JPH1180045A - Production of styrene - Google Patents

Production of styrene

Info

Publication number
JPH1180045A
JPH1180045A JP10197177A JP19717798A JPH1180045A JP H1180045 A JPH1180045 A JP H1180045A JP 10197177 A JP10197177 A JP 10197177A JP 19717798 A JP19717798 A JP 19717798A JP H1180045 A JPH1180045 A JP H1180045A
Authority
JP
Japan
Prior art keywords
catalyst
dehydrogenation
styrene
ethylbenzene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10197177A
Other languages
Japanese (ja)
Other versions
JP3985349B2 (en
Inventor
Ryozo Hamana
良三 浜名
Shohei Suzuki
正平 鈴木
Shuji Obayashi
修二 大林
Makoto Takiguchi
真 滝口
Takashi Fujita
尚 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19717798A priority Critical patent/JP3985349B2/en
Publication of JPH1180045A publication Critical patent/JPH1180045A/en
Application granted granted Critical
Publication of JP3985349B2 publication Critical patent/JP3985349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method suppressing the selectivity decrease of hydrogen oxidation of an oxidation catalyst in the production of styrene by oxidative dehydrogenation of ethylbenzene. SOLUTION: Alkaline substance is preliminarily removed from a reaction mixture supplied to a process (2) in the production of styrene by dehydrogenating ethylbenzene at least containing the following (1) to (3) processes. Process (1): the process obtaining the reaction mixture containing styrene and hydrogen by dehydrogenating ethylbenzene in the presence of a dehydrogenation catalyst. Process (2): the process contacting the reaction mixture with the oxidizing catalyst to selectively oxidize hydrogen contained in the mixture to afford water. Process (3): the process contacting the oxidation processed mixture with the dehydrogenation catalyst to dehydrogenate the unreacted ethylbenzene contained in the mixture to obtain styrene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スチレンの製造方
法に関する。詳しくは、エチルベンゼンの酸化脱水素法
によりスチレンを製造する方法において、酸化触媒の水
素酸化選択性の低下を抑制する方法に関する。スチレン
は、ポリスチレン、合成ゴム、ABS樹脂、不飽和ポリ
エステル樹脂等の原料として重要な化合物である。
[0001] The present invention relates to a method for producing styrene. More specifically, the present invention relates to a method for producing styrene by an oxidative dehydrogenation method of ethylbenzene, which suppresses a decrease in hydrogen oxidation selectivity of an oxidation catalyst. Styrene is an important compound as a raw material for polystyrene, synthetic rubber, ABS resin, unsaturated polyester resin and the like.

【0002】[0002]

【従来の技術】エチルベンゼンの脱水素反応によるスチ
レンの製造方法については、従来から多くの文献に記載
される等公知になっており、例えば、鉄−カリウム系の
脱水素触媒を使用するプロセスが工業的に実施されてい
る。しかしながら、一般に脱水素反応においては、反応
平衡の制約を強く受けるため、エチルベンゼンの場合に
も、高い転化率を得ることはできない。また、脱水素反
応は吸熱反応であるために、断熱型反応器での反応にお
いては脱水素反応の進行と共に反応温度が低下し、エチ
ルベンゼンの高い転化率を得ることは更に困難である。
そのため、「反応平衡をずらす」、「反応温度の低
下を補う」ことを主目的として、反応プロセスにおいて
脱水素触媒と共に酸化触媒を使用するいわゆる酸化脱水
素法が提案されている。
2. Description of the Related Art A method for producing styrene by the dehydrogenation of ethylbenzene has been known in the art, for example, as described in many documents. For example, a process using an iron-potassium-based dehydrogenation catalyst has been known in the industry. Has been implemented. However, in the dehydrogenation reaction, the reaction equilibrium is generally strongly restricted, and therefore, even in the case of ethylbenzene, a high conversion cannot be obtained. Further, since the dehydrogenation reaction is an endothermic reaction, in the reaction in the adiabatic reactor, the reaction temperature decreases with the progress of the dehydrogenation reaction, and it is more difficult to obtain a high conversion of ethylbenzene.
Therefore, a so-called oxidative dehydrogenation method using an oxidation catalyst together with a dehydrogenation catalyst in a reaction process has been proposed for the main purpose of “shifting the reaction equilibrium” and “compensating for a decrease in the reaction temperature”.

【0003】例えば、特開昭60−130531号公報
には、脱水素性炭化水素を鉄化合物とアルカリ性金属と
からなる脱水素触媒と接触させて、得られた反応混合物
を第8族の貴金属とスズとからなる酸化触媒の存在下に
処理して、該混合物に含まれる水素を選択的に酸化する
と共に、この処理混合物を再加熱し、再び脱水素反応に
付し、脱水素した炭化水素を回収する方法が述べられて
いる。
[0003] For example, JP-A-60-130531 discloses that a dehydrogenating hydrocarbon is brought into contact with a dehydrogenation catalyst comprising an iron compound and an alkali metal, and the resulting reaction mixture is mixed with a Group 8 noble metal and tin. To selectively oxidize the hydrogen contained in the mixture, reheat the treated mixture, subject it to a dehydrogenation reaction again, and recover the dehydrogenated hydrocarbons. How to do is described.

