JPH1180899A - High strength steel tube excellent in workability, and its production - Google Patents

High strength steel tube excellent in workability, and its production

Info

Publication number
JPH1180899A
JPH1180899A JP9240930A JP24093097A JPH1180899A JP H1180899 A JPH1180899 A JP H1180899A JP 9240930 A JP9240930 A JP 9240930A JP 24093097 A JP24093097 A JP 24093097A JP H1180899 A JPH1180899 A JP H1180899A
Authority
JP
Japan
Prior art keywords
steel pipe
less
rolling
ferrite
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9240930A
Other languages
Japanese (ja)
Other versions
JP3896647B2 (en
Inventor
Takaaki Toyooka
高明 豊岡
Masanori Nishimori
正徳 西森
Akira Yorifuji
章 依藤
Motoaki Itaya
元晶 板谷
Yuji Hashimoto
裕二 橋本
Yoshitomo Okabe
能知 岡部
Taro Kanayama
太郎 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24093097A priority Critical patent/JP3896647B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to IDW990042A priority patent/ID21234A/en
Priority to US09/254,024 priority patent/US6290789B1/en
Priority to BR9806104-6A priority patent/BR9806104A/en
Priority to CN988012162A priority patent/CN1082561C/en
Priority to EP98929659A priority patent/EP0924312B1/en
Priority to PCT/JP1998/002811 priority patent/WO1999000525A1/en
Priority to AT98929659T priority patent/ATE312208T1/en
Priority to KR1019997001507A priority patent/KR100330432B1/en
Priority to DE69832684T priority patent/DE69832684T2/en
Publication of JPH1180899A publication Critical patent/JPH1180899A/en
Priority to CA002281316A priority patent/CA2281316C/en
Priority to CA002281314A priority patent/CA2281314C/en
Priority claimed from CA002281314A external-priority patent/CA2281314C/en
Priority claimed from CA002281316A external-priority patent/CA2281316C/en
Priority to US09/771,589 priority patent/US20010027831A1/en
Priority to US10/420,759 priority patent/US20030221753A1/en
Application granted granted Critical
Publication of JP3896647B2 publication Critical patent/JP3896647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To refine crystalline grain and to improve workability and strength by providing a specific composition consisting of C, Si, Mn, Al, and the balance Fe with inevitable impurities, also providing a structure consisting of ferrite and a secondary phase of specific area ratio other than ferrite, and regulating the average crystalline grain size in the cross section perpendicular to the longitudinal direction of a steel tube to a specific value or below. SOLUTION: The steel has a composition containing, by weight, >0.30-0.70% C, 0.01-2.0% Si, 0.01-2.0% Mn, and 0.001-0.10% Al and also has a structure consisting of ferrite and a secondary phase of >30% area ratio, other than ferrite. As the secondary phase other than ferrite, martensite, bainite, and cementite can be cited, and these can be precipitated independently or in combination. The precipitated secondary phase can contribute to the improvement of strength and uniform elongation. Further, the average crystalline grain size in the cross section perpendicular to the longitudinal direction of a steel tube is regulated to <=2 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超微細結晶粒を有
し、加工性に優れた高強度鋼管およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel pipe having ultrafine crystal grains and excellent workability, and a method for producing the same.

【0002】[0002]

【従来の技術】鋼材には、強度のみでなく、延性・靱性
が高いことが必要で、従来から、強度と延性のバランス
がよい鋼材が要望されている。結晶粒の微細化は、強
度、靱性・延性をともに向上させうる数少ない手段とし
て重要である。結晶粒の微細化の方法としては、オース
テナイト粒の粗大化を防止して、微細オーステナイトか
らオーステナイト−フェライト変態を利用しフェライト
結晶粒を微細化する方法、加工によりオーステナイト粒
を微細化しフェライト結晶粒を微細化する方法、あるい
は焼入れ焼戻し処理によるマルテンサイト、下部ベイナ
イトを利用する方法などがある。
2. Description of the Related Art Steel materials are required to have not only high strength but also high ductility and toughness. Conventionally, steel materials having a good balance between strength and ductility have been demanded. Refinement of crystal grains is important as a few means capable of improving both strength, toughness and ductility. As a method of refining the crystal grains, a method of preventing the austenite grains from coarsening and refining the ferrite grains from the austenite-ferrite transformation from the fine austenite, and refining the austenite grains by processing to reduce the ferrite grains. There is a method of making finer or a method of using martensite or lower bainite by quenching and tempering.

【0003】なかでも、オーステナイト域における強加
工とそれに続くオーステナイト−フェライト変態により
フェライト粒を微細化する制御圧延が、鋼材製造に広く
利用されている。また、微量のNbを添加しオーステナイ
ト粒の再結晶を抑制してフェライト粒を一層微細化する
ことも行われている。オーステナイトの未再結晶温度域
で圧延加工を施すことにより、オーステナイト粒が伸長
し粒内に変形帯を生成して、この変形帯からフェライト
粒が生成され、フェライト粒が一層微細化されるのであ
る。さらにフェライト粒を微細化するために、加工の途
中あるいは加工後に冷却を行う、制御冷却も利用される
ようになっている。
[0003] Above all, controlled rolling in which ferrite grains are refined by austenitic hardening followed by austenite-ferrite transformation is widely used in the production of steel products. Further, a small amount of Nb is added to suppress recrystallization of austenite grains to further refine ferrite grains. By performing rolling in the non-recrystallization temperature range of austenite, austenite grains elongate and generate deformed bands in the grains, ferrite grains are generated from the deformed bands, and the ferrite grains are further refined. . In order to further refine ferrite grains, controlled cooling, in which cooling is performed during or after processing, is also being used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た方法では、フェライト粒径で4〜5μm 程度までの微
細化が限度であり、また、鋼管の製造に適用するには、
設備の改造を含む大幅な工程変更が必要となり、コスト
面で限界があった。600MPaを超える引張強さの高強度鋼
管は、C含有量を0.30%以上に高めた材料、あるいはC
含有量を高めさらに他の合金元素を多量に添加した材料
を用いて製造されている。しかし、このようにして強度
を高められた高強度鋼管では、伸び特性が低下するた
め、通常、強加工を施すことは避け、強加工を必要とす
る場合には、加工途中で中間焼鈍を施して、その後さら
に焼ならし、または焼入れ焼戻し等の熱処理を行ってい
た。しかし、中間焼鈍等の熱処理を施すことは工程的に
複雑となる。
However, in the above-mentioned method, the miniaturization of the ferrite grain size to about 4 to 5 μm is a limit.
Significant process changes, including equipment remodeling, were required, and there was a limit in cost. High-strength steel pipes with a tensile strength exceeding 600 MPa are made of materials with a C content of 0.30% or more, or C
It is manufactured using a material whose content is increased and further a large amount of other alloying elements are added. However, in the high-strength steel pipe with the increased strength as described above, the elongation characteristics are deteriorated. Therefore, usually, strong working is avoided.If strong working is required, intermediate annealing is performed during the working. After that, heat treatment such as normalizing or quenching and tempering was performed. However, performing heat treatment such as intermediate annealing becomes complicated in the process.

【0005】このようなことから、中間焼鈍を行うこと
なく高強度鋼管の強加工を可能とすることが要望され、
高強度鋼管の加工性向上のために、結晶粒のさらなる微
細化が望まれていた。本発明は、上記した問題を有利に
解決し、超微細結晶粒を有し、加工性に優れた引張強さ
600MPa以上の高強度鋼管およびその製造方法を提供する
ことを目的とする。
[0005] In view of the above, it has been demanded that high-strength steel pipes can be strongly processed without intermediate annealing.
In order to improve the workability of high-strength steel pipes, further refinement of crystal grains has been desired. The present invention advantageously solves the above problems, has ultra-fine crystal grains, and has excellent tensile strength with excellent workability.
An object of the present invention is to provide a high-strength steel pipe of 600 MPa or more and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、重量%で、
C:0.30超〜0.70%、Si:0.01〜2.0 %、Mn:0.01〜2.
0 %、Al:0.001 〜0.10%を含有し、残部Feおよび不回
避的不純物からなる組成を有し、かつ組織がフェライト
および面積率で30%超のフェライト以外の第2相からな
り、鋼管長手方向に直角な断面の平均結晶粒径が2μm
以下であることを特徴とする加工性に優れた高強度鋼管
である。
SUMMARY OF THE INVENTION The present invention provides, in weight percent,
C: more than 0.30 to 0.70%, Si: 0.01 to 2.0%, Mn: 0.01 to 2.
0%, Al: 0.001 to 0.10%, having a composition consisting of balance Fe and unavoidable impurities, and having a microstructure consisting of ferrite and a second phase other than ferrite having an area ratio of more than 30%. The average grain size of the cross section perpendicular to the direction is 2μm
It is a high-strength steel pipe excellent in workability characterized by the following.

