30, a tapered cylindrical valve seat 35 is protruded, and a refrigerant inlet 8 is provided so as to be continuous with the valve chamber 32.
A refrigerant outlet 9 is provided downstream of the rear orifice 36 provided in the valve seat 35.

【0005】前記ソレノイド10の案内スリーブ12内
には、前端部(下端部)中央に当たり面が円錐面で形成
されている第1弁体25が下向きに突設されたプランジ
ャ20が摺動自在に嵌挿され、このプランジャ20の上
部には、前記吸引子15に突設された概略断面逆凸字状
のホルダ16が摺動自在に嵌挿される概略断面凹字状の
凹所21が穿設されており、このプランジャ20は、そ
れと前記ホルダ16との間に縮装されたコイルバネ23
により常時弁座35側(下側)に付勢されている。
In the guide sleeve 12 of the solenoid 10, a plunger 20 slidably provided with a first valve body 25 having a conical surface at its front end (lower end) and having a conical surface projecting downward. At the upper part of the plunger 20, there is formed a recess 21 having a substantially concave cross-sectional shape into which a holder 16 having a substantially inverted cross-sectional convex shape projecting from the suction element 15 is slidably inserted. The plunger 20 has a coil spring 23 compressed between the plunger 20 and the holder 16.
, Which constantly urges the valve seat 35 toward the lower side.

【0006】また、前記第1弁体25と前記弁座35と
の間に前記プランジャ20により前記弁座35から離れ
る方向に引き上げられる円柱状の第2弁体40が配置さ
れ、この第2弁体40の軸線上に、前記第1弁体25に
より開閉される、実効通路断面積が前記後段オリフィス
36より小なる前段オリフィス51が形成されるととも
に、該第2弁体40により前記後段オリフィス36が開
閉せしめられるようにされている。
A cylindrical second valve element 40 is disposed between the first valve element 25 and the valve seat 35 so as to be lifted away from the valve seat 35 by the plunger 20. On the axis of the body 40, a front-stage orifice 51, which is opened and closed by the first valve body 25 and has an effective passage sectional area smaller than that of the rear-stage orifice 36, is formed. Can be opened and closed.

【0007】より詳細には、前記第2弁体40は、前記
プランジャ20の前端側に突設された筒状脚部24の下
端部に設けられたリング状の係止片部26に接離可能に
支承され、前記プランジャ20により、前記第1弁体2
5が前記前段オリフィス51を開いた状態でそれと一緒
に引き上げられるようにされている。また、前記筒状脚
部24には、前記流入口8からの冷媒を前記プランジャ
20の前端面と前記第2弁体3の上面との間に形成され
る冷媒室Sに導く所定個数の透孔37、37、…が形成
されている。
More specifically, the second valve body 40 comes into contact with and separates from a ring-shaped locking piece 26 provided at the lower end of a cylindrical leg 24 protruding from the front end of the plunger 20. And the first valve body 2 is supported by the plunger 20.
5 is adapted to be lifted with the front-stage orifice 51 in an opened state. The cylindrical leg 24 has a predetermined number of transparent refrigerants that guide the refrigerant from the inflow port 8 to a refrigerant chamber S formed between the front end surface of the plunger 20 and the upper surface of the second valve body 3. Holes 37, 37,... Are formed.

【0008】このような構成の電磁弁2においては、前
記ソレノイド10に対して電圧が印加されていないと
き、つまり、前記ソレノイド10が通電励磁されていな
いとき(OFF時)には、図示のように、プランジャ2
0がコイルバネ23の付勢力によって弁座35側(下
側)に押し下げられ、第1弁体25が第2弁体40に圧
接して前段オリフィス51を閉じるとともに、第2弁体
40が弁座35側に押し下げられられ、それに圧接して
後段オリフィス36を閉じ、閉弁状態となる。一方、前
記ソレノイド10に小電圧(例えば5V)が印加される
と、前記ソレノイド10が通電励磁されてON状態とな
り、プランジャ20がコイルバネ23の付勢力に抗して
吸引子15側(上側)の途中(中間位置)まで引き上げ
られ、第1弁体25が第2弁体40から離れて前段オリ
フィス51を開く。
In the solenoid valve 2 having such a configuration, when no voltage is applied to the solenoid 10, that is, when the solenoid 10 is not energized and excited (when OFF), as shown in FIG. And plunger 2
0 is pushed down to the valve seat 35 side (downward) by the urging force of the coil spring 23, the first valve body 25 is pressed against the second valve body 40 to close the front-stage orifice 51, and the second valve body 40 is The orifice 36 is pushed down to the side 35 and pressed against it to close the rear-stage orifice 36 to be in a valve-closed state. On the other hand, when a small voltage (for example, 5 V) is applied to the solenoid 10, the solenoid 10 is energized and excited to be turned on, and the plunger 20 is turned on the suction element 15 side (upper side) against the urging force of the coil spring 23. The first valve body 25 is lifted halfway (intermediate position) to separate from the second valve body 40 and open the front-stage orifice 51.

【0009】これにより、流入口8から筒状脚部24に
形成された透孔37、37、…を通じて、第2弁体40
とプランジャ20との間に形成された冷媒室Sに流入し
た冷媒が前段オリフィス51及び後段オリフィス36を
通じて冷媒流出口9に流出してエバポレータに導かれ
る。このときの冷媒の流量は、前記前段オリフィス51
の実効通路断面積により決まるので、その流量は比較的
少なく、冷房力は弱となる。
As a result, the second valve body 40 is formed from the inflow port 8 through the through holes 37 formed in the cylindrical leg 24.
The refrigerant that has flowed into the refrigerant chamber S formed between the refrigerant and the plunger 20 flows out to the refrigerant outlet 9 through the front orifice 51 and the rear orifice 36 and is guided to the evaporator. At this time, the flow rate of the refrigerant is
, The flow rate is relatively small, and the cooling power is weak.

【0010】また、前記ソレノイド10に最大電圧(例
えば12V)が印加されると、前記吸引子15の吸引力
が最大となり、前記プランジャ20が前記コイルバネ2
3の付勢力に抗して最上昇位置(前記吸引子15に近接
する位置)まで引き上げられ、それにより、前記第1弁
体25が前記前段オリフィス51を開いた状態で、前記
第2弁体40が前記筒状脚部24の係止片部26に支承
係止されて前記プランジャ20と一緒に引き上げられ、
前記第2弁体40が前記弁座35から離れて前記後段オ
リフィス36を開き、それによって、流入口8から弁室
32に流入した冷媒が第2弁体40下面と弁座35との
間を通って前記後段オリフィス36に流れ込み、流出口
9から前記エバポレータに導かれる。したがって、この
最大電圧印加時には、前記小電圧印加時に比して、前記
流入口8から流出口9に流れる冷媒の流量が大幅に増大
し、冷房力が強となる。
When a maximum voltage (for example, 12 V) is applied to the solenoid 10, the suction force of the suction element 15 is maximized, and the plunger 20 is moved by the coil spring 2
3 is lifted up to the highest position (a position close to the suction element 15) against the urging force of the third valve body 3 so that the first valve body 25 opens the front-stage orifice 51 and the second valve body 25 is opened. 40 is supported and locked by the locking piece 26 of the cylindrical leg 24 and is pulled up together with the plunger 20,
The second valve body 40 separates from the valve seat 35 and opens the rear orifice 36, whereby the refrigerant flowing into the valve chamber 32 from the inflow port 8 flows between the lower surface of the second valve body 40 and the valve seat 35. Then, it flows into the rear-stage orifice 36 and is guided from the outlet 9 to the evaporator. Therefore, when the maximum voltage is applied, the flow rate of the refrigerant flowing from the inflow port 8 to the outflow port 9 is greatly increased as compared with when the small voltage is applied, and the cooling power is increased.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
た如くの従来の電磁弁においては、冷媒流量を2段階
にしか切り換えることができず、もっと細やかに流量調
節を行いたいとの要望には応えることができず、また、
流量切り換え弁の役目しか果たさず、それが組み込ま
れた冷凍サイクルにあっては別途に膨張弁が必要であっ
た。なお、ステッピングモータ等で弁体を回転させる電
動弁を前記した冷凍サイクルに組み込めば細やかな流量
調節を行うことが可能であるが、電動弁はその構造及び
制御系が複雑で高価であるので、コストの面で問題があ
る。
However, in the conventional solenoid valve as described above, the flow rate of the refrigerant can be switched only in two stages, and it is possible to meet the demand for finer flow rate adjustment. Not be able to
It only served as a flow switching valve, and a refrigeration cycle in which it was incorporated required a separate expansion valve. In addition, it is possible to finely adjust the flow rate by incorporating an electric valve that rotates a valve body with a stepping motor or the like in the refrigeration cycle, but since the structure and control system of the electric valve are complicated and expensive, There is a problem in cost.

【0012】また、冷凍サイクルに前記電磁弁と膨張弁
の両方を組み込むことは、部品点数が多くなるととも
に、配管系が複雑となり、コスト的に不利である。本発
明は、上述の如くの問題を解消すべくなされたもので、
その目的とするところは、構造が比較的簡単でかつ低コ
ストで容易に製作できるものでありながら、流量を3段
階以上に切り換えることができるとともに、流量切り換
え弁と膨張弁の両方の役目を果たし得るようにされた電
磁弁を提供することを目的とする。
Incorporation of both the solenoid valve and the expansion valve into the refrigeration cycle increases the number of parts, complicates the piping system, and is disadvantageous in cost. The present invention has been made to solve the problems described above,
The purpose is to have a relatively simple structure, to be easily manufactured at low cost, and to be able to switch the flow rate in three or more stages and to act as both a flow switching valve and an expansion valve. It is an object to provide a solenoid valve adapted to be obtained.