【0004】[0004]

【発明が解決しようとする課題】本発明者等が検討した
結果、水素の選択酸化反応を行う酸化脱水素法の場合
に、酸化触媒に供給されるエチルベンゼンと水素等との
混合物中にアルカリ性物質が含まれていると、この触媒
にアルカリ性物質が付着するためにその選択性が阻害さ
れ、酸化触媒上でエチルベンゼン等の炭化水素が燃焼
し、二酸化炭素の生成量が増加することが判明した。
As a result of studies made by the present inventors, in the case of the oxidative dehydrogenation method for performing a selective oxidation reaction of hydrogen, an alkaline substance is contained in a mixture of ethylbenzene and hydrogen supplied to the oxidation catalyst. It has been found that the presence of carbon dioxide causes the alkaline substance to adhere to the catalyst, thereby inhibiting its selectivity, causing hydrocarbons such as ethylbenzene to burn on the oxidation catalyst and increasing the amount of carbon dioxide produced.

【0005】例えば、エチルベンゼンの脱水素触媒中に
はカリウム化合物が含まれていることは公知であり、カ
リウム化合物は脱水素反応中に飛散することも知られて
いる(B.D.Herzog et.al.,Ind.
Eng.Chem.Prod.Res.Dev.23,
(2),187(1984);早坂ら、第24回日本芳
香族工業会大会要旨集,p36(1990)等)。そこ
で、脱水素反応と水素の選択酸化反応を直列で交互に行
う場合、カリウム化合物の飛散が起こると、酸化触媒の
選択性が著しく低下することになる。
For example, it is known that a potassium compound is contained in a dehydrogenation catalyst for ethylbenzene, and that the potassium compound is also known to be scattered during the dehydrogenation reaction (BD Herzog et. al., Ind.
Eng. Chem. Prod. Res. Dev. 23,
(2), 187 (1984); Hayasaka et al., Proceedings of the 24th Annual Meeting of the Japan Aromatic Industries Association, p36 (1990)). Therefore, when the dehydrogenation reaction and the selective oxidation reaction of hydrogen are performed alternately in series, if the potassium compound is scattered, the selectivity of the oxidation catalyst is significantly reduced.

【0006】一方、二酸化炭素は脱水素触媒の脱水素活
性を低下させる働きを持つことが知られている(平野,
触媒,29,(8),641(1987)等)。従っ
て、酸化工程において二酸化炭素の生成量が増加するこ
とは後段の脱水素反応の転化率が抑制されることを意味
し、次の脱水素反応上好ましくない。本発明の目的は、
エチルベンゼンの脱水素反応により生成するスチレンと
水素を含有する反応混合物中の水素を選択的酸化反応に
より燃焼させた後、更に該混合物中に含まれる未反応の
エチルベンゼンを脱水素反応させてスチレンを製造する
方法において、酸化触媒の水素酸化選択性の低下を抑制
する方法を提供することにある。
On the other hand, carbon dioxide is known to have a function of reducing the dehydrogenation activity of a dehydrogenation catalyst (Hirano,
Catalyst, 29, (8), 641 (1987), etc.). Therefore, an increase in the amount of carbon dioxide generated in the oxidation step means that the conversion rate of the subsequent dehydrogenation reaction is suppressed, which is not preferable in the subsequent dehydrogenation reaction. The purpose of the present invention is
Hydrogen in a reaction mixture containing styrene and hydrogen generated by the dehydrogenation reaction of ethylbenzene is burned by a selective oxidation reaction, and then unreacted ethylbenzene contained in the mixture is dehydrogenated to produce styrene. Another object of the present invention is to provide a method for suppressing a decrease in the hydrogen oxidation selectivity of an oxidation catalyst.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するために鋭意検討した結果、エチルベンゼン
の脱水素反応触媒層の下流側、且つ脱水素反応生成物中
の水素の選択酸化反応触媒層の上流側で脱水素反応生成
物中に微量含まれるアルカリ性物質を除去することによ
り、水素の選択酸化触媒の選択性を阻害することなく酸
化反応が進行することを見出し、本発明を完成するに至
った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, selected hydrogen on the downstream side of the dehydrogenation catalyst layer of ethylbenzene and in the dehydrogenation reaction product. The present inventors have found that by removing a small amount of an alkaline substance contained in the dehydrogenation reaction product on the upstream side of the oxidation reaction catalyst layer, the oxidation reaction proceeds without inhibiting the selectivity of the selective oxidation catalyst for hydrogen. Was completed.

【0008】即ち、本発明の要旨は、少なくとも下記工
程(1)ないし(3)を含むエチルベンゼンの脱水素反
応によるスチレンの製造方法において、工程(2)に供
給される反応混合物中のアルカリ性物質を予め除去して
おくことを特徴とするスチレンの製造方法。
That is, the gist of the present invention is to provide a method for producing styrene by a dehydrogenation reaction of ethylbenzene comprising at least the following steps (1) to (3): A method for producing styrene, which is removed in advance.

【0009】工程(1):エチルベンゼンを脱水素触媒
の存在下に脱水素させてスチレン及び水素を含有する反
応混合物を得る工程。 工程(2):該反応混合物を酸化触媒と接触させて混合
物中に含まれる水素を選択的に酸化して水とする工程。 工程(3):この酸化処理混合物を脱水素触媒と接触さ
せて混合物中に含まれる未反応エチルベンゼンを脱水素
させてスチレンを得る工程。 にある。以下、本発明を詳細に説明する。
Step (1): a step of dehydrogenating ethylbenzene in the presence of a dehydrogenation catalyst to obtain a reaction mixture containing styrene and hydrogen. Step (2): a step of bringing the reaction mixture into contact with an oxidation catalyst to selectively oxidize hydrogen contained in the mixture into water. Step (3): a step of bringing the oxidized mixture into contact with a dehydrogenation catalyst to dehydrogenate unreacted ethylbenzene contained in the mixture to obtain styrene. It is in. Hereinafter, the present invention will be described in detail.

