JPH1174589A - Semiconductor laser pumped solid laser - Google Patents

Semiconductor laser pumped solid laser

Info

Publication number
JPH1174589A
JPH1174589A JP27321897A JP27321897A JPH1174589A JP H1174589 A JPH1174589 A JP H1174589A JP 27321897 A JP27321897 A JP 27321897A JP 27321897 A JP27321897 A JP 27321897A JP H1174589 A JPH1174589 A JP H1174589A
Authority
JP
Japan
Prior art keywords
laser
level
transition
solid
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27321897A
Other languages
Japanese (ja)
Inventor
Kenta Naito
健太 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP27321897A priority Critical patent/JPH1174589A/en
Publication of JPH1174589A publication Critical patent/JPH1174589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the utilization efficiency of pumping energy for semiconductor laser pumped solid laser by an arrangement wherein a semiconductor laser pumps a solid laser with a wavelength making an optical transition from one specific level to another specific level of the solid laser. SOLUTION: At the time of laser transition from<4> F3/2 level (laser upper level) to<4> I11/2 level (laser lower lower level) of Nd<3+> , the oscillation wavelength of a semiconductor laser for pumping a solid laser corresponds optical transition from<4> I9/2 level (ground level) of Nd<3+> of the solid laser to the laser upper level. The Nd3+ is pumped from the ground level to the laser upper level with a light having such a wavelength and the Nd<3+> of laser upper level makes a transition to the laser lower level through laser transition without passing through a relax process of nonradiative transition. A laser light Y is obtained in that process and the laser lower level is relaxed to the ground level through nonradiative transition. The utilization efficiency of pumping energy on the order of 82-83% is attained and it is higher than ordinary utilization efficiency of 76%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザを励
起光源とする半導体レーザ励起固体レーザに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser pumped solid-state laser using a semiconductor laser as a pump light source.

【0002】[0002]

【従来の技術】実用的固体レーザとしてはNd3+を活
性イオンとしたものが主流で、その代表的なものとして
YAGレーザ、ガラスレーザが知られている。このよう
な固体レーザを励起する光源としては、かつてはランプ
が用いられていたが、高効率化と、コンパクト化を得る
ために最近では半導体レーザ(LD)を用いたものが開
発されている。
2. Description of the Related Art As a practical solid-state laser, a laser using Nd 3+ as active ions is mainly used, and a YAG laser and a glass laser are known as typical ones. A lamp has been used as a light source for exciting such a solid-state laser, but a light source using a semiconductor laser (LD) has recently been developed to achieve high efficiency and compactness.

【0003】図2は、従来のNd3+を活性イオンと
し、半導体レーザを励起光源とした半導体レーザ励起固
体レーザの励起/発光プロセスを示す、Nd3+(固体
結晶場中)のエネルギー準位図である。
FIG. 2 is an energy level diagram of Nd 3+ (in a solid crystal field) showing the excitation / emission process of a conventional semiconductor laser-excited solid-state laser using Nd 3+ as active ions and a semiconductor laser as an excitation light source. is there.

【0004】従来、固体レーザを励起する半導体レーザ
の発振波長は、固体レーザのNd3+9/2準位
(基底準位)から5/2準位および9/2準位
への光学遷移に対応する波長、例えばYAGレーザでは
808nm付近の波長、ガラスレーザでは803nm付
近の波長が用いられている。この波長の光では、Nd
3+は基底準位から一旦3/2(レーザ上準位)よ
りもエネルギー的には高い準位まで励起され(図示
a)、非輻射遷移による緩和過程でレーザ上準位に移行
する(図示b)。
Conventionally, the oscillation wavelength of the semiconductor laser for exciting the solid-state lasers, 4 I 9/2 level position of Nd 3+ in the solid-state laser 4 F 5/2 level position from (ground level) and 2 H 9/2 level For example, a wavelength around 808 nm is used for a YAG laser, and a wavelength around 803 nm is used for a glass laser. For light of this wavelength, Nd
3+ is once excited from the ground level to a level higher in energy than 4 F 3/2 (laser upper level) (illustration a), and shifts to the laser upper level in a relaxation process due to non-radiative transition ( Illustration b).

【0005】レーザ上準位のNd3+はレーザ遷移によ
11/2準位(レーザ下準位)に遷移し(図示
c)、この過程でレーザ光Yが得られ、その後
11/2(レーザ下準位)から非輻射遷移によって基底
準位まで緩和される(図示d)。
[0005] Nd 3+ laser upper level transitions in the laser transition 4 I 11/2 level position (laser low level) (shown c), the laser beam Y is obtained in this process, then 4 I
It is relaxed from 11/2 (laser lower level) to the ground level by non-radiative transition (illustrated d).