【0013】[0013]

【課題を解決するための手段】上記目的を達成すべく、
本発明に係る電磁弁は、基本的には、弁室、流入口、流
出口、及び弁座を有する弁本体部と、プランジャと、該
プランジャを前記弁座に接近離隔する方向に進退させる
べくその外周に配置されたソレノイドと、を備え、前記
流入口から流出口に至る流路に、実効通路断面積が順次
大きくなるように複数本のオリフィスが形成されるとと
もに、それらのオリフィスを開閉すべく、前記プランジ
ャと一体的に又はそれに連係して前記弁座から離れる方
向に移動せしめられる複数個の弁体が配備される。そし
て、前記ソレノイドに対する印加電圧を切り換えること
により、前記流入口から流出口に流れる流体の流量が段
階的に制御されることを特徴としている。
In order to achieve the above object,
An electromagnetic valve according to the present invention basically has a valve body, a valve body, an inlet, an outlet, and a valve seat, a plunger, and a plunger for moving the plunger toward and away from the valve seat. A plurality of orifices are formed in the flow path from the inflow port to the outflow port so that the effective passage cross-sectional area is sequentially increased, and the orifices are opened and closed. To this end, a plurality of valve bodies are provided which are moved integrally with or in association with the plunger in a direction away from the valve seat. By switching the voltage applied to the solenoid, the flow rate of the fluid flowing from the inflow port to the outflow port is controlled stepwise.

【0014】本発明の好ましい態様では、前記プランジ
ャに第1弁体が設けられるとともに、前記弁座に後段オ
リフィスが形成され、前記第1弁体と前記弁座との間に
前記プランジャにより前記弁座から離れる方向に順次引
き上げられる第2弁体と第3弁体とが配置され、前記第
2弁体に、前記第1弁体により開閉される、実効通路断
面積が前記後段オリフィスより小なる前段オリフィスが
形成され、前記第3弁体に、前記第2弁体により開閉さ
れる、実効通路断面積が前記前段オリフィスより大で前
記後段オリフィスより小なる中段オリフィスが形成さ
れ、かつ、前記第3弁体により前記後段オリフィスが開
閉せしめられるようにされていて、前記ソレノイドに対
する印加電圧が小のとき、前記第1弁体が前記前段オリ
フィスを開き、前記印加電圧が中のとき、前記第1弁体
が前記前段オリフィスを開いたまま、前記第2弁体が前
記中段オリフィスを開き、前記印加電圧が大のとき、前
記第1弁体及び第2弁体がそれぞれ前記前段オリフィス
及び中段オリフィスを開いたまま、前記第3弁体が前記
後段オリフィスを開き、それによって、前記流入口から
流出口に流れる流体の流量が段階的に制御される。
In a preferred aspect of the present invention, the plunger is provided with a first valve body, and a second-stage orifice is formed in the valve seat, and the plunger is provided between the first valve body and the valve seat by the plunger. A second valve body and a third valve body that are sequentially lifted in a direction away from the seat are disposed, and the second valve body has an effective passage cross-sectional area that is opened and closed by the first valve body and is smaller than the rear orifice. A front stage orifice is formed, and a middle stage orifice formed in the third valve body and opened and closed by the second valve body and having an effective passage sectional area larger than the front stage orifice and smaller than the rear stage orifice is formed, and The third orifice is opened and closed by three valve bodies, and when the voltage applied to the solenoid is small, the first valve body opens the front orifice, When the applied voltage is medium, the first valve body keeps the front-stage orifice open, the second valve body opens the middle-stage orifice, and when the applied voltage is large, the first valve body and the second valve The third valve body opens the rear orifice with the body opening the front orifice and the middle orifice, respectively, whereby the flow rate of the fluid flowing from the inlet to the outlet is controlled stepwise.

【0015】また、他の好ましい態様では、前記プラン
ジャに第1弁体が設けられるとともに、前記弁座に後段
オリフィスが形成され、前記第1弁体と前記弁座との間
に前記プランジャにより前記弁座から離れる方向に引き
上げられる第2弁体が配置され、該第2弁体に、前記第
1弁体により開閉される、実効通路断面積が前記後段オ
リフィスより小なる前段オリフィスが形成されるととも
に、該第2弁体により前記後段オリフィスが開閉せしめ
られるようにされていて、前記ソレノイドに対する印加
電圧が小のとき、前記第1弁体が前記前段オリフィスを
半開きにし、前記印加電圧が中のとき、前記第1弁体が
前記前段オリフィスを全開し、前記印加電圧が大のと
き、前記第1弁体が前記前段オリフィスを全開したま
ま、前記第2弁体が前記後段オリフィスを開き、それに
よって、前記流入口から流出口に流れる流体の流量が3
段階に切り換えられるようにされる。
In another preferred embodiment, the plunger is provided with a first valve body, and a second-stage orifice is formed in the valve seat, and the plunger is provided between the first valve body and the valve seat. A second valve body that is lifted in a direction away from the valve seat is arranged, and a front-stage orifice that is opened and closed by the first valve body and that has an effective passage cross-sectional area smaller than the rear-stage orifice is formed in the second valve body. The second orifice is configured to open and close the rear-stage orifice, and when the applied voltage to the solenoid is small, the first valve body opens the front-stage orifice halfway, and the applied voltage is When the first valve element fully opens the front-stage orifice and the applied voltage is large, the first valve element opens the front-stage orifice fully and the second valve element moves forward. Open subsequent orifice, whereby the flow rate of the fluid flowing through the outlet from the inlet 3
It is made to be able to be switched between stages.

【0016】さらに具体的な好ましい態様では、前記第
1弁体は、前記前段オリフィスとの当たり面が円錐面で
形成されてなる。また、前記第2弁体は、前記プランジ
ャに突設された筒状脚部の下端部に設けられた係止片部
に接離可能に支承され、前記プランジャにより、前記第
1弁体が前記前段オリフィスを開いた状態でそれと一緒
に引き上げられるようにされてなる。
In a more specific preferred embodiment, the first valve element has a contact surface with the front orifice formed as a conical surface. Further, the second valve body is supported so as to be able to contact and separate from a locking piece provided at a lower end of a cylindrical leg protruding from the plunger, and the first valve body is moved by the plunger. The front orifice is opened so that it can be pulled up with it.

【0017】さらに、前記第3弁体は、上端縁部に内側
に突出する係止部が設けられるとともに底部に前記中段
オリフィスが形成された有底円筒形をしており、前記係
止部が前記プランジャの周側部に穿設された凹溝下端面
に接離可能に支承され、前記プランジャにより、前記第
2弁体が前記中段オリフィスを開いた状態でそれと一緒
に引き上げられるようにされてなる。
Further, the third valve element has a bottomed cylindrical shape in which an inwardly projecting locking portion is provided at an upper end edge portion and the middle orifice is formed at a bottom portion. The plunger is supported so as to be able to contact and separate from the lower end surface of a concave groove formed in the peripheral side of the plunger, and the plunger allows the second valve body to be pulled up together with the middle stage orifice in an opened state. Become.

【0018】また、別の好ましい態様では、前記プラン
ジャにその軸線方向に沿って断面凸字状の凹所が穿設さ
れるとともに、この凹所に断面凸字状のストッパがその
大径部を前記凹所の大径部に位置させた状態で摺動自在
に嵌挿され、このストッパの大径部と前記ソレノイドの
吸引子との間及び前記凹所の底面との間にそれぞれ圧縮
コイルバネが縮装され、前記印加電圧が中とされて、前
記プランジャが引き上げられたとき、前記ストッパが前
記吸引子に衝接して停止せしめられて、前記プランジャ
もそこで停止せしめられるようにされる。
In another preferred embodiment, the plunger is provided with a recess having a convex cross section along the axial direction thereof, and a stopper having a convex cross section is formed in the concave to have a large diameter portion. The compression coil spring is slidably fitted in a state of being located at the large diameter portion of the recess, and a compression coil spring is provided between the large diameter portion of the stopper and the suction element of the solenoid and between the bottom surface of the recess. When the plunger is pulled up with the applied voltage set to a medium level and the plunger is lifted, the stopper comes into contact with the suction element and is stopped, so that the plunger is also stopped there.

【0019】上記した如くの構成とされた本発明に係る
電磁弁の好ましい態様においては、ソレノイドに対する
印加電圧を段階的に大きくすることによって、プランジ
ャに対する吸引力を段階的に増大させ、それにより、プ
ランジャの引き上げ量を変化させ、このプランジャと一
体的又はそれに連係して引き上げられる複数個の弁体を
順次開弁作動させて、流入口から流出口に至る流路に設
けられた、順次その実効通路断面積が大きくされた複数
本のオリフィスを、例えば上流側のものから一本づつ順
次開いて流量を3段階以上に切り換えるようにされる。
In a preferred embodiment of the solenoid valve according to the present invention having the above-described configuration, the suction force to the plunger is increased stepwise by increasing the voltage applied to the solenoid in a stepwise manner. The amount of pulling up of the plunger is changed, and a plurality of valve bodies which are pulled up integrally with or in association with the plunger are sequentially opened to operate the valve body sequentially provided in the flow path from the inlet to the outlet. A plurality of orifices having a larger passage cross-sectional area are sequentially opened, for example, one by one from the upstream side to switch the flow rate to three or more stages.