【0007】また、本発明では、前記組成を、C:0.30
超〜0.70%、Si:0.01〜2.0 %、Mn:0.01〜2.0 %、A
l:0.001 〜0.10%を含有し、さらに、Cu:1%以下、N
i:2%以下、Cr:2%以下、Mo:1%以下のうちから
選ばれた1種または2種以上を含有し、残部Feおよび不
回避的不純物からなる組成としてもよく、また、前記組
成を、C:0.30超〜0.70%、Si:0.01〜2.0 %、Mn:0.
01〜2.0 %、Al:0.001〜0.10%を含有し、さらに、N
b:1%以下、V:0.3 %以下、Ti:0.2 %以下、B:
0.004 %以下のうちから選ばれた1種または2種以上を
含有し、残部Feおよび不回避的不純物からなる組成とし
てもよく、また、前記組成を、C:0.30超〜0.70%、S
i:0.01〜2.0 %、Mn:0.01〜2.0 %、Al:0.001 〜0.1
0%を含有し、さらに、REM :0.02%以下、Ca:0.01%
以下のうちから選ばれた1種または2種を含有し、残部
Feおよび不回避的不純物からなる組成としてもよい。
[0007] In the present invention, the composition may further comprise: C: 0.30
Ultra-0.70%, Si: 0.01-2.0%, Mn: 0.01-2.0%, A
l: 0.001 to 0.10%, Cu: 1% or less, N
i: 2% or less, Cr: 2% or less, Mo: 1% or less selected from the group consisting of Fe and unavoidable impurities. The composition was as follows: C: more than 0.30 to 0.70%, Si: 0.01 to 2.0%, Mn: 0.
01-2.0%, Al: 0.001-0.10%, and N
b: 1% or less, V: 0.3% or less, Ti: 0.2% or less, B:
One or more selected from 0.004% or less may be contained, and the composition may be composed of the balance of Fe and unavoidable impurities, and the composition may be C: more than 0.30 to 0.70%, S
i: 0.01 to 2.0%, Mn: 0.01 to 2.0%, Al: 0.001 to 0.1
0%, REM: 0.02% or less, Ca: 0.01%
Contains one or two selected from the following, with the balance being
The composition may be composed of Fe and unavoidable impurities.

【0008】また、本発明では、前記組成を、C:0.30
超〜0.70%、Si:0.01〜2.0 %、Mn:0.01〜2.0 %、A
l:0.001 〜0.10%を含有し、さらに、Cu:1%以下、N
i:2%以下、Cr:2%以下、Mo:1%以下のうちから
選ばれた1種または2種以上、およびNb:1%以下、
V:0.3 %以下、Ti:0.2 %以下、B:0.004 %以下の
うちから選ばれた1種または2種以上を含有し、残部Fe
および不回避的不純物からなる組成としてもよく、ま
た、前記組成を、C:0.30超〜0.70%、Si:0.01〜2.0
%、Mn:0.01〜2.0 %、Al:0.001 〜0.10%を含有し、
さらに、Cu:1%以下、Ni:2%以下、Cr:2%以下、
Mo:1%以下のうちから選ばれた1種または2種以上、
およびREM :0.02%以下、Ca:0.01%以下のうちから選
ばれた1種または2種を含有し、残部Feおよび不回避的
不純物からなる組成としてもよく、また、前記組成を、
C:0.30超〜0.70%、Si:0.01〜2.0 %、Mn:0.01〜2.
0 %、Al:0.001 〜0.10%を含有し、さらに、Nb:1%
以下、V:0.3 %以下、Ti:0.2%以下、B:0.004 %
以下のうちから選ばれた1種または2種以上、およびRE
M:0.02%以下、Ca:0.01%以下のうちから選ばれた1
種または2種を含有し、残部Feおよび不回避的不純物か
らなる組成としてもよい。
[0008] In the present invention, the composition may further comprise C: 0.30
Ultra-0.70%, Si: 0.01-2.0%, Mn: 0.01-2.0%, A
l: 0.001 to 0.10%, Cu: 1% or less, N
i: 2% or less, Cr: 2% or less, Mo: 1% or less, and one or more selected from the group consisting of: Nb: 1% or less;
V: 0.3% or less, Ti: 0.2% or less, B: 0.004% or less.
And a composition consisting of unavoidable impurities, and the composition is as follows: C: more than 0.30 to 0.70%, Si: 0.01 to 2.0
%, Mn: 0.01 to 2.0%, Al: 0.001 to 0.10%,
Further, Cu: 1% or less, Ni: 2% or less, Cr: 2% or less,
Mo: 1% or more selected from 1% or less,
And REM: 0.02% or less, Ca: 0.01% or less selected from the group consisting of Fe and unavoidable impurities, and the composition may be
C: more than 0.30 to 0.70%, Si: 0.01 to 2.0%, Mn: 0.01 to 2.
0%, Al: 0.001 to 0.10%, and Nb: 1%
Below, V: 0.3% or less, Ti: 0.2% or less, B: 0.004%
One or more selected from the following, and RE
M: 0.02% or less, Ca: 0.01% or less 1
It may be a composition containing one or two species and the balance being Fe and unavoidable impurities.

【0009】また、本発明では、前記組成を、C:0.30
超〜0.70%、Si:0.01〜2.0 %、Mn:0.01〜2.0 %、A
l:0.001 〜0.10%を含有し、さらに、Cu:1%以下、N
i:2%以下、Cr:2%以下、Mo:1%以下のうちから
選ばれた1種または2種以上、Nb:1%以下、V:0.3
%以下、Ti:0.2 %以下、B:0.004 %以下のうちから
選ばれた1種または2種以上、およびREM :0.02%以
下、Ca:0.01%以下のうちから選ばれた1種または2種
を含有し、残部Feおよび不回避的不純物からなる組成と
してもよい。
Further, in the present invention, the above-mentioned composition is represented by C: 0.30
Ultra-0.70%, Si: 0.01-2.0%, Mn: 0.01-2.0%, A
l: 0.001 to 0.10%, Cu: 1% or less, N
i: 2% or less, Cr: 2% or less, Mo: 1% or less, Nb: 1% or less, V: 0.3
% Or less, Ti: 0.2% or less, B: 0.004% or less, and one or more selected from REM: 0.02% or less, Ca: 0.01% or less. , And the balance may be composed of Fe and unavoidable impurities.

【0010】また、本発明は、上記したいずれかの組成
を有し、鋼管長手方向に直角な断面の平均結晶粒径di
(μm )で、外径ODi (mm)の素材鋼管を加熱し、平均
圧延温度θm (℃)、合計縮径率Tred (%)の絞り圧
延を施し外径ODf (mm)の製品管とする鋼管の製造方法
において、前記絞り圧延を400 〜750 ℃の温度範囲で、
かつ前記平均結晶粒径di(μm )、前記平均圧延温度
θm(℃)および前記合計縮径率Tred (%)の関係が
次(1)式
Further, the present invention provides any one of the above-mentioned compositions, and has an average crystal grain diameter di of a cross section perpendicular to the longitudinal direction of the steel pipe.
(Μm), a material steel pipe having an outer diameter of ODi (mm) is heated and subjected to reduction rolling at an average rolling temperature of θm (° C) and a total reduction ratio of Tred (%) to obtain a product pipe having an outer diameter of ODf (mm). In the method for manufacturing a steel pipe, the reduction rolling is performed in a temperature range of 400 to 750 ° C.
The relationship between the average crystal grain diameter di (μm), the average rolling temperature θm (° C.), and the total diameter reduction rate Tred (%) is expressed by the following equation (1).