【0010】[0010]

【発明の実施の形態】本発明で用いられるスチレンの製
造方法とは、例えば以下のようなものである。 「脱水素反応+酸化反応+脱水素反応」の場合:エチル
ベンゼン(スチレンを含有していても差し支えない)を
温度:500〜700℃及び圧力:4.9〜981kP
aにおいて、前段の脱水素反応器(触媒層)に流通さ
せ、脱水素反応によりスチレン、水素、未反応エチルベ
ンゼン等の混合物を得る。得られた混合物を酸化反応器
(触媒層)に流通させ、水素の選択的酸化触媒の存在
下、新たに導入された酸素含有ガスを用いて水素の選択
酸化を行う。更に、この酸化反応器(触媒層)から生じ
る混合物を後段の脱水素反応器(触媒層)に流通させ、
未反応エチルベンゼンの脱水素を行いスチレンを得る。
この際、酸化反応器では、水素の内部燃焼による発熱に
より温度が上昇すると共に、水素が酸化(燃焼)されて
減少するために、後段の脱水素反応の平衡阻害が小さく
なるという利点が生じる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing styrene used in the present invention is, for example, as follows. In the case of "dehydrogenation reaction + oxidation reaction + dehydrogenation reaction": Ethylbenzene (which may contain styrene) may be used at a temperature of 500 to 700 ° C and a pressure of 4.9 to 981 kP.
In (a), the mixture is passed through a dehydrogenation reactor (catalyst layer) in the former stage to obtain a mixture of styrene, hydrogen, unreacted ethylbenzene, and the like by a dehydrogenation reaction. The obtained mixture is passed through an oxidation reactor (catalyst layer), and selective oxidation of hydrogen is performed using a newly introduced oxygen-containing gas in the presence of a selective oxidation catalyst for hydrogen. Further, the mixture generated from the oxidation reactor (catalyst layer) is passed through a subsequent dehydrogenation reactor (catalyst layer),
Unreacted ethylbenzene is dehydrogenated to obtain styrene.
At this time, in the oxidation reactor, the temperature rises due to the heat generated by the internal combustion of hydrogen, and the hydrogen is oxidized (burned) and reduced, so that there is an advantage that the equilibrium inhibition of the subsequent dehydrogenation reaction is reduced.

【0011】ここでエチルベンゼンの脱水素反応工程の
後、即ち該反応触媒層の下流側であって且つ脱水素反応
生成物中の水素の選択酸化反応工程の前、即ち該反応触
媒層の上流側に脱水素反応生成物中に微量含まれるアル
カリ性物質を除去することにより、水素の選択酸化反応
触媒層における酸化反応の水素選択率が向上し、その結
果それ以外の炭化水素の燃焼から生成する二酸化炭素生
成量の増加を抑制できることから、酸化反応触媒層の後
部にある脱水素反応触媒層での脱水素反応において高い
転化率を得ることができる。
Here, after the step of dehydrogenating ethylbenzene, ie, downstream of the reaction catalyst layer and before the step of selective oxidation of hydrogen in the dehydrogenation reaction product, ie, upstream of the reaction catalyst layer By removing a small amount of alkaline substances contained in the dehydrogenation reaction product, the hydrogen selectivity of the oxidation reaction in the hydrogen selective oxidation reaction catalyst layer is improved, and as a result, the carbon dioxide generated from the combustion of other hydrocarbons is reduced. Since the increase in the amount of generated carbon can be suppressed, a high conversion rate can be obtained in the dehydrogenation reaction in the dehydrogenation reaction catalyst layer at the rear of the oxidation reaction catalyst layer.

【0012】また、供給するエチルベンゼン中に水蒸気
を含有させることは好ましい方法である。水蒸気は、脱
水素反応において、エチルベンゼンや生成するスチレン
の分圧を下げ、コークの生成を抑制する働きを持つと言
われている。ここで、水蒸気とエチルベンゼンの比率に
特別な制限は無いが、フィードする水蒸気とエチルベン
ゼンのモル比は15以下が好ましく、1〜14が更に好
ましい。
It is a preferable method to include water vapor in the supplied ethylbenzene. It is said that water vapor has a function of reducing the partial pressure of ethylbenzene and styrene produced in the dehydrogenation reaction and suppressing the production of coke. Here, the ratio of steam to ethylbenzene is not particularly limited, but the molar ratio of steam and ethylbenzene to be fed is preferably 15 or less, more preferably 1 to 14.

【0013】必要に応じて上記の脱水素反応器(触媒
層)と水素の酸化反応器(触媒層)は、更に多段に組み
合わせて反応を実施することもできる。勿論、それらの
脱水素反応器(触媒層)と酸化反応器(触媒層)の間で
アルカリ性物質の除去を実施することが必要である。し
かしながら、脱水素反応器(触媒層)が5段以上の組み
合わせでは、得られる効果に対して、投資が大きくなり
現実的ではない。
If necessary, the above dehydrogenation reactor (catalyst layer) and hydrogen oxidation reactor (catalyst layer) may be combined in multiple stages to carry out the reaction. Of course, it is necessary to remove the alkaline substance between the dehydrogenation reactor (catalyst layer) and the oxidation reactor (catalyst layer). However, when the dehydrogenation reactor (catalyst layer) is a combination of five or more stages, investment is large for the obtained effect, which is not practical.