【0020】したがって、本発明の電磁弁は、構造が比
較的簡単でかつ低コストで容易に製作できるものであり
ながら、より細やかな流量調節を行えるとともに、オリ
フィスの実効通路断面積を適宜に設定することにより、
流量切り換え弁と膨張弁の両方の機能を備えるものとな
る。そのため、例えばカーエアコンの冷凍サイクルのリ
ア側冷房用冷媒通路に本発明の電磁弁を組み込む場合
は、電動弁を組み込む場合に比して低コストで済み、ま
た、冷凍サイクルに前記電磁弁と膨張弁の両方を組み込
む場合に比して、部品点数が少なくなるとともに、配管
系のとり回しが簡単容易となり、コスト的に有利とな
る。
Therefore, the solenoid valve of the present invention has a relatively simple structure and can be easily manufactured at a low cost, can perform finer flow rate adjustment, and appropriately sets the effective passage sectional area of the orifice. By doing
It has both functions of a flow switching valve and an expansion valve. Therefore, for example, when the solenoid valve of the present invention is incorporated in the rear-side cooling refrigerant passage of the refrigeration cycle of a car air conditioner, the cost is lower than when an electric valve is incorporated, and the solenoid valve and the expansion valve are expanded in the refrigeration cycle. Compared to a case where both of the valves are incorporated, the number of parts is reduced, and the piping system can be easily arranged, which is advantageous in cost.

【0021】[0021]

【発明の実施の形態】以下に添付の図を参照して本発明
の実施の形態を説明する。図1〜図4は、本発明に係る
電磁弁の一実施形態を示している。図示実施形態の電磁
弁1については、前記した図9に示される従来の電磁弁
2の各部に対応する部分には同一の符号を付して説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 4 show one embodiment of a solenoid valve according to the present invention. Regarding the solenoid valve 1 of the illustrated embodiment, portions corresponding to the respective portions of the conventional solenoid valve 2 shown in FIG.

【0022】本実施形態の電磁弁1も、カーエアコンの
冷凍サイクルのリア側冷房用冷媒通路に組み込まれるも
ので、弁室32、流入口8、流出口9、及び弁座35を
有する弁本体部30と、該弁本体部30に螺着されたフ
ランジ付きの管状の取付台33と、プランジャ20と、
このプランジャ20を前記弁座35に接近離隔する方向
に進退させるべくその外周に配置されたソレノイド10
と、を備えている。前記ソレノイド10は、ヨーク1
3、コイル14,吸引子(ステータ)15、止めネジ1
7、電源ケーブル18、案内スリーブ12等からなって
おり、車載電源(バッテリ)200からエアコン制御部
100を介して所定の電圧(例えば4V、7V、12V
の3段階)が印加されるようになっている。
The solenoid valve 1 of the present embodiment is also incorporated in the rear-side cooling refrigerant passage of the refrigeration cycle of a car air conditioner, and has a valve body 32, an inlet 8, an outlet 9, and a valve seat 35. A part 30, a tubular mounting base 33 with a flange screwed to the valve body part 30, a plunger 20,
A solenoid 10 arranged on the outer periphery of the plunger 20 for moving the plunger 20 in the direction of approaching and separating from the valve seat 35.
And The solenoid 10 includes a yoke 1
3, coil 14, suction element (stator) 15, set screw 1
7, a power supply cable 18, a guide sleeve 12, and the like. A predetermined voltage (for example, 4V, 7V, 12V) is supplied from an in-vehicle power supply (battery) 200 via the air conditioner control unit 100.
3) is applied.

【0023】前記案内スリーブ12の下部は大径となっ
ていて前記取付台33の内周にろう付け等により接合固
定されている。前記取付台33と弁本体部30との間に
はOリング34が装着されている。前記弁本体部30に
形成された弁室32の中央には、先細り円筒状の弁座3
5が突設され、前記弁室32に連なって冷媒流入口8が
設けられるとともに、前記弁座35に設けられた後段オ
リフィス36の下流に冷媒流出口9が設けられている。
The lower portion of the guide sleeve 12 has a large diameter and is fixed to the inner periphery of the mounting base 33 by brazing or the like. An O-ring 34 is mounted between the mount 33 and the valve body 30. At the center of a valve chamber 32 formed in the valve body 30, a tapered cylindrical valve seat 3 is provided.
5, a refrigerant inlet 8 is provided so as to be continuous with the valve chamber 32, and a refrigerant outlet 9 is provided downstream of a rear orifice 36 provided in the valve seat 35.

【0024】前記ソレノイド10の案内スリーブ12内
には、前端部(下端部)中央に円錐状の第1弁体25が
下向きに突設されたプランジャ20が摺動自在に嵌挿さ
れ、このプランジャ20の上部には凹所21が穿設され
ており、前記凹所21の底面(下面)と前記吸引子15
との間に縮装されたコイルバネ23により前記プランジ
ャ20は常時弁座35側(下側)に付勢されている。前
記凹所21には半径方向に貫通する連通孔29が開口せ
しめられている。
A plunger 20 having a conical first valve body 25 projecting downward at the center of the front end (lower end) is slidably fitted into the guide sleeve 12 of the solenoid 10, and the plunger 20 is slidably inserted therein. A recess 21 is formed in an upper part of the recess 20, and a bottom surface (lower surface) of the recess 21 and the suction element 15 are formed.
The plunger 20 is constantly urged toward the valve seat 35 (downward) by the coil spring 23 compressed between them. A communication hole 29 penetrating in the radial direction is formed in the recess 21.

【0025】また、前記第1弁体25と前記弁座35と
の間には、前記プランジャ20により前記弁座35から
離れる方向に順次引き上げられる、後述する段付き円柱
状の第2弁体41と有底円筒状の第3弁体42とが配置
され、前記第2弁体41に、前記第1弁体25により開
閉される、実効通路断面積が前記後段オリフィス36よ
り小なる前段オリフィス51が形成され、前記第3弁体
42に、前記第2弁体41により開閉される、実効通路
断面積が前記前段オリフィス51より大で前記後段オリ
フィス36より小なる中段オリフィス52が形成され、
かつ、前記第3弁体42により前記後段オリフィス36
が開閉せしめられるようにされている。
Further, between the first valve body 25 and the valve seat 35, a stepped cylindrical second valve body 41, which will be described later, is sequentially raised by the plunger 20 in a direction away from the valve seat 35. And a third valve body 42 having a cylindrical shape with a bottom. The second valve body 41 has a front orifice 51 which is opened and closed by the first valve body 25 and has an effective passage sectional area smaller than that of the rear orifice 36. Is formed in the third valve body 42, and an intermediate orifice 52, which is opened and closed by the second valve body 41, has an effective passage cross-sectional area larger than the front orifice 51 and smaller than the rear orifice 36,
Also, the rear orifice 36 is provided by the third valve body 42.
Can be opened and closed.

【0026】より詳細には、前記第2弁体41は、前記
プランジャ20の前端側に突設された筒状脚部24の下
端部にカシメにより固定係止されたリング状の係止片部
26に接離可能に支承され、前記プランジャ20によ
り、前記第1弁体25が前記前段オリフィス51を開い
た状態でそれと一緒に引き上げられるようにされてい
る。また、前記筒状脚部24には、前記流入口8からの
冷媒を前記プランジャ20の前端面と前記第2弁体3の
上面との間に形成される冷媒室Sに導く所定個数の透孔
37、37、…が形成されている。
More specifically, the second valve element 41 is a ring-shaped locking piece fixedly locked by caulking to the lower end of a cylindrical leg 24 protruding from the front end of the plunger 20. The first valve body 25 is lifted by the plunger 20 together with the front orifice 51 in an opened state by the plunger 20. The cylindrical leg 24 has a predetermined number of transparent refrigerants that guide the refrigerant from the inflow port 8 to a refrigerant chamber S formed between the front end surface of the plunger 20 and the upper surface of the second valve body 3. Holes 37, 37,... Are formed.

【0027】さらに、前記第3弁体42は、上端縁部に
内側に突出する係止部42aが設けられるとともに底部
中央に先細り円筒状の中間弁座46が突設され、この中
間弁座46に前記中段オリフィス52が形成された孔付
き有底円筒形をしており、前記係止部42aが前記プラ
ンジャ20の周側部に穿設された凹溝下端面27に接離
可能に支承され、前記プランジャ20により、前記第2
弁体41が前記中段オリフィス52を開いた状態でそれ
と一緒に引き上げられるようにされている。この第3弁
体42の周側部下部には、冷媒を流入口8及び弁室32
から前記筒状脚部24及び第2弁体41と第3弁体42
との間に形成された冷媒室S’に導入する所定個数の透
孔39、30、…が形成されている。
Further, the third valve element 42 is provided with a locking portion 42a protruding inward at the upper end edge thereof, and is provided with a tapered cylindrical intermediate valve seat 46 at the center of the bottom. The orifice 52 has a bottomed cylindrical shape with a hole formed with the middle-stage orifice 52, and the locking portion 42a is supported on the lower end surface 27 of the concave groove formed in the peripheral side of the plunger 20 so as to be able to contact and separate therefrom. , By the plunger 20, the second
The valve element 41 is adapted to be pulled up together with the middle orifice 52 in an opened state. In the lower part on the peripheral side of the third valve body 42, the refrigerant is supplied to the inlet 8 and the valve chamber 32.
From the cylindrical leg 24, the second valve body 41 and the third valve body 42
Are formed in a predetermined number of through holes 39, 30,.