【0011】[0011]

【数2】 (Equation 2)

【0012】(ここに、di:素材鋼管の平均結晶粒径
(μm )、θm:平均圧延温度(℃)=(θi+θf)
/2、θi:圧延開始温度、θf:圧延終了温度、Tre
d :合計縮径率(%)=(ODi-ODf)×100 /ODi、ODi :
素材鋼管外径(mm)、ODf :製品管外径(mm))を満足
する絞り圧延とすることを特徴とする鋼管長手方向に直
角な断面の平均結晶粒径が2μm 以下の超微細粒を有す
る高強度鋼管の製造方法である。また、本発明では、前
記素材鋼管の加熱または均熱を750 ℃以下とするのが好
ましく、また、本発明では、前記絞り圧延が潤滑下での
圧延とするのが好ましい。
(Where, di: average grain size of the material steel pipe (μm), θm: average rolling temperature (° C.) = (Θi + θf)
/ 2, θi: rolling start temperature, θf: rolling end temperature, Tre
d: Total diameter reduction ratio (%) = (ODi-ODf) × 100 / ODi, ODi:
Ultrafine grains having an average crystal grain size of 2 μm or less in a cross section perpendicular to the longitudinal direction of the steel pipe, characterized by being subjected to reduction rolling satisfying the outer diameter (mm) of the material steel pipe, ODf: the outer diameter of the product pipe (mm). It is a method of manufacturing a high-strength steel pipe having the same. In the present invention, the heating or soaking of the material steel pipe is preferably performed at 750 ° C. or less. In the present invention, it is preferable that the reduction rolling is performed under lubrication.

【0013】[0013]

【発明の実施の形態】本発明では、素材として鋼管を用
いる。素材鋼管の製造工程については、とくに限定しな
い。高周波を利用した電気抵抗溶接法による電気抵抗溶
接鋼管(電縫管)、オープン管両エッジ部を固相圧接温
度域に加熱し圧接接合による固相圧接鋼管、鍛接鋼管、
およびマンネスマン式穿孔圧延による継目無鋼管等いず
れも好適に使用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a steel pipe is used as a raw material. The manufacturing process of the raw steel pipe is not particularly limited. Electric resistance welded steel pipes (electrically welded pipes) by electric resistance welding method using high frequency, solid-phase welded steel pipes, forged welded steel pipes by heating both edges of the open pipe to the solid-state pressure welding temperature range and pressure welding
And seamless steel pipes manufactured by Mannesmann piercing and rolling can be suitably used.

【0014】つぎに、素材鋼管および製品鋼管の化学組
成の限定理由を説明する。 C:0.30超〜0.70% Cは、基地中に固溶あるいは炭化物として析出し、鋼の
強度を増加させる元素であり、また、硬質な第2相とし
て析出したセメンタイト、パーライト、ベイナイト、マ
ルテンサイトが高強度化と一様伸びの増加に寄与する。
引張強さ600MPa以上の所望の強度を確保するためには、
Cは、0.30%超以上の含有を必要とするが、0.70%を超
えて含有すると延性が劣化する。このため、Cは、0.30
超〜0.70%の範囲に限定した。
Next, the reasons for limiting the chemical composition of the raw steel pipe and the product steel pipe will be described. C: more than 0.30 to 0.70% C is an element that precipitates as a solid solution or carbides in the matrix and increases the strength of steel. Contributes to higher strength and increased uniform elongation.
In order to secure the desired strength of tensile strength of 600 MPa or more,
C needs to be contained in an amount of more than 0.30% or more, but if it exceeds 0.70%, ductility deteriorates. Therefore, C is 0.30
Limited to the range of ~ 0.70%.

【0015】Si:0.01〜2.0 % Siは、脱酸剤として作用するとともに、基地中に固溶し
鋼の強度を増加させる。この効果は、0.01%以上、好ま
しくは0.10%以上の含有で認められるが、2.0%を超え
る含有は延性を劣化させる。このため、Siは0.01〜2.0
%の範囲に限定した。なお、好ましくは、強度延性バラ
ンスの点から0.10〜1.5 %の範囲である。
Si: 0.01-2.0% Si acts as a deoxidizing agent and forms a solid solution in the matrix to increase the strength of steel. This effect is observed at a content of 0.01% or more, preferably 0.10% or more, but a content of more than 2.0% deteriorates the ductility. Therefore, Si is 0.01 to 2.0
%. Preferably, it is in the range of 0.10 to 1.5% from the viewpoint of strength-ductility balance.

【0016】Mn:0.01〜2.0 % Mnは、鋼の強度を増加させる元素であり、第2相として
のセメンタイトの微細析出、あるいはマルテンサイト、
ベイナイトの析出を促進させる。このような効果は0.01
%以上の含有で認められるが、2.0 %を超える含有は延
性を劣化させる。このため、Mnは0.01〜2.0 %の範囲に
限定した。なお、強度延性バランスと溶接性の観点から
はMnは0.2 〜1.3 %の範囲が好ましい。
Mn: 0.01 to 2.0% Mn is an element that increases the strength of steel, and includes fine precipitation of cementite as a second phase or martensite,
Promotes bainite precipitation. Such an effect is 0.01
% Or more, but more than 2.0% deteriorates the ductility. For this reason, Mn was limited to the range of 0.01 to 2.0%. From the viewpoint of strength-ductility balance and weldability, Mn is preferably in the range of 0.2 to 1.3%.

【0017】Al:0.001 〜0.10% Alは、結晶粒を微細化する作用を有している。結晶粒微
細化のためには、少なくとも0.001 %以上の含有を必要
とするが、0.10%を超えると酸素系介在物量が増加し清
浄度が劣化する。このため、Alは0.001 〜0.10%の範囲
に限定した。なお、好ましくは0.015 〜0.06%である。
Al: 0.001 to 0.10% Al has an effect of making crystal grains fine. In order to refine the crystal grains, the content must be at least 0.001% or more, but if it exceeds 0.10%, the amount of oxygen-based inclusions increases and the cleanliness deteriorates. For this reason, Al was limited to the range of 0.001 to 0.10%. Incidentally, the content is preferably 0.015 to 0.06%.

【0018】上記した基本組成に加えて、次に述べる合
金元素群を単独あるいは複合して添加してもよい。 Cu:1%以下、Ni:2%以下、Cr:2%以下、Mo:1%
以下のうちから選ばれた1種または2種以上 Cu、Ni、Cr、Moはいずれも、鋼の焼入れ性を向上させ、
強度を増加させる元素であり、必要に応じ1種または2
種以上を添加できる。これら元素は、変態点を低下さ
せ、フェライト粒あるいは第2相を微細化する効果を有
している。しかし、Cuは多量添加すると熱間加工性が劣
化するため、1%を上限とした。Niは強度増加とともに
靱性を改善するが、2%を超えて添加しても効果が飽和
し経済的に高価となるため、2%を上限とした。Cr、Mo
は多量添加すると溶接性、延性が劣化するうえ経済的に
高価となるため、それぞれ2%、1%を上限とした。な
お、好ましくは、Cu: 0.1〜0.6 %、Ni: 0.1〜1.0
%、Cr: 0.1〜1.5 %、Mo:0.05〜0.5 %である。
In addition to the above basic composition, the following alloy element group may be added alone or in combination. Cu: 1% or less, Ni: 2% or less, Cr: 2% or less, Mo: 1%
One or more selected from the following Cu, Ni, Cr, Mo all improve the hardenability of steel,
It is an element that increases strength.
More than one species can be added. These elements have the effect of lowering the transformation point and miniaturizing the ferrite grains or the second phase. However, the hot workability deteriorates when a large amount of Cu is added, so the upper limit is 1%. Ni improves toughness as the strength increases, but adding more than 2% saturates the effect and makes it economically expensive, so the upper limit was 2%. Cr, Mo
Since the addition of a large amount deteriorates weldability and ductility and is economically expensive, the upper limits are 2% and 1%, respectively. Preferably, Cu: 0.1 to 0.6%, Ni: 0.1 to 1.0%
%, Cr: 0.1-1.5%, Mo: 0.05-0.5%.