【0014】本発明で用いられるエチルベンゼンの脱水
素触媒としては、例えば前述の特開昭60−13053
1号公報に記載されている『鉄化合物と周期律表の第1
A族及び第2A族から成る群から選ばれたアルカリ性金
属とから成る脱水素触媒』が好適に用いられる。本願明
細書に使用される「アルカリ性金属」とは、リチウム、
ナトリウム、カリウム、ルビジウム、セシウム、ベリリ
ウム、マグネシウム、カルシウム、ストロンチウム及び
バリウムを包含する周期律表の第1A族及び第2A族の
金属を言う。更には本発明の好ましい具体例における脱
水素触媒は、周期律表の第4B族、第5B族、及び第6
B族の金属を含んでいてもよい。また、特開平4−27
7030号公報に記載されている『酸化鉄及び酸化カリ
ウム主体の構成』の触媒も好ましい例として挙げられ
る。本発明のプロセスにおいて使用される好適な脱水素
触媒の組成は、実質的には酸化第二鉄が70〜80重量
%、酸化カリウムが10〜20重量%であり、その他の
成分が少量含まれていても良い。
Examples of the catalyst for dehydrogenating ethylbenzene used in the present invention include, for example, the aforementioned JP-A-60-13053.
No. 1 entitled "Iron compounds and the first of the periodic table"
A dehydrogenation catalyst comprising an alkaline metal selected from the group consisting of Group A and Group 2A "is preferably used. As used herein, "alkaline metal" refers to lithium,
Refers to metals of Groups 1A and 2A of the periodic table, including sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium and barium. Further, in a preferred embodiment of the present invention, the dehydrogenation catalyst comprises a group 4B, a group 5B, or a group 6B of the periodic table.
It may contain a group B metal. Also, JP-A-4-27
The catalyst of "Consisting mainly of iron oxide and potassium oxide" described in Japanese Patent No. 7030 is also a preferred example. The composition of the preferred dehydrogenation catalyst used in the process of the present invention is substantially 70-80% by weight ferric oxide, 10-20% by weight potassium oxide and contains small amounts of other components. May be.

【0015】本発明で用いられる水素の選択的酸化触媒
としては、周期律表の第4族、第5族及び第8族の金属
から選ばれる少なくとも1種の金属を含む触媒もしくは
周期律表の第4族と第5族から選ばれる少なくとも1種
の金属と周期律表の第8族の金属から選ばれる少なくと
も1種の金属の両者を含む触媒が挙げられる。例えば、
前述の特開昭60−130531号公報に記載されてい
る『周期律表の第8族の貴金属とスズとから成る酸化触
媒、さらに好ましくは、1から500m2 /gの範囲の
表面積を有する無機支持体上に複合された周期律表の第
8族の貴金属とスズとから成る酸化触媒』や、特開昭6
1−225140号公報に記載されている『第8族貴金
属、第4A族金属および第1Aまたは第2A族金属から
成る酸化触媒、さらに好ましくは、約900〜1500
℃の範囲の温度において焼成したアルミナ支持体上に構
成された第8族貴金属、第4A族金属および第1Aまた
は第2A族金属から成る酸化触媒』が挙げられる。ま
た、特開平6−298678号公報に記載されている
『スズ、又はスズとアルカリ金属を含有する触媒』及び
特開平9−29095号公報に記載されているような周
期律表の第4族、第5族、例えばSn、Ti、Ta、N
b等と、周期律表第8族、例えばPt、Pdとを含む触
媒も好ましい触媒として使用できる。脱水素触媒から飛
散するアルカリ性物質の特定はなされていないが、高温
の水蒸気と二酸化炭素の存在下で発生していることか
ら、例えば炭酸カリウム等のアルカリ性金属の炭酸塩又
は、水酸化カリウム等のアルカリ性物質の水酸化物等が
飛散物質として推定される。
The catalyst for selective oxidation of hydrogen used in the present invention is a catalyst containing at least one metal selected from metals of Groups 4, 5 and 8 of the periodic table or a catalyst of the periodic table. The catalyst includes both at least one metal selected from Group 4 and Group 5 and at least one metal selected from Group 8 metal of the periodic table. For example,
“An oxidation catalyst comprising a noble metal of Group VIII of the periodic table and tin, more preferably an inorganic catalyst having a surface area in the range of 1 to 500 m 2 / g” described in the above-mentioned JP-A-60-130531 Oxidation catalyst composed of a noble metal of Group VIII of the periodic table and tin compounded on a support ”;
No. 1-225140, "An oxidation catalyst comprising a Group 8 noble metal, a Group 4A metal and a Group 1A or Group 2A metal, more preferably about 900 to 1500
An oxidation catalyst comprising a Group 8 noble metal, a Group 4A metal and a Group 1A or Group 2A metal formed on an alumina support calcined at a temperature in the range of ° C. Further, "a catalyst containing tin or tin and an alkali metal" described in JP-A-6-298678 and Group 4 of the periodic table as described in JP-A-9-29095, Group 5 such as Sn, Ti, Ta, N
A catalyst containing b or the like and Group 8 of the periodic table, for example, Pt or Pd can also be used as a preferable catalyst. Alkaline substances scattered from the dehydrogenation catalyst are not specified, but since they are generated in the presence of high-temperature steam and carbon dioxide, for example, alkali metal carbonates such as potassium carbonate or potassium hydroxide, etc. Hydroxides and the like of alkaline substances are estimated as scattering substances.