【0006】なお、図2は、3/2準位から
11/2準位のレーザ遷移させる場合のものについて示
しているが、3/2準位から13/2準位のレ
ーザ遷移、3/2準位から9/2準位のレーザ
遷移させるものについても同様の励起プロセスである。
[0006] It should be noted that FIG. 2, 4 from 4 F 3/2 level I
Although the case where the laser transition of the 11/2 level is performed is shown, the laser transition from the 4 F 3/2 level to the 4 I 13/2 level, and the laser transition from the 4 F 3/2 level to 4 I 9/2. The same pumping process is performed for a laser that makes a level transition.

【0007】[0007]

【発明が解決しようとする課題】このように5/2
準位および9/2準位を励起する方式では、励起光
子1個から取り出すことが出来るレーザ光子(
3/2準位から11/2準位)は最大で1個であ
る。励起光子のエネルギーは約1.6eVであるのに対
してレーザ光子のエネルギーは、 (1)レーザ上準位から9/2準位間のレーザ遷移
の場合約1.4eV (2)レーザ上準位から11/2準位間のレーザ遷
移の場合約1.2eV (3)レーザ上準位から13/2準位間のレーザ遷
移の場合約0.9eV である。
[Problems that the Invention is to Solve In this way 4 F 5/2
In the method of exciting levels and 2 H 9/2 levels, laser photons (4 F which can be extracted from one excitation photon
(3/2 level to 4 I 11/2 level) is at most one. The energy of the excitation photon is about 1.6 eV, while the energy of the laser photon is: (1) about 1.4 eV in the case of a laser transition between the upper laser level and the 4 I 9/2 level; The laser transition between the upper level and the 4 I 11/2 level is about 1.2 eV. (3) The laser transition between the upper level and the 4 I 13/2 level is about 0.9 eV.

【0008】したがって、励起エネルギーの利用効率
(レーザ光子エネルギー/励起エネルギー)としては、 (1)レーザ上準位から9/2準位間のレーザ遷移
の場合約88% (2)レーザ上準位から11/2準位間のレーザ遷
移の場合約75% (3)レーザ上準位から13/2準位間のレーザ遷
移の場合約56% となり、原理的にこれ以上の励起エネルギー利用効率は
得られないという問題がある。
Accordingly, the utilization efficiency of the excitation energy (laser photon energy / excitation energy), (1) about 88% when the laser high level laser transitions between 4 I 9/2 level (2) on the laser Approximately 75% in the case of a laser transition between the level and the 4 I 11/2 level (3) Approximately 56% in the case of a laser transition between the upper level of the laser and the 4 I 13/2 level, and in principle more However, there is a problem that the excitation energy utilization efficiency cannot be obtained.

【0009】また、5/2準位及び9/2準位
に励起されたNd3+は、必ずしも全てが緩和過程(図
2のb)によりレーザ上準位に移行するとは限らず、励
起光による光学遷移で励起された準位からレーザ上準位
への移行確率(量子効率)は、一般的には100%には
満たないという問題があった。
Further, all of the Nd 3+ excited to the 4 F 5/2 level and the 2 H 9/2 level does not always move to the upper level of the laser due to the relaxation process (b in FIG. 2). In general, the transition probability (quantum efficiency) from the level excited by the optical transition by the excitation light to the upper level of the laser is less than 100%.

【0010】本発明はこのような問題に鑑みてなされた
ものであり、Nd3+を活性イオンとする半導体レーザ
励起固体レーザの励起エネルギーの利用効率を高めるこ
とを目的とする。
The present invention has been made in view of such a problem, and has as its object to increase the efficiency of using the excitation energy of a semiconductor laser-excited solid-state laser using Nd 3+ as active ions.

【0011】[0011]

【課題を解決するための手段】本発明は、Nd3+を活
性イオンとする固体レーザと前記固体レーザを励起する
半導体レーザとを備えてなる半導体レーザ励起固体レー
ザにおいて、前記半導体レーザが発振する前記固体レー
ザのNd3+9/2準位から3/2準位へ光
学遷移させる波長で前記固体レーザを励起してなること
を特徴とする。
According to the present invention, there is provided a semiconductor laser pumped solid state laser comprising a solid state laser having Nd 3+ as active ions and a semiconductor laser for exciting the solid state laser. characterized in that from 4 I 9/2 level of Nd 3+ in the solid-state laser to 4 F 3/2 level at the wavelength for optical transition formed by exciting the solid-state laser.