【0019】Nb:0.1 %以下、V:0.3 %以下、Ti:0.
2 %以下、B:0.004 %以下のうちから選ばれた1種ま
たは2種以上 Nb、V、Ti、Bはいずれも、炭化物、窒化物または炭窒
化物として析出し、結晶粒の微細化と高強度化に寄与す
る。とくに高温に加熱される接合部を有する鋼管では、
接合時の加熱過程での結晶粒の微細化や、冷却過程での
フェライトの析出核として作用し、接合部の硬化を防止
する効果もあり、必要に応じ1種または2種以上添加で
きる。しかし、多量添加すると、溶接性と靱性・延性が
劣化するため、Nbは0.1 %以下、Vは0.3 %以下、Tiは
0.2 %以下、Bは0.004 %以下に限定した。なお、好ま
しくは、Nb: 0.005〜0.05%、V:0.05〜0.1 %、Ti:
0.005〜0.05%、B:0.0005〜0.0020%である。
Nb: 0.1% or less, V: 0.3% or less, Ti: 0.
2% or less, B: one or more selected from among 0.004% or less Nb, V, Ti, and B are all precipitated as carbides, nitrides, or carbonitrides to reduce the crystal grain size. Contributes to high strength. Especially in steel pipes with joints that are heated to high temperatures,
It has the effect of miniaturizing the crystal grains in the heating process at the time of bonding and the effect of preventing the hardening of the bonded portion by acting as a ferrite precipitation nucleus in the cooling process. One or more of these can be added as necessary. However, if added in large amounts, weldability and toughness / ductility deteriorate, so Nb is 0.1% or less, V is 0.3% or less, and Ti is
B was limited to 0.2% or less, and B was limited to 0.004% or less. Preferably, Nb: 0.005 to 0.05%, V: 0.05 to 0.1%, Ti:
0.005 to 0.05%, B: 0.0005 to 0.0020%.

【0020】REM :0.02%以下、Ca:0.01%以下のうち
から選ばれた1種または2種 REM 、Caは、いずれも介在物の形状を調整し加工性を向
上させる作用を有しており、さらに硫化物、酸化物また
は硫酸化物として析出し、接合部を有する鋼管では、接
合部の硬化を防止する効果もあり、必要に応じ1種また
は2種添加できる。しかし、REM :0.02%、Ca:0.01%
を超えると介在物が多くなりすぎ清浄度が低下し、延性
が低下する。このため、REM :0.02%以下、Ca:0.01%
以下に限定した。なお、REM :0.004 %未満、Ca:0.00
1 %未満ではこの効果が少ないため、REM :0.004 %以
上、Ca:0.001 %以上とするのが好ましい。
One or two kinds of REM and Ca selected from among REM: 0.02% or less and Ca: 0.01% or less, both have an effect of adjusting the shape of inclusions and improving workability. Further, in a steel pipe having a joint, which precipitates as a sulfide, an oxide, or a sulfate, there is also an effect of preventing hardening of the joint, and one or two kinds can be added as necessary. However, REM: 0.02%, Ca: 0.01%
If it exceeds, the number of inclusions becomes too large, the cleanliness decreases, and the ductility decreases. Therefore, REM: 0.02% or less, Ca: 0.01%
Limited to the following. REM: less than 0.004%, Ca: 0.00
Since the effect is small at less than 1%, it is preferable to set REM: 0.004% or more and Ca: 0.001% or more.

【0021】素材鋼管および製品鋼管は、上記した成分
のほか、残部Feおよび不回避的不純物からなる。不可避
的不純物としては、N:0.010 %以下、O:0.006 %以
下、P:0.025%以下、S:0.020 %以下が許容され
る。 N:0.010 %以下 Nは、Alと結合し結晶粒を微細化するに必要な量、0.01
0 %までは許容できるが、それ以上の含有は延性を劣化
させるため、0.010 %以下に低減するのがこのましい。
The raw steel pipe and the product steel pipe are composed of the above-mentioned components, the balance being Fe and unavoidable impurities. As inevitable impurities, N: 0.010% or less, O: 0.006% or less, P: 0.025% or less, and S: 0.020% or less are allowed. N: 0.010% or less N is an amount necessary for bonding with Al and refining crystal grains, 0.01%
Up to 0% is acceptable, but higher contents degrade ductility, so it is preferable to reduce it to 0.010% or less.

【0022】O:0.006 %以下 Oは、酸化物として清浄度を劣化させるため、できるだ
け低減するのが好ましいが、0.006 %までは許容でき
る。 P:0.025 %以下 Pは、結晶粒界に偏析し、靱性を劣化させるため、でき
るだけ低減するのが好ましいが、0.025 %までは許容で
きる。
O: 0.006% or less O deteriorates cleanliness as an oxide, so it is preferable to reduce O as much as possible, but up to 0.006% is acceptable. P: 0.025% or less P segregates at crystal grain boundaries and degrades toughness, so it is preferable to reduce P as much as possible, but up to 0.025% is acceptable.

【0023】S:0.020 %以下 Sは、硫化物として清浄度を劣化させるため、できるだ
け低減するのが好ましいが、0.020 %までは許容でき
る。つぎに、製品鋼管の組織について説明する。本発明
の製品鋼管の組織は、フェライトと、面積率で30%超の
フェライト以外の第2相からなり、鋼管長手方向に直角
な断面の平均結晶粒径が2μm 以下である鋼管である。
S: not more than 0.020% S is preferably reduced as much as possible because sulphide deteriorates the cleanliness, but up to 0.020% is acceptable. Next, the structure of the product steel pipe will be described. The structure of the product steel pipe of the present invention is a steel pipe comprising ferrite and a second phase other than ferrite having an area ratio of more than 30%, and having an average crystal grain size of 2 μm or less in a section perpendicular to the longitudinal direction of the steel pipe.

【0024】フェライト以外の第2相としては、マルテ
ンサイト、ベイナイト、セメンタイトがあり、それらが
単独あるいは複合して析出してもよい。第2相の面積率
は30%超とする。析出した第2相は、強度、一様伸びの
向上に寄与し、鋼管の強度、延性を向上させるが、この
ような効果は第2相の面積率が30%以下では少ない。フ
ェライト以外の第2相の面積率は30%超好ましくは60%
以下とするのが好ましい。60%を超えるとセメンタイト
の粗大化のため延性が劣化する。
The second phase other than ferrite includes martensite, bainite, and cementite, and these may be precipitated alone or in combination. The area ratio of the second phase is more than 30%. The precipitated second phase contributes to the improvement of strength and uniform elongation and improves the strength and ductility of the steel pipe, but such an effect is small when the area ratio of the second phase is 30% or less. The area ratio of the second phase other than ferrite is more than 30%, preferably 60%
It is preferable to set the following. If it exceeds 60%, ductility deteriorates due to coarsening of cementite.

【0025】平均結晶粒径が2μm を超えると、延性の
著しい向上がなく、加工性の著しい向上が得られない。
本発明における平均結晶粒径は、鋼管長手方向に直角な
断面を、ナイタール液で腐食し光学顕微鏡または電子顕
微鏡で組織観察し、200 個以上の粒の円相当系を求め、
その平均値を用いた。なお、第2相の粒径は、第2相が
パーライトの場合は、パーライトコロニー境界を、ベイ
ナイト、マルテンサイトの場合にはパケット境界を粒界
として、粒径を測定した。
When the average crystal grain size exceeds 2 μm, there is no remarkable improvement in ductility and no remarkable improvement in workability can be obtained.
The average crystal grain size in the present invention, the cross section perpendicular to the longitudinal direction of the steel pipe, corroded with a nital solution, observed under an optical microscope or an electron microscope, and obtained a circle equivalent system of 200 or more grains,
The average value was used. The particle size of the second phase was measured using the pearlite colony boundary when the second phase was pearlite and the packet boundary when bainite or martensite was used.

【0026】つぎに、本発明の鋼管の製造方法について
説明する。上記した組成を有し、鋼管長手方向に直角な
断面の平均結晶粒径di(μm )、外径ODi (mm)の素
材鋼管を、750 ℃以下、好ましくは400 ℃以上750 ℃以
下に加熱または均熱したのち、平均圧延温度θm
(℃)、合計縮径率Tred (%)の絞り圧延を施し外径
ODf (mm)の製品管とする。
Next, a method of manufacturing a steel pipe according to the present invention will be described. A raw steel pipe having the above composition and having an average crystal grain diameter di (μm) and an outer diameter ODi (mm) of a cross section perpendicular to the longitudinal direction of the steel pipe is heated to 750 ° C. or lower, preferably 400 ° C. to 750 ° C. After soaking, average rolling temperature θm
(° C), reduction rolling of total reduction ratio Tred (%)
ODf (mm) product tube.