【0016】本発明で言う「アルカリ性物質」とは、上
述のアルカリ性金属の、酸化物、炭酸塩、水酸化物等の
アルカリ性金属を含有する化合物の総称である。本発明
においてアルカリ性物質を除去するとは、酸化反応用の
触媒の劣化を引き起こすことなく、安定して運転が継続
できるような程度まで、工程(2)へ供給される反応混
合物中のアルカリ性物質の含有量を削減することを言
う。アルカリ性物質を除去する方法としては、工程
(1)と工程(2)との間にアルカリ性物質の、サイク
ロン、バグフィルター、スクラバー等の集塵装置からな
る除去層を設ける方法や、吸着剤を充填した固定層式、
移動層式、流動層式等の吸着装置からなる吸着層を設け
る方法が挙げられる。ここで、工程(1)と工程(2)
との間とは、工程(1)におけるエチルベンゼンの脱水
素触媒層の下流側から次の工程(2)における脱水素反
応混合物中に含まれる水素の選択的酸化触媒層の上流側
迄の間を意味する。
The term "alkaline substance" used in the present invention is a general term for compounds containing alkaline metals such as oxides, carbonates and hydroxides of the above-mentioned alkaline metals. In the present invention, removing the alkaline substance means that the alkaline substance is contained in the reaction mixture supplied to the step (2) to such an extent that the operation can be stably continued without causing deterioration of the oxidation reaction catalyst. Say reduce the amount. As a method of removing the alkaline substance, a method of providing a removal layer composed of a dust collecting device such as a cyclone, a bag filter, a scrubber or the like between the step (1) and the step (2), or filling the adsorbent is used. Fixed layer type,
A method of providing an adsorbing layer comprising an adsorbing device of a moving bed type, a fluidized bed type or the like can be used. Here, step (1) and step (2)
Means between the downstream side of the ethylbenzene dehydrogenation catalyst layer in the step (1) and the upstream side of the selective oxidation catalyst layer of hydrogen contained in the dehydrogenation reaction mixture in the next step (2). means.

【0017】上述の吸着層とは、アルカリ性物質を物理
的に又は化学的に吸着する吸着剤からなる層をいう。吸
着剤としては、アルカリ性物質を吸着する性質を保有す
る物質であれば特に限定されないが、その具体例として
は、例えば、シリカ化合物、アルミナ化合物、シリカ−
アルミナ系混合物を高温で焼成した化合物(セラミック
と称されるもの)、酸化鉄、二酸化チタン、酸化カルシ
ウム、酸化マグネシウム等の無機酸化物(単独)、若し
くはこれら複数の混合物、又はこれらの複合体が挙げら
れる。また形状は、ボール状、ハニカム状の成型体、押
し出し成型体(円柱状、パイプ状等)や、不定型成型体
等、いかなる成型体でも良い。なお、吸着剤の使用量に
ついては特に限定はされないが、通常は、脱水素触媒の
容積1に対して吸着剤の容積を0.001倍〜2倍の範
囲で、好ましくは0.005倍〜1倍の範囲で使用する
ことが望ましい。吸着剤を上記の量を越えて使用しても
効果の増大はなく、逆に設備が大きくなり、設備費用が
増加する。一方吸着剤量が上記未満では短期間で吸着剤
が破過してしまい、安定運転の期間が短くなってしま
う。
The above-mentioned adsorption layer is a layer made of an adsorbent which physically or chemically adsorbs an alkaline substance. The adsorbent is not particularly limited as long as it has a property of adsorbing an alkaline substance. Specific examples thereof include, for example, silica compounds, alumina compounds, silica-
Compounds obtained by calcining an alumina-based mixture at a high temperature (called ceramics), inorganic oxides (single) such as iron oxide, titanium dioxide, calcium oxide, and magnesium oxide, or a mixture of these, or a composite thereof No. Further, the shape may be any shaped body such as a ball-shaped, honeycomb-shaped shaped body, an extruded shaped body (a columnar shape, a pipe shape, etc.), an irregular shaped shaped body, and the like. The amount of the adsorbent used is not particularly limited, but usually, the volume of the adsorbent is in the range of 0.001 to 2 times, preferably 0.005 to 2 times the volume 1 of the dehydrogenation catalyst. It is desirable to use in the range of 1 time. Even if the adsorbent is used in excess of the above amount, the effect is not increased, and conversely, the equipment becomes large and the equipment cost increases. On the other hand, if the amount of the adsorbent is less than the above, the adsorbent will break through in a short period of time, and the period of stable operation will be short.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明するが、本発明はその要旨を超えない限りこれらの
実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.