【0028】〔冷房OFF(図1)〕 このような構成の電磁弁1においては、前記ソレノイド
10に対して電圧が印加されていないとき、つまり、前
記ソレノイド10が通電励磁されていないとき(OFF
時)には、図1に示される如くに、プランジャ20がコ
イルバネ23の付勢力によって弁座35側(下側)に押
し下げられ、第1弁体25が第2弁体41に圧接して前
段オリフィス51を閉じるとともに、第2弁体41が第
3弁体42側に押し下げられられ、それに圧接して中段
オリフィス52を閉じ、さらに、第3弁体42が弁座3
5側に押し下げられられ、それに圧接して後段オリフィ
ス36を閉じ、閉弁状態となる。
[Cooling OFF (FIG. 1)] In the solenoid valve 1 having such a configuration, when no voltage is applied to the solenoid 10, that is, when the solenoid 10 is not energized and excited (OFF
1), as shown in FIG. 1, the plunger 20 is pushed down to the valve seat 35 side (downward) by the urging force of the coil spring 23, and the first valve body 25 is pressed against the second valve body 41 to While closing the orifice 51, the second valve body 41 is pushed down to the third valve body 42 side, and presses against the second valve body 41 to close the middle-stage orifice 52.
The orifice 36 is pushed down to the side 5 and pressed against it to close the rear-stage orifice 36 to be in a valve-closed state.

【0029】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは最大のz3とな
り、前記プランジャ20の下端面と前記第2弁体41の
上端面との離隔距離Saは最小のa0となり、前記第2
弁体41の下端面と前記第3弁体42の中間弁座46の
上端との離隔距離Sbと、前記第3弁体42の下端面と
前記弁座35の上端との離隔距離Scとはいずれも0と
なる。
At this time, the separation distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 becomes the maximum z 3 , and the separation distance between the lower end surface of the plunger 20 and the upper end surface of the second valve body 41 is increased. distance Sa is minimum a 0, and the second
The separation distance Sb between the lower end surface of the valve body 41 and the upper end of the intermediate valve seat 46 of the third valve body 42 and the separation distance Sc between the lower end surface of the third valve body 42 and the upper end of the valve seat 35 are: Both become 0.

【0030】〔冷房ON:弱(図2)〕 一方、前記ソレノイド10に小電圧(例えば4V)が印
加されると、前記ソレノイド10が通電励磁されてON
状態となり、図2に示される如くに、プランジャ20が
コイルバネ23の付勢力に抗して吸引子15側(上側)
の途中(係止片部27が第2弁体41に当接する位置)
まで引き上げられ、第1弁体25が第2弁体41から離
れて前段オリフィス51を開く。ただし、前記第2弁体
41及び第3弁体42はその内外の圧力差(流入側が高
く流出側が低い)により閉弁時のままである。
[Cooling ON: weak (FIG. 2)] On the other hand, when a small voltage (for example, 4 V) is applied to the solenoid 10, the solenoid 10 is energized and turned on.
As shown in FIG. 2, the plunger 20 moves toward the suction element 15 (upper side) against the urging force of the coil spring 23 as shown in FIG.
(The position where the locking piece 27 contacts the second valve body 41)
The first valve body 25 is separated from the second valve body 41 to open the front-stage orifice 51. However, the second valve body 41 and the third valve body 42 remain in the closed state due to the pressure difference between the inside and outside (the inlet side is high and the outlet side is low).

【0031】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記閉弁時のz
3より小なるz2となり、前記プランジャ20の下端面と
前記第2弁体41の上端面との離隔距離Saは前記閉弁
時のa0より大なるa1となり、前記第2弁体41の下端
面と前記第3弁体42の中間弁座46の上端との離隔距
離Sbと、前記第3弁体42の下端面と前記弁座35の
上端との離隔距離Scとはいずれも0となる。
At this time, the separation distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 is equal to z when the valve is closed.
3 from the small consisting z 2, and the distance Sa is greater than a 0 when the valve closing a 1 next to the lower end surface and the upper end surface of the second valve body 41 of the plunger 20, the second valve body 41 The separation distance Sb between the lower end surface of the third valve body 42 and the upper end of the intermediate valve seat 46 of the third valve body 42 and the separation distance Sc between the lower end surface of the third valve body 42 and the upper end of the valve seat 35 are all zero. Becomes

【0032】これにより、流入口8及び弁室32から第
3弁体42に形成された透孔39、39、…及び筒状脚
部24に形成された透孔37、37、…を通じて、第2
弁体41とプランジャ20との間に形成された冷媒室S
に流入した冷媒が前段オリフィス51及び後段オリフィ
ス36を通じて冷媒流出口9に流出して膨張せしめられ
るとともに、下流のエバポレータに導かれる。このとき
の冷媒の流量は、前記前段オリフィス51の実効通路断
面積により決まるので、比較的少なく、冷房力は弱とな
る。
Thus, through the through holes 39, 39,... Formed in the third valve body 42 from the inflow port 8 and the valve chamber 32, and through the through holes 37, 37,. 2
Refrigerant chamber S formed between valve body 41 and plunger 20
Flows into the refrigerant outlet 9 through the front orifice 51 and the rear orifice 36 to be expanded, and is guided to the downstream evaporator. Since the flow rate of the refrigerant at this time is determined by the effective passage cross-sectional area of the front-stage orifice 51, it is relatively small, and the cooling power is weak.

【0033】〔冷房ON:中(図3)〕 また、前記ソレノイド10に中電圧(例えば7V)が印
加されると、前記ソレノイド10が通電励磁されてON
状態となり、図3に示される如くに、プランジャ20が
コイルバネ23の付勢力に抗して前記印加電圧が小のと
きよりさらに吸引子15側に引き上げられ、第1弁体2
5が第2弁体41から離れて前段オリフィス51を開い
たまま、前記第2弁体41が前記プランジャ20の筒状
脚部24の係止片部26に支承係止されて前記プランジ
ャ20と一緒に引き上げられ、前記中段オリフィス52
が開かれるが、第3弁体42は閉弁時のままである。
[Cooling ON: Medium (FIG. 3)] When a medium voltage (for example, 7 V) is applied to the solenoid 10, the solenoid 10 is energized and turned on.
As shown in FIG. 3, the plunger 20 is further pulled up to the suction element 15 side when the applied voltage is low against the urging force of the coil spring 23, as shown in FIG.
The second valve body 41 is supported and locked by the locking piece 26 of the cylindrical leg portion 24 of the plunger 20 while the front orifice 51 is opened while being separated from the second valve body 41, and the plunger 20 is The middle orifice 52 is lifted together.
Is opened, but the third valve body 42 remains closed.

【0034】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記印加電圧が
小のときのz2より小なるz1となり、前記プランジャ2
0の下端面と前記第2弁体41の上端面との離隔距離S
aはa2であり、前記第2弁体41の下端面と前記第3
弁体42の中間弁座46の上端との離隔距離Sbはb 1
となり、前記第3弁体42の下端面と前記弁座35の上
端との離隔距離Scは0となる。
At this time, the lower end face of the suction element 15 is
The distance Sz from the upper end surface of the jaw 20 is determined by the applied voltage.
Z when smallTwoSmaller z1And the plunger 2
0 and the upper end surface of the second valve body 41.
a is aTwoThe lower end face of the second valve body 41 and the third
The separation distance Sb between the valve body 42 and the upper end of the intermediate valve seat 46 is b 1
And above the lower end surface of the third valve body 42 and the valve seat 35
The distance Sc from the end is zero.

【0035】これにより、流入口8及び弁室32から第
3弁体42に形成された透孔39、30、…を介して前
記筒状脚部24及び第2弁体41と第3弁体42との間
に形成された冷媒室S’に流入した冷媒が第2弁体41
の下面と第3弁体42の中間弁座46との間を通って中
段オリフィス52に流入し、後段オリフィス36を介し
て冷媒流出口9に流出して膨張せしめられるとともに、
下流のエバポレータに導かれる。このときの冷媒の流量
は、前記中段オリフィス52の実効通路断面積により決
まるので、前記印加電圧が小のときよりは多くなり、冷
房力は中となる。
Thus, the cylindrical leg portion 24, the second valve body 41, and the third valve body 41 are formed from the inflow port 8 and the valve chamber 32 through the through holes 39, 30, ... formed in the third valve body 42. The refrigerant flowing into the refrigerant chamber S ′ formed between the second valve body 41
Flows into the middle orifice 52 through the space between the lower surface of the third valve body 42 and the intermediate valve seat 46 of the third valve body 42, flows out to the refrigerant outlet 9 via the rear orifice 36, and is expanded.
It is led to a downstream evaporator. The flow rate of the refrigerant at this time is determined by the effective passage cross-sectional area of the middle orifice 52, so that the applied voltage is larger than when the applied voltage is small, and the cooling power is medium.

【0036】〔冷房ON:強(図4)〕 また、前記ソレノイド10に最大電圧(例えば12V)
が印加されると、前記吸引子15の吸引力が最大とな
り、図4に示される如くに、前記プランジャ20が前記
コイルバネ23の付勢力に抗して最上昇位置(前記吸引
子15に近接又は当接する位置)まで引き上げられ、そ
れにより、前記第1弁体25が前記前段オリフィス51
を開き、かつ、前記第2弁体41が前記中段オリフィス
52を開いた状態で、第3弁体42がプランジャ20の
凹部下端面27に支承係止されて前記プランジャ20と
一緒に引き上げられ、前記弁座35から離れて前記後段
オリフィス36を開く。
[Cooling ON: Strong (FIG. 4)] A maximum voltage (for example, 12 V) is applied to the solenoid 10.
Is applied, the suction force of the suction element 15 is maximized, and as shown in FIG. 4, the plunger 20 is at the highest position (close to or close to the suction element 15) against the urging force of the coil spring 23. (Abutting position), whereby the first valve body 25 is moved to the front-stage orifice 51.
With the second valve body 41 opening the middle orifice 52, the third valve body 42 is supported and locked on the lower end surface 27 of the concave portion of the plunger 20, and is pulled up together with the plunger 20, The rear orifice 36 is opened apart from the valve seat 35.