【0012】本発明では、半導体レーザによりNd3+
は非輻射遷移を伴う緩和プロセスなしに光学遷移で基底
準位からレーザ上準位に直接励起されるので、量子効率
は100%となるとともに、レーザ上準位を1つ形成す
るために必要な励起光子のエネルギーも小さく済み励起
エネルギーの利用効率の向上が可能となる。
According to the present invention, Nd 3+
Is directly excited from the ground level to the upper laser level by an optical transition without a relaxation process accompanied by a non-radiative transition, so that the quantum efficiency is 100% and necessary to form one upper laser level. The energy of the excitation photons is also small, and the utilization efficiency of the excitation energy can be improved.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照して説明する。図1は本発明の実施の形態の
Nd3+を活性イオンとし、半導体レーザを励起光源と
した半導体レーザ励起固体レーザの励起/発光プロセス
を示す、Nd3+(固体結晶場中)のエネルギー準位図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an energy level diagram of Nd 3+ (in a solid crystal field) showing an excitation / emission process of a semiconductor laser-excited solid-state laser using Nd 3+ as active ions and a semiconductor laser as an excitation light source according to an embodiment of the present invention. It is.

【0014】この実施の形態は、Nd3+3/2
準位(レーザ上準位)から11 /2準位(レーザ下
準位)のレーザ遷移させる場合で、固体レーザを励起す
る半導体レーザの発振波長を、固体レーザのNd3+
9/2準位(基底準位)からレーザ上準位への光学
遷移に対応する波長としている。
In this embodiment, Nd 3+ 4 F 3/2
In case of the laser transition level (laser high level) from 4 I 11/2 level position (laser low level), the oscillation wavelength of the semiconductor laser for exciting the solid-state laser, a solid-state laser of Nd 3+
The wavelength corresponds to the optical transition from the 4 I 9/2 level (ground level) to the laser upper level.

【0015】この波長の光では、Nd3+は基底準位か
らレーザ上準位まで励起され(図示A)、非輻射遷移に
よる緩和過程を経ることなく、レーザ上準位のNd3+
はレーザ遷移によりレーザ下準位に遷移し(図示C)、
この過程でレーザ光Yが得られ、その後レーザ下準位か
ら非輻射遷移によって基底準位まで緩和される(図示
D)。なお、この図では11/2準位をレーザ下準
位とする場合のものについて示しているが、
13/2準位、9/2準位をレーザ下準位とするも
のについても同様の励起プロセスとなる。
In the light of this wavelength, Nd 3+ is excited from the ground level to the upper level of the laser (illustration A), and Nd 3+ of the upper level of the laser does not undergo a relaxation process due to non-radiative transition.
Changes to a laser lower level by laser transition (illustration C),
In this process, a laser beam Y is obtained, which is then relaxed from the lower laser level to the ground level by a non-radiative transition (D in the drawing). Although it is shown for those in the case of the laser low level to 4 I 11/2 level in this figure, 4 I
13/2 level position, the same excitation process also the 4 I 9/2 level which the laser low level.

【0016】YAGレーザの場合、従来利用されている
波長808nm付近の吸収バンドよりも波長870nm
付近と波長885nm付近に比較的に強い吸収を示す吸
収バンドがあり、この吸収バンドがNd3+の基底準位
からレーザ上準位への光学遷移に対応している。したが
って、波長870nmもしくは波長885nm付近で発
振できる半導体レーザで励起すれば良い。このような波
長のレーザを発振する半導体レーザとしてはGaAlA
s系もしくはInGaAs系がある。
In the case of a YAG laser, the wavelength is 870 nm rather than the absorption band around 808 nm conventionally used.
There is an absorption band showing relatively strong absorption in the vicinity and near the wavelength of 885 nm, and this absorption band corresponds to the optical transition from the ground level of Nd 3+ to the laser upper level. Therefore, it is only necessary to excite with a semiconductor laser that can oscillate at a wavelength of about 870 nm or about 885 nm. As a semiconductor laser that oscillates a laser having such a wavelength, GaAlA is used.
There is an s type or an InGaAs type.