【0019】実施例−1 酸化触媒は、特開平9−29095公報の実施例1に準
拠して製造した。詳しくは、先ず、水623.6gに濃
硝酸44.1gと塩化スズ7.6gを加え、得られた溶
液をα−アルミナ水和物1139.6gに加え、この溶
液を15秒間徐々に混合し、更に5分間より激しく混合
した。得られたゲル状物質を押し出し機を用いて押し出
し、オーブン中95℃で2時間乾燥した。この操作を繰
り返し、得られたオーブン乾燥物2943gを350℃
で1時間、更に600℃で3時間焼成後、一旦室温まで
冷却した。予め焼成した押し出し品535gを乾燥雰囲
気において6時間かけて1040℃の温度に加熱した
後、更に3時間同温度に維持し、その後6時間かけて室
温まで冷却した。次に、水142.5gに、白金2.5
4重量%を含む塩化白金酸溶液12.9g、リチウムを
0.88重量%含む硝酸リチウム溶液37.3g及び濃
硝酸7.3gを加え、混合しながらガラス製のエバポレ
イターに移した。その溶液に上記の焼成した押し出し品
を163.6g(200cc)加え、95℃にて含浸操
作を行った。含浸した押し出し品をオーブン中150℃
の温度で2時間乾燥し、その後、石英管中650℃の温
度で更に2時間焼成処理を行った後、室温まで冷却し、
Pt−Sn系の酸化触媒を得た。
Example 1 An oxidation catalyst was produced according to Example 1 of JP-A-9-29095. Specifically, first, 44.1 g of concentrated nitric acid and 7.6 g of tin chloride were added to 623.6 g of water, the obtained solution was added to 1139.6 g of α-alumina hydrate, and this solution was gradually mixed for 15 seconds. And mixed more vigorously for another 5 minutes. The resulting gel was extruded using an extruder and dried in an oven at 95 ° C. for 2 hours. This operation was repeated, and 2943 g of the obtained oven-dried product was heated to 350 ° C.
For 1 hour and further at 600 ° C. for 3 hours, and then cooled to room temperature. After heating 535 g of the extruded product which had been calcined in advance in a dry atmosphere to a temperature of 1040 ° C. over 6 hours, the temperature was maintained at the same temperature for further 3 hours, and then cooled to room temperature over 6 hours. Next, 142.5 g of water was added to 2.5
12.9 g of a chloroplatinic acid solution containing 4% by weight, 37.3 g of a lithium nitrate solution containing 0.88% by weight of lithium, and 7.3 g of concentrated nitric acid were added, and the mixture was transferred to a glass evaporator with mixing. 163.6 g (200 cc) of the calcined extruded product was added to the solution, and an impregnation operation was performed at 95 ° C. Extruded product impregnated in oven at 150 ° C
After drying at a temperature of 650 ° C. for a further 2 hours in a quartz tube, and then cooling to room temperature,
A Pt-Sn-based oxidation catalyst was obtained.

【0020】(反応)外径6mmの熱電対挿入管を装着
した内径21mmの反応管に、図1に示すように市販の
脱水素触媒(日産ガードラー触媒:G−84C)を36
cc充填し、その下部にアルカリ性物質の吸着剤として
市販のシリカ−アルミナ系のセラミックボール−1(チ
ップトン社製、3mm球)を10cc充填した。その下
部に前述の酸化触媒を21cc充填し、更に酸化触媒の
下部に上記と同じ脱水素触媒を36cc充填した。分割
ヒーターによる温度制御を実施しながら、窒素流通下に
脱水素触媒入口温度を600℃に昇温し、次いで、スチ
レン/エチルベンゼンの混合物、水、水素を反応管の上
部から、また空気と窒素の混合ガスをアルカリ性物質の
吸着剤の下部に導入して反応を開始した。反応中、脱水
素触媒層と吸着剤層は、ほぼ600℃の等温に保った。
また、酸化触媒層での温度上昇は、30〜40℃であっ
た。触媒層に対するフィード全体の組成比は、 スチレン/エチルベンゼン/水/水素/酸素/窒素=
0.4/1/11.5/0.36〜0.48/0.18
/2.05(モル比) である。また、圧力:65kPa、スチレン/エチルベ
ンゼンの混合物の脱水素触媒に対するLHSV:2.0
/hrである。反応開始後、各触媒層出口及び反応管出
口の液とガスを試料採取し、それぞれの組成をガスクロ
マトグラフにより分析し、表−1に示す結果を得た。
(Reaction) A commercially available dehydrogenation catalyst (Nissan Gardler catalyst: G-84C) as shown in FIG. 1 was placed in a reaction tube having an inner diameter of 21 mm equipped with a thermocouple insertion tube having an outer diameter of 6 mm.
Then, 10 cc of a silica-alumina-based ceramic ball-1 (3 mm sphere, manufactured by Tipton Corp.) as an adsorbent for an alkaline substance was filled in the lower part of the sphere. The lower part was filled with 21 cc of the above-mentioned oxidation catalyst, and the lower part of the oxidation catalyst was further filled with 36 cc of the same dehydrogenation catalyst. The temperature of the dehydrogenation catalyst inlet was raised to 600 ° C. while flowing nitrogen while controlling the temperature with a split heater. Then, a mixture of styrene / ethylbenzene, water and hydrogen were fed from the top of the reaction tube, and air and nitrogen were mixed. The reaction was started by introducing the mixed gas into the lower part of the adsorbent of the alkaline substance. During the reaction, the dehydrogenation catalyst layer and the adsorbent layer were kept at approximately 600 ° C. isothermally.
The temperature rise in the oxidation catalyst layer was 30 to 40 ° C. The composition ratio of the entire feed to the catalyst layer is styrene / ethylbenzene / water / hydrogen / oxygen / nitrogen =
0.4 / 1 / 11.5 / 0.36 to 0.48 / 0.18
/2.05 (molar ratio). Further, pressure: 65 kPa, LHSV for a mixture of styrene / ethylbenzene with respect to a dehydrogenation catalyst: 2.0
/ Hr. After the start of the reaction, samples of the liquid and gas at the outlet of each catalyst layer and at the outlet of the reaction tube were sampled, and their compositions were analyzed by gas chromatography, and the results shown in Table 1 were obtained.

【0021】実施例−2 吸着剤として、市販のシリカ−アルミナ系のセラミック
ボール−2(チップトン社製、但しセラミックボール−
1とはシリカ・アルミナの組成比が異なっている物)を
使用したこと以外は実施例−1と同様の操作を行い、表
−1に示す結果を得た。
Example 2 As an adsorbent, a commercially available silica-alumina-based ceramic ball-2 (manufactured by Tipton Co., Ltd.
The same operation as in Example 1 was performed except that a composition ratio of silica / alumina different from 1) was used, and the results shown in Table 1 were obtained.