【0027】絞り圧延方法は、レデューサと称される複
数の孔型圧延機による絞り圧延が好適である。本発明の
実施に好適な設備列の1例を図1に示す。図1では、孔
型ロールを有する複数のスタンドの絞り圧延装置21が示
されている。圧延機のスタンド数は、素材鋼管径と製品
管径の組み合わせで適宜決定される。孔型ロールは、通
常公知の2ロール、3ロールあるいは4ロールいずれで
も好適に適用できる。
As the reduction rolling method, reduction rolling by a plurality of grooved rolling mills called a reducer is preferable. FIG. 1 shows an example of an equipment row suitable for implementing the present invention. In FIG. 1, a plurality of stand reduction rolling devices 21 having a grooved roll are shown. The number of stands of the rolling mill is appropriately determined by the combination of the material steel pipe diameter and the product pipe diameter. As the hole type roll, any of generally known two rolls, three rolls and four rolls can be suitably applied.

【0028】絞り圧延の加熱または均熱方法はとくに限
定するものではないが、加熱炉、あるいは誘導加熱によ
るのが好ましい。なかでも誘導加熱方式が加熱速度が大
きく生産能率あるいは結晶粒の成長を抑制する点から好
ましい。加熱または均熱温度は結晶粒が粗大化しない温
度範囲である750 ℃以下とするのが好ましい。本発明で
は、もちろん、素材鋼管の加熱あるいは均熱温度が上記
した温度を超える場合でも製品管の結晶粒径は微細とな
る。しかし、加熱あるいは均熱温度が750 ℃を超えると
表面性状が劣化し、また、400 ℃未満では好適な圧延温
度を確保できないため、加熱あるいは均熱温度は400 ℃
以上750 ℃以下とするのが好ましい。
The heating or soaking method of the reduction rolling is not particularly limited, but it is preferable to use a heating furnace or induction heating. Among them, the induction heating method is preferable because the heating rate is large and the production efficiency or the growth of crystal grains is suppressed. The heating or soaking temperature is preferably 750 ° C. or less, which is a temperature range where crystal grains are not coarsened. In the present invention, of course, even when the heating or soaking temperature of the raw steel pipe exceeds the above-mentioned temperature, the crystal grain size of the product pipe becomes fine. However, if the heating or soaking temperature exceeds 750 ° C, the surface properties deteriorate, and if it is less than 400 ° C, a suitable rolling temperature cannot be secured.
It is preferable that the temperature is not less than 750 ° C.

【0029】絞り圧延の圧延温度は400 〜750 ℃の温度
範囲とする。この圧延域での圧延により、素材鋼管組織
中の第2相がパーライトの場合には、パーライト中の層
状セメンタイトが分断微細化され、これにより製品鋼管
の伸び特性が確保され、加工性が向上する。また、素材
鋼管組織中の第2相がベイナイトの場合には、加工を受
けたベイナイトが再結晶し、微細ベイニティックフェラ
イト組織となり、これにより製品鋼管の伸び特性が確保
され、加工性が向上する。
The rolling temperature of the reduction rolling is in a temperature range of 400 to 750 ° C. By rolling in this rolling region, when the second phase in the material steel pipe structure is pearlite, the layered cementite in the pearlite is divided and refined, whereby the elongation characteristics of the product steel pipe are secured and workability is improved. . Further, when the second phase in the material steel pipe structure is bainite, the processed bainite recrystallizes to form a fine bainitic ferrite structure, thereby securing the elongation characteristics of the product steel pipe and improving workability. I do.

【0030】圧延温度が750 ℃を超えると、再結晶後の
粒の成長が著しくなり微細粒となりにくく、延性が低下
する。さらに、圧延温度が400 ℃未満では、青熱脆化域
となり圧延が困難となるか、あるいは再結晶が不十分と
なり加工歪が残存しやすくなるため、延性・靱性が低下
する。このため、絞り圧延の圧延温度は400 〜750 ℃の
温度範囲とする。なお、好ましくは600 〜700 ℃であ
る。
If the rolling temperature exceeds 750 ° C., the growth of the grains after recrystallization becomes remarkable, it becomes difficult to form fine grains, and the ductility decreases. Further, when the rolling temperature is lower than 400 ° C., it becomes a blue embrittlement region, and the rolling becomes difficult, or the recrystallization becomes insufficient, and the work strain tends to remain, so that the ductility and toughness decrease. For this reason, the rolling temperature of the reduction rolling is set to a temperature range of 400 to 750 ° C. The temperature is preferably from 600 to 700 ° C.

【0031】絞り圧延は、上記圧延温度範囲内でかつ素
材鋼管の鋼管長手方向に直角な断面の平均結晶粒径di
(μm )、絞り圧延の平均圧延温度θm (℃)および合
計縮径率Tred (%)の関係が次(1)式
In the reduction rolling, the average crystal grain diameter di of the cross section perpendicular to the longitudinal direction of the steel pipe of the raw steel pipe is set within the above-mentioned rolling temperature range.
(Μm), the average rolling temperature θm (° C.) of the reduction rolling and the total diameter reduction rate Tred (%) are expressed by the following equation (1).

【0032】[0032]

【数3】 (Equation 3)

【0033】を満足する絞り圧延とする。ここに、平均
圧延温度θm (℃)は、θm =(θi+θf)/2、
(θi:圧延開始温度、θf:圧延終了温度)、合計縮
径率Tred (%)は、Tred =(ODi-ODf)×100 /ODi、
(ODi :素材鋼管外径(mm)、ODf :製品管外径(m
m))で定義される。
The rolling is performed so as to satisfy the following. Here, the average rolling temperature θm (° C.) is θm = (θi + θf) / 2,
(Θi: rolling start temperature, θf: rolling end temperature), the total diameter reduction rate Tred (%) is: Tred = (ODi−ODf) × 100 / ODi,
(ODi: Outer diameter of material steel pipe (mm), ODf: Outer diameter of product pipe (m
m)).

【0034】di、θmおよびTred の関係が(1)式
を満足しない場合には、製品管の平均結晶粒(鋼管長手
方向に直角な断面)が2μm 以下の微細粒とならない。
本発明における鋼管の絞り圧延は、2軸応力状態の圧延
加工となり、著しい結晶粒微細化効果を得ることができ
る。これに対し、鋼板の圧延においては、圧延方向に加
え、板幅方向(圧延直角方向)にも自由端が存在し、1
軸応力状態における圧延加工となり、結晶粒微細化に限
界がある。
If the relationship among di, θm and Tred does not satisfy the expression (1), the average crystal grain (cross section perpendicular to the longitudinal direction of the steel pipe) of the product pipe does not become fine grains of 2 μm or less.
The drawing rolling of the steel pipe in the present invention is a rolling process in a biaxial stress state, and a remarkable grain refinement effect can be obtained. On the other hand, in the rolling of a steel sheet, a free end exists not only in the rolling direction but also in the sheet width direction (direction perpendicular to the rolling direction).
Rolling is performed in an axial stress state, and there is a limit to grain refinement.

【0035】本発明では、絞り圧延は、潤滑下での圧延
とするのが好ましい。圧延を潤滑圧延とすることによ
り、厚み方向の歪分布が均一となり、結晶粒径の分布が
厚み方向で均一となる。無潤滑圧延では、材料表面のみ
歪が集中し厚み方向の結晶粒が不均一となりやすい。潤
滑圧延は鉱油あるいは鉱油と合成エステル等の通常の圧
延油を用いて行えばよく、圧延油をとくに限定する必要
はない。
In the present invention, the reduction rolling is preferably performed under lubrication. By performing the rolling by lubricating rolling, the strain distribution in the thickness direction becomes uniform, and the distribution of the crystal grain size becomes uniform in the thickness direction. In non-lubricated rolling, strain concentrates only on the material surface, and crystal grains in the thickness direction tend to be non-uniform. The lubricating rolling may be performed using a normal rolling oil such as a mineral oil or a mineral oil and a synthetic ester, and the rolling oil need not be particularly limited.