【0017】この実施の形態では、レーザ下準位を
11/2準位とする場合、YAGレーザのレーザ遷移波
長は1064nmであるので、励起エネルギーの利用効
率は82〜83%程度となり、従来の励起エネルギーの
利用効率76%よりも高めることができる。
In this embodiment, the lower level of the laser is 4 I
In the case of 11/2 level, since the laser transition wavelength of the YAG laser is 1064 nm, the utilization efficiency of the excitation energy is about 82 to 83%, which can be higher than the conventional utilization efficiency of the excitation energy of 76%.

【0018】ガラスレーザの場合では、従来利用されて
いる波長803nm付近の吸収バンドよりも波長875
nm付近にピークをもったブロードな吸収バンドがあ
り、この吸収バンドがNd3+の基底準位からレーザ上
準位への光学遷移に対応している。したがって、波長8
75nm付近で発振できる半導体レーザで励起すれば良
い。この場合の半導体レーザとしてはGaAlAs系も
しくはInGaAs系がある。
In the case of a glass laser, the wavelength 875 is larger than the absorption band around 803 nm conventionally used.
There is a broad absorption band having a peak near nm, and this absorption band corresponds to the optical transition from the ground level of Nd 3+ to the laser upper level. Therefore, the wavelength 8
What is necessary is just to pump with the semiconductor laser which can oscillate around 75 nm. As the semiconductor laser in this case, there is a GaAlAs system or an InGaAs system.

【0019】この実施の形態では、レーザ下準位を
11/2準位とする場合、ガラスレーザのレーザ遷移波
長は1053nmであるので、励起エネルギーの利用効
率は83%程度となり、従来の励起エネルギーの利用効
率76%よりも高めることができる。
In this embodiment, the lower level of the laser is 4 I
In the case of 11/2 level, since the laser transition wavelength of the glass laser is 1053 nm, the pump energy use efficiency is about 83%, which can be higher than the conventional pump energy use efficiency of 76%.

【0020】上記実施の形態では、レーザ上準位から
11/2準位間のレーザ遷移を利用するものである
が、レーザ上準位から9/2準位間、レーザ上準位
から13/2準位間のレーザ遷移を利用しても良
い。この場合の励起エネルギーの利用効率は、レーザ上
準位から9/2準位間のレーザ遷移にあっては約1
00%、レーザ上準位から13/2準位間のレーザ
遷移にあっては約75%が可能となる。
In the above embodiment, four lasers
While advantage of the laser transition between I 11/2 level use, between 4 I 9/2 level from the upper laser level, the laser transitions between 4 I 13/2 level from the laser upper level You may. Utilization efficiency of excitation energy in this case, in the from the upper laser level to laser transitions between the 4 I 9/2 level of about 1
For the laser transition between the upper laser level and the 4 I 13/2 level, about 75% is possible.

【0021】なお、上記はYAGレーザ、ガラスレーザ
を例にしているが、本発明は、Nd3+を活性イオンと
する全ての半導体レーザ励起固体レーザに適用できる。
Although the above description has been made by taking a YAG laser and a glass laser as examples, the present invention can be applied to all semiconductor laser-excited solid-state lasers using Nd 3+ as active ions.

【0022】[0022]

【発明の効果】以上のように、本発明によれば固体レー
ザのNd3+9/2準位から3/2準位へ光
学遷移させる波長を発振する半導体レーザを励起光源と
して固体レーザを励起するので、励起エネルギーの利用
効率は向上し、また、量子効率も100%が可能とな
り、Nd3+を活性イオンとする半導体レーザ励起固体
レーザ全体の効率の向上が可能となる。この効率の向上
は、固体レーザ媒質への熱負荷の低減につながり、半導
体レーザ励起固体レーザの冷却に対する要請も緩和され
る。
As it is evident from the foregoing description, a semiconductor laser oscillating wavelength to optical transition from 4 I 9/2 level to 4 F 3/2 level of Nd 3+ in the solid-state laser according to the present invention as an excitation light source Since the solid-state laser is excited, the utilization efficiency of the excitation energy is improved, the quantum efficiency is also made 100%, and the efficiency of the entire semiconductor laser-excited solid-state laser using Nd 3+ as active ions can be improved. This improvement in efficiency leads to a reduction in the heat load on the solid-state laser medium, and the demand for cooling the solid-state laser pumped solid-state laser is also eased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のNd3+を活性イオンと
し、半導体レーザを励起光源とした半導体レーザ励起固
体レーザの励起/発光プロセスを示す、Nd3+(固体
結晶場中)のエネルギー準位図である。
FIG. 1 shows an energy level of Nd 3+ (in a solid crystal field) showing an excitation / emission process of a semiconductor laser-excited solid-state laser using Nd 3+ as active ions and a semiconductor laser as an excitation light source according to an embodiment of the present invention. FIG.