【0022】比較例−1 吸着剤を充填しなかったこと以外は実施例−1と同様の
操作を行い、表−1に示す結果を得た。これらの反応例
から、本発明の方法による吸着剤を使用した方法では、
二酸化炭素の生成が増加せず、二層目脱水素触媒の活性
が安定していることが分かる。
Comparative Example 1 The same operation as in Example 1 was carried out except that the adsorbent was not charged, and the results shown in Table 1 were obtained. From these reaction examples, in the method using the adsorbent according to the method of the present invention,
It can be seen that the production of carbon dioxide does not increase and the activity of the second layer dehydrogenation catalyst is stable.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】このように、本発明の方法を用いれば、
アルカリ性物質の飛散による酸化触媒の被毒がなくなる
ことで、酸化触媒の選択性は低下せずに安定する。その
ためスチレンやエチルベンゼン等炭化水素の燃焼が抑制
され、二酸化炭素生成量の増加が抑えられる。その結
果、酸化触媒層後部に置かれた脱水素触媒の経時的な活
性低下も抑えられる。また、多段での脱水素反応におい
ては、反応温度の低下がない上、平衡の制約が小さくな
ることから、吸着剤を使用しない場合と比較して全体と
して著しく高い収率でスチレンを得ることができる。
As described above, according to the method of the present invention,
By eliminating poisoning of the oxidation catalyst due to scattering of the alkaline substance, the selectivity of the oxidation catalyst is stabilized without lowering. Therefore, combustion of hydrocarbons such as styrene and ethylbenzene is suppressed, and an increase in carbon dioxide generation is suppressed. As a result, a decrease in the activity of the dehydrogenation catalyst placed behind the oxidation catalyst layer over time can be suppressed. In addition, in the multi-stage dehydrogenation reaction, since the reaction temperature does not decrease and the restriction of equilibrium is reduced, it is possible to obtain styrene in a significantly higher yield as a whole as compared with the case where no adsorbent is used. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いられる反応管の縦断面
図。
FIG. 1 is a longitudinal sectional view of a reaction tube used in an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝口 真 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 藤田 尚 茨城県鹿島郡神栖町東和田17番地1 三菱 化学株式会社鹿島事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Takiguchi 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Takashi Fujita 17-17 Towada, Kamisu-cho, Kashima-gun, Ibaraki Prefecture 1 Mitsubishi Chemical Corporation Kashima Office

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも下記工程(1)ないし(3)
を含むエチルベンゼンの脱水素反応によるスチレンの製
造方法において、工程(2)に供給される反応混合物中
のアルカリ性物質を予め除去しておくことを特徴とする
スチレンの製造方法。 工程(1):エチルベンゼンを脱水素触媒の存在下に脱
水素させてスチレン及び水素を含有する反応混合物を得
る工程。 工程(2):該反応混合物を酸化触媒と接触させて混合
物中に含まれる水素を選択的に酸化して水とする工程。 工程(3):この酸化処理混合物を脱水素触媒と接触さ
せて混合物中に含まれる未反応エチルベンゼンを脱水素
させてスチレンを得る工程。
1. At least the following steps (1) to (3)
A method for producing styrene by a dehydrogenation reaction of ethylbenzene comprising: removing an alkaline substance in the reaction mixture supplied to the step (2) in advance. Step (1): a step of dehydrogenating ethylbenzene in the presence of a dehydrogenation catalyst to obtain a reaction mixture containing styrene and hydrogen. Step (2): a step of bringing the reaction mixture into contact with an oxidation catalyst to selectively oxidize hydrogen contained in the mixture into water. Step (3): a step of bringing the oxidized mixture into contact with a dehydrogenation catalyst to dehydrogenate unreacted ethylbenzene contained in the mixture to obtain styrene.
【請求項2】 アルカリ性物質がカリウム化合物である
請求項1に記載のスチレンの製造方法。
2. The method for producing styrene according to claim 1, wherein the alkaline substance is a potassium compound.
【請求項3】 工程(1)及び工程(3)で用いる脱水
素触媒が鉄化合物と周期律表第1A族及び第2A族から
なる群から選ばれたアルカリ性金属とからなる触媒であ
る請求項1または2に記載のスチレンの製造方法。
3. The dehydrogenation catalyst used in the step (1) and the step (3) is a catalyst comprising an iron compound and an alkaline metal selected from the group consisting of Groups 1A and 2A of the periodic table. 3. The method for producing styrene according to 1 or 2.
【請求項4】 脱水素触媒が酸化鉄と酸化カリウムとを
主成分とするものである請求項3に記載のスチレンの製
造方法。
4. The method for producing styrene according to claim 3, wherein the dehydrogenation catalyst contains iron oxide and potassium oxide as main components.
【請求項5】 工程(2)で用いる酸化触媒が周期律表
の第4族、第5族及び第8族の金属から選ばれる少なく
とも1種の金属を含む触媒である請求項1〜4のいずれ
か1項に記載のスチレンの製造方法。
5. The method according to claim 1, wherein the oxidation catalyst used in the step (2) is a catalyst containing at least one metal selected from metals of Groups 4, 5, and 8 of the periodic table. A method for producing styrene according to any one of the preceding claims.
【請求項6】 工程(2)で用いる酸化触媒が周期律表
の第4族と第5族から選ばれる少なくとも1種の金属と
周期律表の第8族の金属から選ばれる少なくとも1種の
金属の両者を含む触媒である請求項1〜4のいずれか1
項に記載のスチレンの製造方法。
6. The oxidation catalyst used in the step (2) is at least one metal selected from Group 4 and Group 5 of the Periodic Table and at least one metal selected from Group 8 of the Periodic Table. 5. The catalyst according to claim 1, which is a catalyst containing both metals.
The method for producing styrene according to the above item.
【請求項7】 アルカリ性物質の除去を、工程(1)と
工程(2)との間にアルカリ性物質の除去層を設けるこ
とによって行う請求項1〜6のいずれか1項に記載のス
チレンの製造方法。
7. The production of styrene according to claim 1, wherein the removal of the alkaline substance is carried out by providing a layer for removing the alkaline substance between the step (1) and the step (2). Method.
【請求項8】 アルカリ性物質の除去を、工程(1)と
工程(2)との間にアルカリ性物質の吸着層を設けるこ
とによって行う請求項1〜6のいずれか1項に記載のス
チレンの製造方法。
8. The production of styrene according to claim 1, wherein the removal of the alkaline substance is performed by providing an adsorption layer of the alkaline substance between the step (1) and the step (2). Method.
【請求項9】 アルカリ性物質の吸着層がシリカ系化合
物、アルミナ系化合物、及びシリカ−アルミナ系複合化
合物の群から選ばれる少なくとも1種の吸着剤からなる
請求項8に記載のスチレンの製造方法。
9. The method for producing styrene according to claim 8, wherein the adsorption layer of the alkaline substance comprises at least one adsorbent selected from the group consisting of a silica-based compound, an alumina-based compound, and a silica-alumina-based composite compound.
【請求項10】 吸着剤の使用量が、脱水素触媒との容
積比率として0.001〜2倍の範囲である請求項8又
は9に記載のスチレンの製造方法。
10. The method for producing styrene according to claim 8, wherein an amount of the adsorbent used is in a range of 0.001 to 2 times as a volume ratio with the dehydrogenation catalyst.
JP19717798A 1997-07-17 1998-07-13 Method for producing styrene Expired - Lifetime JP3985349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19717798A JP3985349B2 (en) 1997-07-17 1998-07-13 Method for producing styrene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-192118 1997-07-17
JP19211897 1997-07-17
JP19717798A JP3985349B2 (en) 1997-07-17 1998-07-13 Method for producing styrene