【0037】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記印加電圧が
中のときのz1より小なるz0となり、前記プランジャ2
0の下端面と前記第2弁体41の上端面との離隔距離S
aはa2であり、前記第2弁体41の下端面と前記第3
弁体42の中間弁座46の上端との離隔距離Sbはb1
となり、前記第3弁体42の下端面と前記弁座35の上
端との離隔距離Scはc1となる。
At this time, the separation distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 becomes z 0 smaller than z 1 when the applied voltage is medium, and the plunger 2
0 and the upper end surface of the second valve body 41.
a is a 2 , the lower end surface of the second valve body 41 and the third
The distance Sb between the valve body 42 and the upper end of the intermediate valve seat 46 is b 1
Next, distance Sc of the lower end surface and the upper end of the valve seat 35 of the third valve body 42 becomes c 1.

【0038】それによって、流入口8からの冷媒が直接
的に第3弁体42の下面と弁座35との間を通って前記
後段オリフィス36に流れ込み、後段オリフィス36を
介して冷媒流出口9に流出して膨張せしめられるととも
に、下流のエバポレータに導かれる。したがって、この
最大電圧印加時には、前記後段オリフィス36の実効通
路断面積により決まるので、前記流入口8から流出口9
に流れる冷媒の流量が最大となり、冷房力が強となる。
As a result, the refrigerant from the inflow port 8 flows directly between the lower surface of the third valve body 42 and the valve seat 35 into the rear-stage orifice 36, and flows through the rear-stage orifice 36 into the refrigerant outlet 9. And is expanded, and guided to a downstream evaporator. Therefore, when the maximum voltage is applied, the effective voltage is determined by the effective passage cross-sectional area of the rear orifice 36.
The maximum flow rate of the refrigerant flowing through the cooling medium is increased, and the cooling power is increased.

【0039】上記した如くの構成とされた本実施形態の
電磁弁1においては、ソレノイド10に対する印加電圧
を3段階に大きくすることによって、プランジャ20に
対する吸引力を段階的に増大させ、それにより、プラン
ジャ20の引き上げ量を変化させ、このプランジャ20
と一体的又はそれに連係して引き上げられる第1弁体2
5、第2弁体41、第3弁体42を順次開弁作動させ
て、流入口8から流出口9に至る流路に設けられた、順
次その実効通路断面積が大きくされた3本のオリフィス
51、52、36を、上流側のものから一本づつ順次開
いて流量を3段階に切り換えるようにされる。
In the solenoid valve 1 of the present embodiment having the above-described structure, the suction force to the plunger 20 is increased stepwise by increasing the voltage applied to the solenoid 10 in three steps. The amount of pulling up of the plunger 20 is changed,
1st valve body 2 which is lifted up integrally with or in conjunction with it
5, the second valve body 41 and the third valve body 42 are sequentially opened to provide three passages provided in the flow passage from the inflow port 8 to the outflow port 9, the effective passage areas of which are sequentially increased. The orifices 51, 52, and 36 are sequentially opened one by one from the upstream one to switch the flow rate in three stages.

【0040】したがって、実施形態の電磁弁1は、構造
が比較的簡単でかつ低コストで容易に製作できるもので
ありながら、従来の流量を2段階にしか切り換えること
が出来なかった電磁弁に比してより細やかな流量調節を
行えるとともに、オリフィスの実効通路断面積を適宜に
設定することにより、流量切り換え弁と膨張弁の両方の
機能を備えるものとなる。そのため、例えばカーエアコ
ンの冷凍サイクルのリア側冷房用冷媒通路に本発明の電
磁弁を組み込む場合は、電動弁を組み込む場合に比して
低コストで済み、また、冷凍サイクルに前記電磁弁と膨
張弁の両方を組み込む場合に比して、部品点数が少なく
なるとともに、配管系のとり回しが簡単容易となり、コ
スト的に有利となる。
Accordingly, the solenoid valve 1 of the embodiment has a relatively simple structure and can be easily manufactured at low cost, but has a smaller flow rate than a conventional solenoid valve which can switch the flow rate only in two stages. Thus, the flow rate can be adjusted more finely, and the function of both the flow rate switching valve and the expansion valve can be provided by appropriately setting the effective passage sectional area of the orifice. Therefore, for example, when the solenoid valve of the present invention is incorporated in the rear-side cooling refrigerant passage of the refrigeration cycle of a car air conditioner, the cost is lower than when an electric valve is incorporated, and the solenoid valve and the expansion valve are expanded in the refrigeration cycle. Compared to a case where both of the valves are incorporated, the number of parts is reduced, and the piping system can be easily arranged, which is advantageous in cost.

【0041】図5〜図8は、本発明に係る電磁弁の他の
実施形態を示しており、図に示される電磁弁1’につい
ては、前記した図9及び図1〜図4に示される電磁弁
1、2の各部に対応する部分には同一の符号を付して重
複説明を省略し、相違点を重点的に説明する。
FIGS. 5 to 8 show another embodiment of the solenoid valve according to the present invention. The solenoid valve 1 'shown in FIGS. 5 to 8 is shown in FIGS. 9 and 1 to 4 described above. Portions corresponding to the respective portions of the solenoid valves 1 and 2 are denoted by the same reference numerals, and redundant description will be omitted. Differences will be mainly described.

【0042】図示実施形態の電磁弁1’は、基本構造
は、前記図9に示される従来の電磁弁2と略同じであ
り、プランジャ20に第1弁体25が設けられるととも
に、弁座35に後段オリフィス36が形成され、前記第
1弁体25と前記弁座35との間に前記プランジャ20
により前記弁座35から離れる方向に引き上げられる第
2弁体40が配置され、該第2弁体40に、前記第1弁
体25により開閉される、実効通路断面積が前記後段オ
リフィス36より小なる前段オリフィス50が形成され
るとともに、該第2弁体40により前記後段オリフィス
36が開閉せしめられるようにされており、前記した図
1〜図4に示される実施形態の電磁弁1に備えられるよ
うな第3弁体は存在しない。
The basic structure of the solenoid valve 1 'of the illustrated embodiment is substantially the same as that of the conventional solenoid valve 2 shown in FIG. 9, and the first valve body 25 is provided on the plunger 20 and the valve seat 35 is provided. A second orifice 36 is formed in the plunger 20 between the first valve body 25 and the valve seat 35.
A second valve body 40 that is lifted up in a direction away from the valve seat 35 is disposed, and the second valve body 40 has an effective passage cross-sectional area that is opened and closed by the first valve body 25 and is smaller than the rear orifice 36. A first orifice 50 is formed, and the second orifice 36 is opened and closed by the second valve body 40. The second orifice 50 is provided in the solenoid valve 1 of the embodiment shown in FIGS. Such a third valve body does not exist.

【0043】ここでは、前記プランジャ20にその軸線
方向に沿って断面凸字状の凹所61が穿設されるととも
に、この凹所61に断面凸字状のストッパ62がその大
径部を前記凹所の大径部に位置させた状態で摺動自在に
嵌挿され、このストッパ62の大径部と前記プランジャ
20と吸引子15との間及び前記凹所61の底面との間
にそれぞれ圧縮コイルバネ63、64が縮装され、前記
印加電圧が中とされて、前記プランジャ20が引き上げ
られたとき、前記ストッパ62が前記吸引子15に衝接
して停止せしめられて、前記プランジャ20もそこで停
止せしめられるようにされている。
Here, a concave portion 61 having a convex cross section is formed in the plunger 20 along the axial direction thereof, and a stopper 62 having a convex cross section is formed in the concave portion 61 so that the large diameter portion is formed. The stopper 62 is slidably fitted in a state of being positioned at the large-diameter portion, and between the large-diameter portion of the stopper 62 and the plunger 20 and the suction element 15 and between the bottom surface of the concave portion 61, respectively. When the compression coil springs 63 and 64 are compressed and the applied voltage is set to the middle and the plunger 20 is pulled up, the stopper 62 abuts on the suction element 15 and is stopped, and the plunger 20 is also there. It is designed to be stopped.

【0044】〔冷房OFF(図5)〕 このような構成の電磁弁1においては、前記ソレノイド
10に対して電圧が印加されていないとき、つまり、前
記ソレノイド10が通電励磁されていないとき(OFF
時)には、図5に示される如くに、プランジャ20がコ
イルバネ63、64の付勢力によって弁座35側(下
側)に押し下げられ、第1弁体25が第2弁体40に圧
接して前段オリフィス50を閉じるとともに、第2弁体
40が弁座35側に押し下げられられ、それに圧接して
後段オリフィス36を閉じ、閉弁状態となる。
[Cooling OFF (FIG. 5)] In the solenoid valve 1 having such a configuration, when no voltage is applied to the solenoid 10, that is, when the solenoid 10 is not energized and excited (OFF
5), as shown in FIG. 5, the plunger 20 is pushed down to the valve seat 35 side (downward) by the urging force of the coil springs 63 and 64, and the first valve body 25 is pressed against the second valve body 40. While closing the front orifice 50, the second valve body 40 is pushed down to the valve seat 35 side and presses against the second orifice to close the rear orifice 36, and the valve is closed.

【0045】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは最大のz3とな
り、前記プランジャ20の下端面と前記第2弁体40の
上端面との離隔距離Saは最小のa0となり、前記第2
弁体40の下端面と前記弁座35の上端との離隔距離S
bは0となる。
At this time, the separation distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 becomes the maximum z 3 , and the separation distance between the lower end surface of the plunger 20 and the upper end surface of the second valve body 40 is increased. distance Sa is minimum a 0, and the second
Separation distance S between the lower end surface of valve body 40 and the upper end of valve seat 35
b becomes 0.