【0036】絞り圧延後、製品管は好ましくは300 ℃以
下まで冷却される。冷却方法は、空冷でよいが、粒成長
を少しでも抑える目的で急冷装置24を用い水冷、あるい
はミスト冷却、強制空冷等通常公知の冷却方法が適用可
能である。冷却速度は1℃/sec 以上とするのが好まし
い。なお、本発明では、絞り圧延装置21の入側あるいは
絞り圧延装置21の途中に冷却装置を設置し、温度調節を
行ってもよい。
After rolling, the product tube is cooled, preferably to 300 ° C. or less. As a cooling method, air cooling may be used, but a generally known cooling method such as water cooling, mist cooling, or forced air cooling using a quenching device 24 for the purpose of suppressing grain growth even slightly can be applied. The cooling rate is preferably 1 ° C./sec or more. In the present invention, a cooling device may be installed on the inlet side of the reduction rolling device 21 or in the middle of the reduction rolling device 21 to adjust the temperature.

【0037】本発明で素材とする素材鋼管は、継目無鋼
管あるいは、電縫鋼管、鍛接鋼管、固相圧接鋼管等いず
れでもよい。また、本発明の超微細粒鋼管の製造工程
は、上記した素材鋼管の製造ラインと連続化してもよ
い。固相圧接鋼管の製造ラインと連続化した1例を図2
に示す。アンコイラ14から払い出された帯鋼1は、接合
装置15により先行する帯鋼と接続され、ルーパ17を介し
て予熱炉2で予熱されたのち、成形ロール群からなる成
形加工装置3でオープン管7とされ、エッジ予熱用誘導
加熱装置4とエッジ加熱用誘導加熱装置5により融点未
満の温度域にオープン管7エッジ部を加熱して、スクイ
ズロール6で衝合圧接され、素材鋼管8とされる。
The raw steel pipe used as the raw material in the present invention may be a seamless steel pipe, an electric resistance welded steel pipe, a forged steel pipe, a solid-phase pressure welded steel pipe, or the like. Further, the manufacturing process of the ultrafine-grained steel pipe of the present invention may be continuous with the above-described raw steel pipe manufacturing line. Fig. 2 shows an example of a continuous solid-state pressure welded steel pipe production line.
Shown in The strip 1 discharged from the uncoiler 14 is connected to the preceding strip by the joining device 15, preheated by the preheating furnace 2 via the looper 17, and then opened by the forming apparatus 3 including forming rolls. The edge portion of the open pipe 7 is heated to a temperature range lower than the melting point by the induction heating device 4 for edge preheating and the induction heating device 5 for edge heating. You.

【0038】ついで、素材鋼管8は、上記したように、
均熱炉22で所定の温度に加熱あるいは均熱後、デスケー
リング装置23でスケールを除去し、絞り圧延装置21によ
り絞り圧延され、切断機で切断され、管矯正装置19で矯
正され製品管16となる。鋼管の温度は温度計20で測定す
る。上記した製造方法によれば、フェライトと面積率で
30%超のフェライト以外の第2相からなる組織を有し、
鋼材長手方向直角断面の平均結晶粒径が2μm 以下の超
微細粒を有する高強度鋼管が中間焼鈍なしに得られる。
Next, the material steel pipe 8 is, as described above,
After heating or soaking to a predetermined temperature in a soaking furnace 22, the scale is removed by a descaling device 23, squeezed and rolled by a squeezing rolling device 21, cut by a cutting machine, straightened by a tube straightening device 19, and a product pipe 16. Becomes The temperature of the steel pipe is measured by a thermometer 20. According to the manufacturing method described above, the area ratio with ferrite is
Having a structure consisting of more than 30% of a second phase other than ferrite,
A high-strength steel pipe having ultrafine grains having an average crystal grain diameter of a cross section perpendicular to the longitudinal direction of the steel material of 2 μm or less can be obtained without intermediate annealing.

【0039】[0039]

【実施例】【Example】

(実施例1)表1に示す化学組成を有する鋼素材を熱間
圧延により4.5mm 厚の帯鋼とした。図2に示す設備列を
利用して、この帯鋼1を予熱炉2で600 ℃に予熱したの
ち、複数の成形ロール群からなる成形加工装置3で連続
的に成形しオープン管7とした。ついで、オープン管7
の両エッジ部をエッジ予熱用誘導誘導加熱装置4で1000
℃まで予熱したのち、さらに両エッジ部をエッジ加熱用
誘導加熱装置5により1450℃まで加熱しスクイズロール
6により衝合し固相圧接して、φ 110×T4.5mmの素材鋼
管8とした。
(Example 1) A steel material having the chemical composition shown in Table 1 was hot-rolled into a 4.5 mm-thick steel strip. The strip 1 was preheated to 600 ° C. in a preheating furnace 2 using the equipment row shown in FIG. 2 and then continuously formed into an open pipe 7 by a forming apparatus 3 including a plurality of forming roll groups. Then open tube 7
Of both edges is 1000 with induction heating device 4 for edge preheating.
After preheating to ℃, both edge portions were further heated to 1450 ℃ by an induction heating device 5 for edge heating, butted by a squeeze roll 6 and solid-phase pressed to obtain a material steel pipe 8 of φ110 × T4.5mm.

【0040】ついで、素材鋼管をシーム冷却および管加
熱装置22で表2に示す加熱均熱温度にしたのち、複数の
3ロール構造の絞り圧延機を設置した絞り圧延装置21で
所定の外径寸法の製品管とした。使用した圧延機のスタ
ンド数は、製品管の外径がφ60.3mmの場合には6スタン
ド、φ42.7mmの場合には16スタンドとした。なお、No.1
-2の製品管は、絞り圧延に際し、鉱油に合成エステルを
混合した圧延油を用いて潤滑圧延を行った。
Then, the raw steel pipe is heated to a heating soaking temperature shown in Table 2 by a seam cooling and pipe heating device 22, and then a predetermined outer diameter is reduced by a reduction rolling device 21 in which a plurality of reduction rolling mills having a three-roll structure are installed. Product tube. The number of stands of the rolling mill used was 6 when the outer diameter of the product tube was 60.3 mm, and 16 when the outer diameter of the tube was 42.7 mm. No.1
The product pipe of No.-2 was lubricated and rolled using rolling oil in which synthetic ester was mixed with mineral oil when drawing and rolling.

【0041】絞り圧延後、製品管は空冷した。これら製
品管について、結晶粒径、引張特性を調査しその結果を
表2に示す。結晶粒径は、鋼管の長手方向に対し直角な
断面(C断面)について、5000倍の倍率でそれぞれ5視
野以上観察し、フェライトおよび第2相の平均結晶粒径
を測定した。引張特性は、JIS 11号試験片を用いた。な
お、伸び(El)は試験片のサイズ効果を考慮して、 El=El0 ×(√(a0/a))0.4 (El0 :実測伸び、a0=100mm2、a:試験片断面積mm
2 )より求めた換算値を用いた。
After the rolling, the product tube was air-cooled. The crystal grain size and tensile properties of these product tubes were investigated, and the results are shown in Table 2. Regarding the crystal grain size, a cross section (C cross section) perpendicular to the longitudinal direction of the steel pipe was observed at 5 times or more at a magnification of 5000 times, and the average crystal grain size of the ferrite and the second phase was measured. For the tensile properties, JIS No. 11 test pieces were used. The elongation (El) is given by considering the size effect of the test piece: El = El 0 × (× (a 0 / a)) 0.4 (El 0 : measured elongation, a 0 = 100 mm 2 , a: test piece cross-sectional area mm
2 ) The converted value obtained from the above was used.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】表2から、本発明範囲の本発明例(No.1-
2、No.1-4〜No.1-7、No.1-10 )は、平均結晶粒径がい
ずれも2μm の微細粒となり、伸び、靱性も高く、引張
強さも600MPa以上を有し、強度と靱性・延性のバランス
が優れた鋼管となっている。また、潤滑圧延を行ったN
o.1-2では、肉厚方向の結晶粒のばらつきが少なかっ
た。それに比較し、本発明の範囲を外れた比較例(No.1
-1、No.1-3、No.1-8、No.1-9)では、結晶粒が粗大化
し、延性が劣化している。
From Table 2, it can be seen that the present invention within the scope of the present invention (No. 1-
2, No. 1-4 to No. 1-7, No. 1-10) are fine grains having an average crystal grain size of 2 μm, and have high elongation, high toughness, and tensile strength of 600 MPa or more. It is a steel pipe with excellent balance between strength, toughness and ductility. In addition, the lubricated rolling N
In o.1-2, the variation of the crystal grains in the thickness direction was small. In comparison, a comparative example (No. 1) out of the scope of the present invention
-1, No. 1-3, No. 1-8, No. 1-9), the crystal grains became coarse and the ductility was deteriorated.