Publications (2)

Publication Number Publication Date
JPH1180045A true JPH1180045A (en) 1999-03-23
JP3985349B2 JP3985349B2 (en) 2007-10-03

Family

ID=26507119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19717798A Expired - Lifetime JP3985349B2 (en) 1997-07-17 1998-07-13 Method for producing styrene

Country Status (1)

Country Link
JP (1) JP3985349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502853A (en) * 2002-10-18 2006-01-26 ユーオーピー エルエルシー Lithium aluminate layer catalyst and selective oxidation process using the catalyst
WO2006132370A1 (en) 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation Process for production of styrene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502853A (en) * 2002-10-18 2006-01-26 ユーオーピー エルエルシー Lithium aluminate layer catalyst and selective oxidation process using the catalyst
JP4804756B2 (en) * 2002-10-18 2011-11-02 ユーオーピー エルエルシー Lithium aluminate layer catalyst and selective oxidation process using the catalyst
WO2006132370A1 (en) 2005-06-10 2006-12-14 Mitsubishi Chemical Corporation Process for production of styrene

Also Published As

Publication number Publication date
JP3985349B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4185024B2 (en) Catalyst and method for alkane dehydrogenation
EP0689872B2 (en) Pd and Ag containing catalyst for the selective hydrogenation of acetylene
EP0196758B1 (en) Dehydrogenation of hydrocarbons with selective oxidation of hydrogen thereby generated
US4914249A (en) Dehydrogenation of dehydrogenatable hydrocarbons
WO1994029021A1 (en) New catalyst, and processes for dehydrogenating dehydrogenatable hydrocarbons
EP1933978A1 (en) Catalytically inactive heat generator and improved dehydrogenation process
JP2005522320A (en) Dehydrogenation catalyst composition
KR20040065270A (en) Catalytic composition for the dehydrogenation of alkylaromatic hydrocarbons
JP3216921B2 (en) Method for dehydrogenating hydrocarbons and oxygenated hydrocarbons
JP2017200907A (en) Method for producing fluorinated olefin
KR100500182B1 (en) Process for producing styrene
JPH0687766A (en) Purification of unsaturated hydrocarbon
JPS60130531A (en) Dehydrogenation of dehydrogenative hydrocarbon
JPH1180045A (en) Production of styrene
WO2015152160A1 (en) Method for producing unsaturated hydrocarbon
EP1240121B1 (en) Process for the production of olefins
EP0826418B1 (en) Catalyst for oxidation of hydrogen, method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon
JP3831444B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
EP0556489A1 (en) Process for the dehydrogenation of hydrocarbons
TW537924B (en) Process for the production of olefins
WO1998043734A1 (en) Catalyst for dehydrogenation of alkylaromatic hydrocarbon, process for producing the catalyst, and process for producing vinylaromatic hydrocarbon by using the catalyst
JP3823433B2 (en) Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
Asami et al. Methane coupling over terbium oxide catalysts using carbon dioxide as oxidant
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
WO2021250610A1 (en) Process for hydrocarbon dehydrogenation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3