【0046】〔冷房ON:弱(図6)〕 一方、前記ソレノイド10に小電圧(例えば4V)が印
加されると、前記ソレノイド10が通電励磁されてON
状態となり、図6に示される如くに、プランジャ20が
コイルバネ63、64の付勢力に抗して吸引子15側
(上側)の途中(中間位置)まで引き上げられ、第1弁
体25が第2弁体40から離れて前段オリフィス50を
半開きにするが、前記第2弁体40はその内外の圧力差
(流入側が高く流出側が低い)により閉弁時のままであ
る。
[Cooling ON: weak (FIG. 6)] On the other hand, when a small voltage (for example, 4 V) is applied to the solenoid 10, the solenoid 10 is energized and excited to turn on.
As shown in FIG. 6, the plunger 20 is pulled up to a middle position (intermediate position) on the suction element 15 side (upper side) against the urging force of the coil springs 63 and 64, as shown in FIG. The front orifice 50 is opened halfway apart from the valve body 40, but the second valve body 40 remains closed due to a pressure difference between the inside and outside thereof (the inflow side is high and the outflow side is low).

【0047】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記閉弁時のz
3より小なるz2となり、前記プランジャ20の下端面と
前記第2弁体40の上端面との離隔距離Saは前記閉弁
時のa0より大なるa1’となり、前記第2弁体40の下
端面と前記弁座35の上端との離隔距離Sbは0とな
る。
At this time, the distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 is equal to z when the valve is closed.
Small becomes z 2 next than 3, the separation distance Sa is larger. A 1 'it becomes from a 0 during the closing of the lower end surface and the upper surface of the second valve body 40 of the plunger 20, the second valve body The separation distance Sb between the lower end surface of the valve seat 40 and the upper end of the valve seat 35 is zero.

【0048】これにより、流入口8から筒状脚部24に
形成された透孔37、37、…を通じて、第2弁体40
とプランジャ20との間に形成された冷媒室Sに流入し
た冷媒が前段オリフィス50及び後段オリフィス36を
通じて冷媒流出口9に流出して膨張せしめられるととも
に、下流のエバポレータに導かれる。このときの冷媒の
流量は、前記前段オリフィス50が半開きなので、その
流量は比較的少なく、冷房力は弱となる。
Thus, the second valve body 40 is formed from the inflow port 8 through the through holes 37 formed in the cylindrical leg 24.
The refrigerant flowing into the refrigerant chamber S formed between the refrigerant and the plunger 20 flows out to the refrigerant outlet 9 through the front orifice 50 and the rear orifice 36 to be expanded, and is guided to the downstream evaporator. At this time, the flow rate of the refrigerant is relatively small because the front-stage orifice 50 is half-open, and the cooling power is weak.

【0049】〔冷房ON:中(図7)〕 また、前記ソレノイド10に中電圧(例えば7V)が印
加されると、前記ソレノイド10が通電励磁されてON
状態となり、図7に示される如くに、プランジャ20が
コイルバネ63、64の付勢力に抗して前記印加電圧が
小のときよりさらに吸引子15側に引き上げられ、第1
弁体25が第2弁体40から離れて前段オリフィス50
を全開にするが、前記ストッパ62が前記吸引子15に
衝接して停止せしめられて、前記プランジャ20もそこ
で停止せしめられる。このため、前記第2弁体40は閉
弁時のままである。
[Cooling ON: Medium (FIG. 7)] When a medium voltage (for example, 7 V) is applied to the solenoid 10, the solenoid 10 is energized and turned on.
As shown in FIG. 7, the plunger 20 is further raised to the suction element 15 side when the applied voltage is low against the urging force of the coil springs 63 and 64, as shown in FIG.
The valve body 25 is separated from the second valve body 40 and the front orifice 50
Is fully opened, the stopper 62 abuts on the suction element 15 and is stopped, and the plunger 20 is also stopped there. For this reason, the second valve body 40 remains in the closed state.

【0050】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記印加電圧が
小のときのz2より小なるz1となり、前記プランジャ2
0の下端面と前記第2弁体40の上端面との離隔距離S
aは前記印加電圧が小のときのa1’より大なるa2’と
なり、前記第2弁体40の下端面と前記弁座35の上端
との離隔距離Sbは0となる。
[0050] At this time, distance and Sz becomes z 1 of the applied voltage is smaller than z 2 when the small between the lower end surface and the upper end surface of the plunger 20 of the suction element 15, the plunger 2
0 and the upper end surface of the second valve body 40.
a becomes a 2 ′ which is larger than a 1 ′ when the applied voltage is small, and the separation distance Sb between the lower end surface of the second valve body 40 and the upper end of the valve seat 35 becomes zero.

【0051】これにより、流入口8から筒状脚部24に
形成された透孔37、37、…を通じて、第2弁体40
とプランジャ20との間に形成された冷媒室Sに流入し
た冷媒が前段オリフィス50及び後段オリフィス36を
通じて冷媒流出口9に流出して膨張せしめられるととも
に、下流のエバポレータに導かれる。このときの冷媒の
流量は、前記前段オリフィス50が完全に開かれている
ので前記印加電圧が小のときよりは多くなり、冷房力は
中となる。
As a result, the second valve body 40 is formed from the inflow port 8 through the through holes 37 formed in the cylindrical leg 24.
The refrigerant flowing into the refrigerant chamber S formed between the refrigerant and the plunger 20 flows out to the refrigerant outlet 9 through the front orifice 50 and the rear orifice 36 to be expanded, and is guided to the downstream evaporator. At this time, the flow rate of the refrigerant is larger than when the applied voltage is small because the front-stage orifice 50 is completely opened, and the cooling power is medium.

【0052】〔冷房ON:強(図8)〕 また、前記ソレノイド10に最大電圧(例えば12V)
が印加されると、前記吸引子15の吸引力が最大とな
り、図8に示される如くに、前記プランジャ20が前記
コイルバネ63、64の付勢力に抗して最上昇位置(前
記吸引子15に近接又は当接する位置)まで引き上げら
れ、それにより、前記第1弁体25が前記前段オリフィ
ス50を開き、かつ、前記第2弁体40が前記弁座35
から離れて前記後段オリフィス36を開く。
[Cooling ON: Strong (FIG. 8)] A maximum voltage (for example, 12 V) is applied to the solenoid 10.
Is applied, the attraction force of the attraction element 15 is maximized, and as shown in FIG. 8, the plunger 20 is moved to the highest position against the urging force of the coil springs 63 and 64 (at the highest position). (Or close or abutting position), whereby the first valve body 25 opens the front-stage orifice 50, and the second valve body 40 is moved to the valve seat 35.
And open the latter-stage orifice 36.

【0053】このとき、前記吸引子15の下端面とプラ
ンジャ20の上端面との離隔距離Szは前記印加電圧が
中のときのz1より小なるz0となり、前記プランジャ2
0の下端面と前記第2弁体40の上端面との離隔距離S
aはa2’であり、前記第2弁体40の下端面と前記弁
座35の上端との離隔距離Sbはb1となる。それによ
って、流入口8からの冷媒が直接的に第2弁体40の下
面と弁座35との間を通って前記後段オリフィス36に
流れ込み、後段オリフィス36を介して冷媒流出口9に
流出して膨張せしめられるとともに、下流のエバポレー
タに導かれる。したがって、この最大電圧印加時には、
前記後段オリフィス36の実効通路断面積により決まる
ので、前記流入口8から流出口9に流れる冷媒の流量が
最大となり、冷房力が強となる。
At this time, the separation distance Sz between the lower end surface of the suction element 15 and the upper end surface of the plunger 20 becomes z 0 smaller than z 1 when the applied voltage is medium, and the plunger 2
0 and the upper end surface of the second valve body 40.
a is a 2 ′, and the separation distance Sb between the lower end surface of the second valve body 40 and the upper end of the valve seat 35 is b 1 . As a result, the refrigerant from the inlet 8 flows directly between the lower surface of the second valve body 40 and the valve seat 35 into the rear orifice 36, and flows out to the refrigerant outlet 9 via the rear orifice 36. To be expanded and guided to a downstream evaporator. Therefore, when this maximum voltage is applied,
Since it is determined by the effective passage cross-sectional area of the rear orifice 36, the flow rate of the refrigerant flowing from the inflow port 8 to the outflow port 9 is maximized, and the cooling power is increased.

【0054】上記した如くの構成とされた本実施形態の
電磁弁1’においては、ソレノイド10に対する印加電
圧を3段階に大きくすることによって、プランジャ20
に対する吸引力を段階的に増大させ、それにより、プラ
ンジャ20の引き上げ量を変化させ、このプランジャ2
0と一体的又はそれに連係して引き上げられる第1弁体
25、第2弁体40を順次開弁作動させて、流入口8か
ら流出口9に至る流路に設けられた、順次その実効通路
断面積が大きくされた2本のオリフィス50、36のう
ちの上流側の前段オリフィス50を半開きと全開きの二
段階に切り換えるとともに、下流側の後段オリフィス3
6を開閉して流量を計3段階に切り換えるようにされ
る。
In the solenoid valve 1 ′ of the present embodiment having the above-described structure, the voltage applied to the solenoid 10 is increased in three stages, so that the plunger 20
The suction force for the plunger 20 is gradually increased, thereby changing the amount of pulling up of the plunger 20.
The first valve body 25 and the second valve body 40 which are lifted up integrally or in conjunction with the valve body 0 are sequentially opened, and the effective passages provided in the flow path from the inlet 8 to the outlet 9 are sequentially provided. The upstream orifice 50 of the two orifices 50 and 36 whose cross-sectional area is enlarged is switched between two stages of half opening and full opening, and the downstream orifice 3 on the downstream side.
6 is opened and closed to switch the flow rate in three stages.

【0055】したがって、実施形態の電磁弁1’におい
ても、前記実施形態のものと同様に、構造が比較的簡単
でかつ低コストで容易に製作できるものでありながら、
従来の流量を2段階にしか切り換えることが出来なかっ
た電磁弁に比してより細やかな流量調節を行えるととも
に、オリフィスの実効通路断面積を適宜に設定すること
により、流量切り換え弁と膨張弁の両方の機能を備える
ものとなる。そのため、例えばカーエアコンの冷凍サイ
クルのリア側冷房用冷媒通路に本発明の電磁弁を組み込
む場合は、電動弁を組み込む場合に比して低コストで済
み、また、冷凍サイクルに前記電磁弁と膨張弁の両方を
組み込む場合に比して、部品点数が少なくなるととも
に、配管系のとり回しが簡単容易となり、コスト的に有
利となる。
Therefore, also in the solenoid valve 1 'of the embodiment, similarly to the above-described embodiment, the structure is relatively simple, and it can be easily manufactured at low cost.
The flow rate can be adjusted more finely than the conventional solenoid valve which could switch the flow rate only in two stages, and by setting the effective passage area of the orifice appropriately, the flow switching valve and the expansion valve can be adjusted. It will have both functions. Therefore, for example, when the solenoid valve of the present invention is incorporated in the rear-side cooling refrigerant passage of the refrigeration cycle of a car air conditioner, the cost is lower than when an electric valve is incorporated, and the solenoid valve and the expansion valve are expanded in the refrigeration cycle. Compared to a case where both of the valves are incorporated, the number of parts is reduced, and the piping system can be easily arranged, which is advantageous in cost.

【0056】また、前記印加電圧が中とされて、前記プ
ランジャ20が引き上げられたとき、前記ストッパが前
記吸引子15に衝接して停止せしめられて、前記プラン
ジャ20もそこで停止せしめられるようにされているこ
とにより、多少の電圧変動では第2弁体40が引き上げ
られず、後段オリフィス36が閉じられた状態が維持さ
れるので、制御が容易となり、流量調節を確実かつ正確
に行え、信頼性が増す。
When the plunger 20 is pulled up with the applied voltage set to the middle level, the stopper comes into contact with the suction element 15 and is stopped, so that the plunger 20 is also stopped there. As a result, the second valve element 40 is not lifted up with a slight voltage fluctuation, and the state in which the second orifice 36 is closed is maintained. Therefore, the control becomes easy, the flow rate can be adjusted reliably and accurately, and the reliability is improved. Increase.

【0057】[0057]

【発明の効果】以上の説明から理解されるように、本発
明に係る電磁弁は、構造が比較的簡単でかつ低コストで
容易に製作できるものでありながら、従来の流量を2段
階にしか切り換えることが出来なかった電磁弁に比して
より細やかな流量調節を行えるとともに、オリフィスの
実効通路断面積を適宜に設定することにより、流量切り
換え弁と膨張弁の両方の機能を備えるものとなり、その
ため、例えばカーエアコンの冷凍サイクルのリア側冷房
用冷媒通路に本発明の電磁弁を組み込む場合は、電動弁
を組み込む場合に比して低コストで済み、また、冷凍サ
イクルに前記電磁弁と膨張弁の両方を組み込む場合に比
して、部品点数が少なくなるとともに、配管系のとり回
しが簡単容易となり、コスト的に有利となる。
As will be understood from the above description, the solenoid valve according to the present invention has a relatively simple structure, can be easily manufactured at low cost, and has a conventional flow rate of only two stages. In addition to being able to finely adjust the flow rate compared to the solenoid valve that could not be switched, by setting the effective passage cross-sectional area of the orifice appropriately, it has both the functions of the flow rate switching valve and the expansion valve, Therefore, for example, when the solenoid valve of the present invention is incorporated in the rear-side cooling refrigerant passage of the refrigeration cycle of a car air conditioner, the cost is lower than when an electric valve is incorporated, and the solenoid valve and the expansion valve are expanded in the refrigeration cycle. Compared to a case where both of the valves are incorporated, the number of parts is reduced, and the piping system can be easily arranged, which is advantageous in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁弁の一実施形態の印加電圧が
0V(閉弁時)の状態を示す断面図。
FIG. 1 is a sectional view showing a state in which an applied voltage of an electromagnetic valve according to an embodiment of the present invention is 0 V (when the valve is closed).

【図2】図1に示される電磁弁の印加電圧が小のときの
状態を示す断面図。
FIG. 2 is a cross-sectional view showing a state when the voltage applied to the solenoid valve shown in FIG. 1 is small.

【図3】図1に示される電磁弁の印加電圧が中のときの
状態を示す断面図。
FIG. 3 is a cross-sectional view showing a state when the voltage applied to the solenoid valve shown in FIG. 1 is medium.

【図4】図1に示される電磁弁の印加電圧が大のときの
状態を示す断面図。
FIG. 4 is a cross-sectional view showing a state when an applied voltage of the solenoid valve shown in FIG. 1 is large.

【図5】本発明に係る電磁弁の他の実施形態の印加電圧
が0V(閉弁時)の状態を示す断面図。
FIG. 5 is a cross-sectional view illustrating a state where an applied voltage is 0 V (when the valve is closed) according to another embodiment of the solenoid valve according to the present invention.

【図6】図5に示される電磁弁の印加電圧が小のときの
状態を示す断面図。
FIG. 6 is a cross-sectional view showing a state when the voltage applied to the solenoid valve shown in FIG. 5 is small.

【図7】図5に示される電磁弁の印加電圧が中のときの
状態を示す断面図。
FIG. 7 is a cross-sectional view showing a state when the voltage applied to the solenoid valve shown in FIG. 5 is medium.

【図8】図5に示される電磁弁の印加電圧が大のときの
状態を示す断面図。
FIG. 8 is a cross-sectional view showing a state when the voltage applied to the solenoid valve shown in FIG. 5 is large.

【図9】従来の電磁弁の一例の閉弁時の断面図。FIG. 9 is a cross-sectional view of an example of a conventional solenoid valve when the valve is closed.

【符号の説明】[Explanation of symbols]

1 電磁弁 8 流入口 9 流出口 10 ソレノイド 12 案内スリーブ 15 吸引子 20 プランジャ 23 コイルバネ 24 筒状脚部 25 第1弁体 30 弁本体部 32 弁室 35 弁座 36 後段オリフィス 41 第2弁体 42 第3弁体 46 中間弁座 51 前段オリフィス 52 中段オリフィス 100 エアコン制御部 200 電源(バッテリ) DESCRIPTION OF SYMBOLS 1 Solenoid valve 8 Inflow port 9 Outflow port 10 Solenoid 12 Guide sleeve 15 Suction element 20 Plunger 23 Coil spring 24 Cylindrical leg part 25 First valve body 30 Valve main body part 32 Valve room 35 Valve seat 36 Rear-stage orifice 41 Second valve body 42 Third valve body 46 Intermediate valve seat 51 Front orifice 52 Middle orifice 100 Air conditioner control unit 200 Power supply (battery)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弁室、流入口、流出口、及び弁座を有す
る弁本体部と、プランジャと、該プランジャを前記弁座
に接近離隔する方向に進退させるべくその外周に配置さ
れたソレノイドと、を備え、前記流入口から流出口に至
る流路に、実効通路断面積が順次大きくなるように複数
本のオリフィスが形成されるとともに、それらのオリフ
ィスを開閉すべく、前記プランジャと一体的に又はそれ
に連係して前記弁座から離れる方向に移動せしめられる
複数個の弁体が配備されてなる電磁弁において、 前記ソレノイドに対する印加電圧を切り換えることによ
り、前記流入口から流出口に流れる流体の流量が段階的
に制御されることを特徴とする電磁弁。
1. A valve body having a valve chamber, an inlet, an outlet, and a valve seat, a plunger, and a solenoid disposed on an outer periphery of the plunger for moving the plunger toward and away from the valve seat. A plurality of orifices are formed in the flow path from the inflow port to the outflow port so that the effective passage cross-sectional area increases sequentially, and the orifices are integrally formed with the plunger to open and close the orifices. Alternatively, in an electromagnetic valve provided with a plurality of valve bodies that are moved in a direction away from the valve seat in association therewith, by switching an applied voltage to the solenoid, a flow rate of a fluid flowing from the inflow port to the outflow port is changed. The solenoid valve is controlled in a stepwise manner.
【請求項2】 前記プランジャに第1弁体が設けられる
とともに、前記弁座に後段オリフィスが形成され、前記
第1弁体と前記弁座との間に前記プランジャにより前記
弁座から離れる方向に順次引き上げられる第2弁体と第
3弁体とが配置され、前記第2弁体に、前記第1弁体に
より開閉される、実効通路断面積が前記後段オリフィス
より小なる前段オリフィスが形成され、前記第3弁体
に、前記第2弁体により開閉される、実効通路断面積が
前記前段オリフィスより大で前記後段オリフィスより小
なる中段オリフィスが形成され、かつ、前記第3弁体に
より前記後段オリフィスが開閉せしめられるようにされ
ていて、前記ソレノイドに対する印加電圧が小のとき、
前記第1弁体が前記前段オリフィスを開き、前記印加電
圧が中のとき、前記第1弁体が前記前段オリフィスを開
いたまま、前記第2弁体が前記中段オリフィスを開き、
前記印加電圧が大のとき、前記第1弁体及び第2弁体が
それぞれ前記前段オリフィス及び中段オリフィスを開い
たまま、前記第3弁体が前記後段オリフィスを開き、そ
れによって、前記流入口から流出口に流れる流体の流量
が段階的に制御されることを特徴とする請求項1に記載
の電磁弁。
2. A first valve body is provided on the plunger, and a second-stage orifice is formed on the valve seat, and the plunger is provided between the first valve body and the valve seat in a direction away from the valve seat. A second valve body and a third valve body that are sequentially raised are arranged, and a front-stage orifice that is opened and closed by the first valve body and that has an effective passage cross-sectional area smaller than the rear-stage orifice is formed in the second valve body. A middle stage orifice, which is opened and closed by the second valve body and has an effective passage sectional area larger than the front stage orifice and smaller than the rear stage orifice, is formed by the third valve body; When the rear-stage orifice is opened and closed and the voltage applied to the solenoid is small,
The first valve body opens the front-stage orifice, and when the applied voltage is medium, the second valve body opens the middle-stage orifice while the first valve body keeps the front-stage orifice open.
When the applied voltage is large, the third valve body opens the rear orifice while the first valve body and the second valve body open the front orifice and the middle orifice, respectively, and thereby, from the inflow port. 2. The solenoid valve according to claim 1, wherein the flow rate of the fluid flowing to the outlet is controlled stepwise.
【請求項3】 前記プランジャに第1弁体が設けられる
とともに、前記弁座に後段オリフィスが形成され、前記
第1弁体と前記弁座との間に前記プランジャにより前記
弁座から離れる方向に引き上げられる第2弁体が配置さ
れ、該第2弁体に、前記第1弁体により開閉される、実
効通路断面積が前記後段オリフィスより小なる前段オリ
フィスが形成されるとともに、該第2弁体により前記後
段オリフィスが開閉せしめられるようにされていて、前
記ソレノイドに対する印加電圧が小のとき、前記第1弁
体が前記前段オリフィスを半開きにし、前記印加電圧が
中のとき、前記第1弁体が前記前段オリフィスを全開
し、前記印加電圧が大のとき、前記第1弁体が前記前段
オリフィスを全開したまま、前記第2弁体が前記後段オ
リフィスを開き、それによって、前記流入口から流出口
に流れる流体の流量が3段階に切り換えられることを特
徴とする請求項1に記載の電磁弁。
3. A plunger is provided with a first valve body, and a second-stage orifice is formed in the valve seat. The plunger is provided between the first valve body and the valve seat in a direction away from the valve seat. A second valve body to be lifted is disposed, and a front stage orifice that is opened and closed by the first valve body and has an effective passage cross-sectional area smaller than the rear stage orifice is formed in the second valve body, and When the voltage applied to the solenoid is small, the first valve body opens the front-stage orifice halfway, and when the applied voltage is medium, the first valve is opened and closed by the body. When the body fully opens the front stage orifice and the applied voltage is large, the second valve body opens the rear stage orifice while the first valve body fully opens the front stage orifice. 2. The solenoid valve according to claim 1, wherein the flow rate of the fluid flowing from the inflow port to the outflow port is switched in three stages.
【請求項4】 前記第1弁体は、前記前段オリフィスと
の当たり面が円錐面で形成されていることを特徴とする
請求項2又は3に記載の電磁弁。
4. The solenoid valve according to claim 2, wherein a contact surface of the first valve body with the front orifice is formed as a conical surface.
【請求項5】 前記第2弁体は、前記プランジャに突設
された筒状脚部の下端部に設けられた係止片部に接離可
能に支承され、前記プランジャにより、前記第1弁体が
前記前段オリフィスを開いた状態でそれと一緒に引き上
げられるようにされていることを特徴とする請求項2な
いし4のいずれかに記載の電磁弁。
5. The second valve body is supported by a locking piece provided at a lower end of a cylindrical leg protruding from the plunger so as to be able to contact and separate therefrom, and the first valve is moved by the plunger. The solenoid valve according to any one of claims 2 to 4, wherein the body is adapted to be lifted together with the front-stage orifice in an open state.
【請求項6】 前記第3弁体は、上端縁部に内側に突出
する係止部が設けられるとともに底部に前記中段オリフ
ィスが形成された有底円筒形をしており、前記係止部が
前記プランジャの周側部に穿設された凹溝下端面に接離
可能に支承され、前記プランジャにより、前記第2弁体
が前記中段オリフィスを開いた状態でそれと一緒に引き
上げられるようにされていることを特徴とする請求項
2、4又は5に記載の電磁弁。
6. The third valve element has a bottomed cylindrical shape in which an inwardly projecting locking portion is provided at an upper end edge portion and the middle orifice is formed in a bottom portion. The plunger is supported so as to be able to contact and separate from the lower end surface of a concave groove formed in the peripheral side of the plunger, and the plunger allows the second valve body to be pulled up together with the middle stage orifice in an opened state. The solenoid valve according to claim 2, 4 or 5, wherein:
【請求項7】 前記プランジャにその軸線方向に沿って
断面凸字状の凹所が穿設されるとともに、この凹所に断
面凸字状のストッパがその大径部を前記凹所の大径部に
位置させた状態で摺動自在に嵌挿され、このストッパの
大径部と前記ソレノイドの吸引子との間及び前記凹所の
底面との間にそれぞれ圧縮コイルバネが縮装され、前記
印加電圧が中とされて、前記プランジャが引き上げられ
たとき、前記ストッパが前記吸引子に衝接して停止せし
められて、前記プランジャもそこで停止せしめられるよ
うにされていることを特徴とする請求項3、4、又は5
に記載の電磁弁。
7. A concave portion having a convex cross section is formed in the plunger along an axial direction thereof, and a stopper having a convex cross section is provided in the concave portion so that a large diameter portion of the concave portion has a large diameter. The compression coil spring is contracted between the large-diameter portion of the stopper and the suction element of the solenoid and the bottom surface of the recess, respectively. 4. The system according to claim 3, wherein when the voltage is set to a medium level, when the plunger is pulled up, the stopper comes into contact with the suction element and is stopped, and the plunger is also stopped there. , 4, or 5
Solenoid valve according to the above.
JP25118997A 1997-09-16 1997-09-16 Solenoid valve Pending JPH1182801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25118997A JPH1182801A (en) 1997-09-16 1997-09-16 Solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25118997A JPH1182801A (en) 1997-09-16 1997-09-16 Solenoid valve

Publications (1)

Publication Number Publication Date
JPH1182801A true JPH1182801A (en) 1999-03-26

Family

ID=17219015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25118997A Pending JPH1182801A (en) 1997-09-16 1997-09-16 Solenoid valve

Country Status (1)

Country Link
JP (1) JPH1182801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248748A (en) * 1999-12-28 2001-09-14 Fuji Koki Corp Three-stage flow rate control solenoid valve
WO2003036147A1 (en) * 2001-10-18 2003-05-01 Katakura Industries Co., Ltd. Cutoff valve
WO2010067853A1 (en) * 2008-12-09 2010-06-17 カヤバ工業株式会社 Solenoid-driven flow rate control valve
KR101147940B1 (en) * 2009-07-30 2012-05-24 주식회사 엑시언 solenoid valve
CN102483178A (en) * 2010-03-18 2012-05-30 富士电机株式会社 Electronic expansion valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248748A (en) * 1999-12-28 2001-09-14 Fuji Koki Corp Three-stage flow rate control solenoid valve
WO2003036147A1 (en) * 2001-10-18 2003-05-01 Katakura Industries Co., Ltd. Cutoff valve
JP2005140136A (en) * 2001-10-18 2005-06-02 Katakura Industries Co Ltd Cutoff valve
WO2010067853A1 (en) * 2008-12-09 2010-06-17 カヤバ工業株式会社 Solenoid-driven flow rate control valve
US8870152B2 (en) 2008-12-09 2014-10-28 Kayaba Industry Co., Ltd. Solenoid-driven flow control valve
KR101147940B1 (en) * 2009-07-30 2012-05-24 주식회사 엑시언 solenoid valve
CN102483178A (en) * 2010-03-18 2012-05-30 富士电机株式会社 Electronic expansion valve

Similar Documents

Publication Publication Date Title
US7117895B2 (en) Switching valve
JP3794100B2 (en) Expansion valve with integrated solenoid valve
EP0924482B1 (en) Expansion valve integrated with electromagnetic valve
US20150096630A1 (en) Electromagnetic valve
JP2008064301A (en) Pilot type control valve
US6927656B2 (en) Electromagnetic actuator and method for manufacturing electromagnetic actuator, and control valve for variable displacement compressor using electromagnetic actuator
US6574976B2 (en) Refrigerant cycle system and valve device for the same
JP4056378B2 (en) Differential pressure valve
JPH1182801A (en) Solenoid valve
EP2918833B1 (en) Control valve for variable displacement compressor
WO2004079468A1 (en) Flow rate control valve
JP4693403B2 (en) Shut-off valve, kit having shut-off valve, and expansion valve
JP3882573B2 (en) Expansion valve with integrated solenoid valve
JPH11153244A (en) Solenoid valve
JP4544699B2 (en) 3-stage flow control solenoid valve
JPH05180369A (en) Pilot type three-way solenoid valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP5560439B2 (en) Control valve and vehicle air conditioner
JP2001066020A (en) Electromagnetic flow rate control valve
JP2002115937A (en) Composite valve
JPH11304298A (en) Expansion valve with solenoid valve
JP3897857B2 (en) Pilot operated solenoid valve
JP2003120849A (en) Collecting valve
JPH11108216A (en) Check valve
JP7309250B2 (en) valve gear and air conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A02 Decision of refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A02