【図2】従来のNd3+を活性イオンとし、半導体レー
ザを励起光源とした半導体レーザ励起固体レーザの励起
/発光プロセスを示す、Nd3+(固体結晶場中)のエ
ネルギー準位図である。
FIG. 2 is an energy level diagram of Nd 3+ (in a solid crystal field) showing an excitation / emission process of a conventional semiconductor laser-excited solid-state laser using Nd 3+ as active ions and a semiconductor laser as an excitation light source.

【符号の説明】[Explanation of symbols]

A 光学遷移 C レーザ遷移 D 非輻射遷移 Y レーザ光 A Optical transition C Laser transition D Non-radiative transition Y Laser light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Nd3+を活性イオンとする固体レーザ
と前記固体レーザを励起する半導体レーザとを備えてな
る半導体レーザ励起固体レーザにおいて、前記半導体レ
ーザが発振する前記固体レーザのNd3+9/2
準位から3/2準位へ光学遷移させる波長で前記固
体レーザを励起してなることを特徴とする半導体レーザ
励起固体レーザ。
1. A solid-state laser pumped solid-state laser comprising: a solid-state laser having Nd 3+ as active ions; and a semiconductor laser for exciting the solid-state laser, wherein Nd 3+ 4 I of the solid-state laser oscillated by the semiconductor laser is provided. 9/2
The semiconductor-laser-pumped solid-state laser, characterized in that formed by exciting the solid-state laser with a wavelength to optical transition from level to 4 F 3/2 level.
JP27321897A 1997-08-29 1997-08-29 Semiconductor laser pumped solid laser Pending JPH1174589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27321897A JPH1174589A (en) 1997-08-29 1997-08-29 Semiconductor laser pumped solid laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27321897A JPH1174589A (en) 1997-08-29 1997-08-29 Semiconductor laser pumped solid laser

Publications (1)

Publication Number Publication Date
JPH1174589A true JPH1174589A (en) 1999-03-16

Family

ID=17524763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27321897A Pending JPH1174589A (en) 1997-08-29 1997-08-29 Semiconductor laser pumped solid laser

Country Status (1)

Country Link
JP (1) JPH1174589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332657A (en) * 2002-05-17 2003-11-21 Megaopto Co Ltd Laser system
JP2011515869A (en) * 2008-03-28 2011-05-19 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser with high efficiency gain medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332657A (en) * 2002-05-17 2003-11-21 Megaopto Co Ltd Laser system
JP2011515869A (en) * 2008-03-28 2011-05-19 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser with high efficiency gain medium

Similar Documents

Publication Publication Date Title
Hebert et al. Blue and green cw upconversion lasing in Er: YLiF4
US6269108B1 (en) Multi-wavelengths infrared laser
US4809291A (en) Diode pumped laser and doubling to obtain blue light
JP5324453B2 (en) Frequency-converted solid-state laser in the cavity for the visible wavelength region
JPH1174589A (en) Semiconductor laser pumped solid laser
JPH03504302A (en) laser
JPH11204862A (en) Fiber laser and fiber amplifier
JP2010507920A (en) Optically pumped solid-state laser with co-doped gain medium
JPS6288386A (en) Semiconductor-laser exciting solid-state laser
JPH02185082A (en) Laser diode-excited solid state laser
JPH05183220A (en) Semiconductor laser-excited solid-laser device
JP2001036175A (en) Laser-diode pumped solid-state laser
Dudley et al. Direct 880 nm diode-pumping of vanadate lasers
JP2004119487A (en) Laser equipment
JP2002344049A (en) Laser diode pumped solid-state laser
JP2001223423A (en) Laser device
JP2002043662A (en) High-efficiency and high-output visible wavelength solid- state laser
JPH1117266A (en) Laser diode excited solid laser
JP2001185795A (en) Ultraviolet laser device
JP2989454B2 (en) Rare earth ion doped short wavelength laser light source device
JP4274393B2 (en) Semiconductor light emitting device
JPH1065237A (en) Solid-state laser device
JPH0821743B2 (en) Solid-state laser device
JPH0637373A (en) Semiconductor laser-excited solid state laser
JPH04119682A (en) Dye laser device