【0045】なお、本発明範囲の製品管の組織はフェラ
イトと、第2相として面積率で30%超のセメンタイトを
有する組織であった。 (実施例2)表3に示す化学組成を有する素材鋼管を、
表4に示す温度に誘導加熱コイルで再加熱したのち、3
ロール構造の絞り圧延機で表4に示す外径の製品管とし
た。なお、使用した圧延機のスタンド数は16スタンドと
した。
The structure of the product tube within the scope of the present invention was a structure having ferrite and cementite having an area ratio of more than 30% as a second phase. (Example 2) A material steel pipe having a chemical composition shown in Table 3 was used.
After reheating with the induction heating coil to the temperature shown in Table 4, 3
A product tube having an outer diameter shown in Table 4 was obtained by a rolling mill having a roll structure. The number of stands of the rolling mill used was 16 stands.

【0046】これら製品管の特性を調査し、その結果を
表4に示す。製品管の特性は、組織、結晶粒径、引張特
性について実施例1と同様に調査した。
The characteristics of these product tubes were investigated, and the results are shown in Table 4. The characteristics of the product tube were examined in the same manner as in Example 1 for the structure, crystal grain size, and tensile characteristics.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】表4から、本発明範囲の本発明例(No.2-1
〜No.2-6)は、フェライトの平均結晶粒径が2μm 以下
となり、引張強さが600MPa以上を有し、伸びも高く、さ
らに強度と延性のバランスが優れた鋼管となっている。
それに比較し、本発明の範囲を外れた比較例(No.2-7、
No.2-8)では、結晶粒が粗大化し強度が低下して、目標
の引張強さが得られていない。
From Table 4, it can be seen that the present invention within the scope of the present invention (No. 2-1)
No. 2-6) is a steel pipe having an average ferrite grain size of 2 μm or less, a tensile strength of 600 MPa or more, a high elongation, and an excellent balance between strength and ductility.
In comparison, comparative examples (No. 2-7,
In No. 2-8), the crystal grains became coarse and the strength was reduced, and the target tensile strength was not obtained.

【0050】なお、本発明範囲の製品管の組織はフェラ
イトと、第2相として面積率で30%超のパーライト、セ
メンタイト、ベイナイト、あるいはマルテンサイトを有
する組織であった。本発明によれば、従来になく延性−
強度バランスが向上した高強度鋼管が得られるが、さら
に本発明の鋼管は、2次加工性、例えばハイドロフォー
ミング等のバルジ加工性にも優れ、バルジ加工用として
好適な鋼管である。
The structure of the product tube within the scope of the present invention was a structure having ferrite and pearlite, cementite, bainite, or martensite having an area ratio of more than 30% as the second phase. According to the present invention, the ductility has never been before-
Although a high-strength steel pipe having an improved strength balance can be obtained, the steel pipe of the present invention is also excellent in secondary workability, for example, bulge workability such as hydroforming, and is a steel pipe suitable for bulge work.

【0051】本発明の鋼管のうち、溶接鋼管またはシー
ム冷却を施した固相圧接鋼管においては、硬化シーム部
が絞り圧延により母管部と同じレベルの硬さとなり、バ
ルジ加工性が従来になく顕著に改善される。
Among the steel pipes of the present invention, in a welded steel pipe or a solid-phase welded steel pipe subjected to seam cooling, the hardened seam portion has the same level of hardness as that of the base pipe portion by drawing and rolling, and the bulge workability has not been achieved conventionally. It is significantly improved.

【0052】[0052]

【発明の効果】本発明によれば、2μm 以下という超微
細結晶粒を有し引張強さ600MPa以上の高強度でかつ靱性
・延性に優れた鋼材が中間焼鈍なしに容易に製造でき、
鋼材の用途を拡大でき産業上格別の効果が期待できる。
According to the present invention, a steel material having ultra-fine crystal grains of 2 μm or less, high tensile strength of 600 MPa or more, and excellent in toughness and ductility can be easily produced without intermediate annealing.
The use of steel materials can be expanded, and industrially significant effects can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に好適な設備列の一例を示す概念
図である。
FIG. 1 is a conceptual diagram showing an example of an equipment row suitable for implementing the present invention.

【図2】本発明の実施に好適な固相圧接鋼管製造設備と
連続化した設備列の1例を示す概念図である。
FIG. 2 is a conceptual diagram showing an example of a solid-state pressure welded steel pipe manufacturing facility suitable for carrying out the present invention and a continuous equipment row.

【符号の説明】[Explanation of symbols]

1 帯鋼 2 予熱炉 3 成形加工装置 4 エッジ予熱用誘導加熱装置 5 エッジ加熱用誘導加熱装置 6 スクイズロール 7 オープン管 8 素材鋼管 14 アンコイラ 15 接合装置 16 製品管 17 ルーパ 18 切断機 19 管矯正装置 20 温度計 21 絞り圧延装置 22 均熱炉(シーム冷却および管加熱装置) 23 デスケーリング装置 24 急冷装置 25 再加熱装置 26 冷却装置 DESCRIPTION OF SYMBOLS 1 Strip steel 2 Preheating furnace 3 Forming apparatus 4 Induction heating apparatus for edge preheating 5 Induction heating apparatus for edge heating 6 Squeeze roll 7 Open pipe 8 Material steel pipe 14 Uncoiler 15 Joining apparatus 16 Product pipe 17 Looper 18 Cutting machine 19 Straightening apparatus 20 Thermometer 21 Reducing device 22 Soaking furnace (seam cooling and tube heating device) 23 Descaling device 24 Rapid cooling device 25 Reheating device 26 Cooling device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 橋本 裕二 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 岡部 能知 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 金山 太郎 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akira Ito 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Inside the Chita Works, Kawasaki Steel Works (72) Inventor Motoaki Itani 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Yuji Hashimoto 1-1-1 Kawasaki-cho, Handa-shi, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Nochika Okabe 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Address Kawasaki Steel Corporation Chita Works (72) Inventor Taro Kanayama 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Kawata Steel Corporation Chita Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.30超〜0.70%、 Si:0.01〜2.0 %、 Mn:0.01〜2.0 %、 Al:0.001 〜0.10% を含有し、残部Feおよび不回避的不純物からなる組成を
有し、かつ組織がフェライトおよび面積率で30%超のフ
ェライト以外の第2相からなり、鋼管長手方向に直角な
断面の平均結晶粒径が2μm 以下であることを特徴とす
る加工性に優れた高強度鋼管。
1. The composition contains C: more than 0.30 to 0.70%, Si: 0.01 to 2.0%, Mn: 0.01 to 2.0%, and Al: 0.001 to 0.10% by weight, with the balance being Fe and unavoidable impurities. Workability characterized by having a composition, a structure comprising a ferrite and a second phase other than ferrite having an area ratio of more than 30%, and having an average crystal grain size of 2 μm or less in a section perpendicular to the longitudinal direction of the steel pipe. Excellent high strength steel pipe.
【請求項2】 前記組成に加えてさらに、重量%で、 Cu:1%以下、Ni:2%以下、Cr:2%以下、Mo:1%
以下のうちから選ばれた1種または2種以上を含有する
ことを特徴とする請求項1に記載の高強度鋼管。
2. In addition to the above-mentioned composition, Cu: 1% or less, Ni: 2% or less, Cr: 2% or less, Mo: 1% by weight%
The high-strength steel pipe according to claim 1, comprising one or more selected from the following.
【請求項3】 前記組成に加えてさらに、重量%で、 Nb:1%以下、V:0.3 %以下、Ti:0.2 %以下、B:
0.004 %以下のうちから選ばれた1種または2種以上を
含有することを特徴とする請求項1または2に記載の高
強度鋼管。
3. In addition to the above composition, Nb: 1% or less, V: 0.3% or less, Ti: 0.2% or less, B:
3. The high-strength steel pipe according to claim 1, comprising one or more kinds selected from 0.004% or less.
【請求項4】 前記組成に加えてさらに、重量%で、 REM :0.02%以下、Ca:0.01%以下のうちから選ばれた
1種または2種を含有することを特徴とする請求項1な
いし3のいずれかに記載の高強度鋼管。
4. The composition according to claim 1, further comprising one or two selected from the group consisting of REM: 0.02% or less and Ca: 0.01% or less in weight% in addition to said composition. 3. The high-strength steel pipe according to any one of 3.
【請求項5】 請求項1ないし4のいずれかに記載の組
成を有し、外径ODi(mm)、鋼管長手方向に直角な断面
の平均結晶粒径di(μm )の素材鋼管を加熱または均
熱し、平均圧延温度θm (℃)、合計縮径率Tred
(%)の絞り圧延を施し外径ODf (mm)の製品管とする
鋼管の製造方法において、前記絞り圧延を400 〜750 ℃
の温度範囲で、かつ前記平均結晶粒径di(μm )、前
記平均圧延温度θm(℃)および前記合計縮径率Tred
(%)の関係が下記(1)式を満足する絞り圧延とする
ことを特徴とする鋼管長手方向に直角な断面の平均結晶
粒径が2μm 以下の超微細粒を有する加工性に優れた高
強度鋼管の製造方法。 【数1】 ここに、di:素材鋼管の平均結晶粒径(μm )、 θm:平均圧延温度(℃)=(θi+θf)/2、 θi:圧延開始温度(℃)、 θf:圧延終了温度(℃)、 Tred :合計縮径率(%)=(ODi-ODf)×100 /ODi ODi :素材鋼管外径(mm) ODf :製品管外径(mm)
5. A material steel pipe having the composition according to claim 1 having an outer diameter ODi (mm) and an average crystal grain size di (μm) of a cross section perpendicular to the longitudinal direction of the steel pipe. Soak, average rolling temperature θm (° C), total diameter reduction Tred
(%) In a method of producing a steel pipe having a product pipe with an outer diameter of ODf (mm), which is drawn at 400 to 750 ° C.
And the average grain size di (μm), the average rolling temperature θm (° C.), and the total diameter reduction Tred.
(%) Is a reduction rolling satisfying the following expression (1), characterized in that it has ultra-fine grains having an average crystal grain size of 2 μm or less in a section perpendicular to the longitudinal direction of the steel pipe, and has excellent workability. Manufacturing method of high strength steel pipe. (Equation 1) Here, di: average crystal grain size (μm) of the material steel pipe, θm: average rolling temperature (° C.) = (Θi + θf) / 2, θi: rolling start temperature (° C.), θf: rolling end temperature (° C.), Tred : Total diameter reduction rate (%) = (ODi-ODf) x 100 / ODi ODi: Material steel pipe outer diameter (mm) ODf: Product pipe outer diameter (mm)
【請求項6】 前記素材鋼管の加熱または均熱を750 ℃
以下の温度範囲とすることを特徴とする請求項5記載の
高強度鋼管の製造方法。
6. The heating or soaking of said material steel pipe is performed at 750 ° C.
The method for producing a high-strength steel pipe according to claim 5, wherein the temperature range is set as follows.
【請求項7】 前記絞り圧延が潤滑下での圧延であるこ
とを特徴とする請求項5または6に記載の高強度鋼管の
製造方法。
7. The method for producing a high-strength steel pipe according to claim 5, wherein the reduction rolling is rolling under lubrication.
JP24093097A 1997-06-26 1997-09-05 Manufacturing method of high-strength steel pipe with excellent workability Expired - Fee Related JP3896647B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP24093097A JP3896647B2 (en) 1997-09-05 1997-09-05 Manufacturing method of high-strength steel pipe with excellent workability
DE69832684T DE69832684T2 (en) 1997-06-26 1998-06-24 METHOD FOR THE PRODUCTION OF STEEL TUBE WITH ULTRA-FINE MEMBRANE
BR9806104-6A BR9806104A (en) 1997-06-26 1998-06-24 Superfine granulation steel tube and process for its production.
CN988012162A CN1082561C (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
EP98929659A EP0924312B1 (en) 1997-06-26 1998-06-24 Method for manufacturing super fine granular steel pipe
PCT/JP1998/002811 WO1999000525A1 (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
AT98929659T ATE312208T1 (en) 1997-06-26 1998-06-24 METHOD FOR PRODUCING STEEL PIPE WITH ULTRA FINE STRUCTURE
KR1019997001507A KR100330432B1 (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
IDW990042A ID21234A (en) 1997-06-26 1998-06-24 VERY FINE GRANULAR STEEL PIPES AND METHODS TO PRODUCE IT
US09/254,024 US6290789B1 (en) 1997-06-26 1998-06-24 Ultrafine-grain steel pipe and process for manufacturing the same
CA002281316A CA2281316C (en) 1997-06-26 1999-09-02 High-ductility, high-strength steel product and process for production thereof
CA002281314A CA2281314C (en) 1997-06-26 1999-09-02 Super fine granular steel pipe and method for producing the same
US09/771,589 US20010027831A1 (en) 1997-06-26 2001-01-30 Super fine granular steel pipe and method for producing the same
US10/420,759 US20030221753A1 (en) 1997-06-26 2003-04-23 Super fine granular steel pipe and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24093097A JP3896647B2 (en) 1997-09-05 1997-09-05 Manufacturing method of high-strength steel pipe with excellent workability
CA002281314A CA2281314C (en) 1997-06-26 1999-09-02 Super fine granular steel pipe and method for producing the same
CA002281316A CA2281316C (en) 1997-06-26 1999-09-02 High-ductility, high-strength steel product and process for production thereof

Publications (2)

Publication Number Publication Date
JPH1180899A true JPH1180899A (en) 1999-03-26
JP3896647B2 JP3896647B2 (en) 2007-03-22

Family

ID=27171027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24093097A Expired - Fee Related JP3896647B2 (en) 1997-06-26 1997-09-05 Manufacturing method of high-strength steel pipe with excellent workability

Country Status (1)

Country Link
JP (1) JP3896647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294403A (en) * 2001-03-29 2002-10-09 Kawasaki Steel Corp Steel tube with high strength and high workability and production method therefor
US7252721B2 (en) 2001-05-28 2007-08-07 Ntn Corporation Power transmission shaft
JP2021509438A (en) * 2017-12-26 2021-03-25 ポスコPosco Hot-rolled steel sheets, steel pipes, members with excellent impact resistance and their manufacturing methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294403A (en) * 2001-03-29 2002-10-09 Kawasaki Steel Corp Steel tube with high strength and high workability and production method therefor
JP4529307B2 (en) * 2001-03-29 2010-08-25 Jfeスチール株式会社 High-strength and high-workability steel pipe and method for producing the same
US7252721B2 (en) 2001-05-28 2007-08-07 Ntn Corporation Power transmission shaft
JP2021509438A (en) * 2017-12-26 2021-03-25 ポスコPosco Hot-rolled steel sheets, steel pipes, members with excellent impact resistance and their manufacturing methods

Also Published As

Publication number Publication date
JP3896647B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
KR100351791B1 (en) Steel pipe having high ductility and high strength and process for production thereof
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2008274323A (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristic and production method therefor
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2002038242A (en) Stainless steel tube for structural member of automobile excellent in secondary working property
JP2012193404A (en) Seamless steel pipe and method for manufacturing the same
RU2463360C1 (en) Method to produce thick-sheet low-alloyed strip
JP3622499B2 (en) Steel pipe manufacturing method
JP3760640B2 (en) Steel pipe manufacturing method
JP6384635B1 (en) Hot rolled steel sheet for coiled tubing
JP3785828B2 (en) Steel pipe drawing method
KR100330432B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP3896647B2 (en) Manufacturing method of high-strength steel pipe with excellent workability
JP2007169747A (en) Method for producing high-strength and high-toughness steel plate excellent in strength and deformability in middle temperature zone
JP6028759B2 (en) High tensile steel plate with high Young&#39;s modulus in the rolling direction on the surface of the steel plate and method for producing the same
JP3330522B2 (en) Manufacturing method of high fatigue strength steel pipe
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate
JP3760641B2 (en) Steel pipe manufacturing method
JPH1157819A (en) Manufacture of steel tubes of high-intensity and high-toughness
JPH10306339A (en) Steel product with high toughness and high ductility, and its production
JP2000094009A (en) Manufacture of steel tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees