JPH0821743B2 - Solid-state laser device - Google Patents
Solid-state laser deviceInfo
- Publication number
- JPH0821743B2 JPH0821743B2 JP27832888A JP27832888A JPH0821743B2 JP H0821743 B2 JPH0821743 B2 JP H0821743B2 JP 27832888 A JP27832888 A JP 27832888A JP 27832888 A JP27832888 A JP 27832888A JP H0821743 B2 JPH0821743 B2 JP H0821743B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- laser
- solid
- wavelength
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
- H01S3/092—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
- H01S3/093—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
- H01S3/0931—Imaging pump cavity, e.g. elliptical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08095—Zig-zag travelling beam through the active medium
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遷移金属イオンや希土類元素イオンをドープ
したYAGやガラス等を固体レーザ媒質として用い、光励
起によりレーザ発光させる固体レーザ装置に関する。The present invention relates to a solid-state laser device that emits laser light by photoexcitation using YAG or glass doped with transition metal ions or rare earth element ions as a solid-state laser medium.
よく知られているように、固体レーザ装置ではYAG(Y
3Al5O12),GGG(Gd3Ga5O12),GSGG(Gd3Ga5O12)等の光
学結晶やガラスの母材にCr3+等の遷移金属イオンやNd3+
等の希土類元素イオンをレーザ活性物質として含ませた
ものがレーザ媒質として用いられ、それ用の励起光とし
ては従来からタングステンハロゲンランプやクリプトン
放電灯等の励起光源からの光,場合によっては太陽光が
用いられる。レーザ媒質の形状はふつうロッド状である
が、最近では大出力用にいわゆるスラブ形のものも用い
られるようになって来た。第5図は、よく知られている
ことであるが、ロッド状のYAGをレーザ媒質を用いた従
来の固体レーザ装置の原理構成を示すものである。As is well known, YAG (Y
3 Al 5 O 12 ), GGG (Gd 3 Ga 5 O 12 ), GSGG (Gd 3 Ga 5 O 12 ), etc. Optical crystals and glass base materials, transition metal ions such as Cr 3+ and Nd 3+
A rare-earth element ion such as a laser-active substance is used as the laser medium, and the excitation light for that is conventionally light from an excitation light source such as a tungsten halogen lamp or a krypton discharge lamp, and in some cases sunlight. Is used. The shape of the laser medium is usually rod-shaped, but in recent years, so-called slab type has been used for high output. As is well known, FIG. 5 shows the principle configuration of a conventional solid-state laser device using a rod-shaped YAG as a laser medium.
第5図(a)に示すように、ロッド状のレーザ媒質1
の各端面に対向して部分反射鏡2および全反射鏡3が配
置され、レーザ媒質1とともにレーザ共振系が構成さ
れ、部分反射鏡2側からレーザ光LLの出力が取り出され
る。励起光EL用の光源4は例えばクリプトン放電灯であ
って、閉鎖容器5内にレーザ媒質1と対向して配置さ
れ、出入口5aを介して閉鎖容器5内に通流される冷却媒
体CMによってレーザ媒質1および励起光源4が強力に冷
却される。同図(b)に示すように、閉鎖容器5は両端
が閉鎖された楕円筒状でその内面は鏡面仕上げされてお
り、楕円の一方の焦点に配置された励起光源4からの励
起光ELが他方の焦点に配置されたレーザ媒質1に集めら
れる。As shown in FIG. 5A, a rod-shaped laser medium 1
The partial reflection mirror 2 and the total reflection mirror 3 are arranged so as to face the respective end faces of the laser beam, and a laser resonance system is configured with the laser medium 1, and the output of the laser light LL is extracted from the side of the partial reflection mirror 2. The light source 4 for the excitation light EL is, for example, a krypton discharge lamp, and is disposed in the closed container 5 so as to face the laser medium 1, and the laser medium is generated by the cooling medium CM that flows into the closed container 5 through the port 5a. 1 and the excitation light source 4 are strongly cooled. As shown in FIG. 2B, the closed container 5 has an elliptic cylindrical shape with both ends closed, and its inner surface is mirror-finished, and the excitation light EL from the excitation light source 4 arranged at one focus of the ellipse is The laser medium 1 is arranged at the other focus.
ところが一般に光励起の固体レーザでは、レーザ媒質
に与えられた励起光EL中のほんの一部がレーザ活性物質
ないしはイオンの励起に寄与するだけで、その大部分が
熱になって失われてしまうのでエネルギ効率が非常に低
い問題がある。これを第4図を参照して説明する。However, in a photo-excited solid-state laser, in general, only a part of the excitation light EL given to the laser medium contributes to the excitation of the laser-active substance or ion, and most of it is lost as heat, resulting in energy loss. There is a problem of very low efficiency. This will be described with reference to FIG.
第4図(a)は、Nd3+をレーザ活性イオンとするYAG
レーザ媒質において、励起光がNd3+の励起に寄与する効
率ηの相対値と励起光の波長λの相関を示すもので、こ
れからわかるように図でAで示された720〜820nmの波長
範囲で高い励起効率を有する。同図(b)は励起光源と
してのクリプトン放電灯の発光強度Iの波長特性を示す
もので、図からわかるように上述の波長範囲Aで高い発
光強度を有する点は非常に都合がよい。しかし、励起光
源がこれ以外の範囲とくに短波長範囲Bでもかなりの発
光強度をもっているのに対し、レーザ媒質の方はこの波
長範囲Bで非常に励起効率が低いので、全波長範囲で見
ると励起光のもつエネルギの僅かに5%程度しかレーザ
活性イオンの励起に貢献しない。Figure 4 (a) shows YAG with Nd 3+ as the laser active ion.
In the laser medium, it shows the correlation between the relative value of the efficiency η that the pumping light contributes to the pumping of Nd 3+ and the wavelength λ of the pumping light. As can be seen from this, the wavelength range of 720 to 820 nm shown in A in the figure is shown. And has high excitation efficiency. FIG. 2B shows the wavelength characteristic of the emission intensity I of the krypton discharge lamp as the excitation light source, and as shown in the figure, it is very convenient that the emission intensity is high in the wavelength range A described above. However, while the pumping light source has a considerable emission intensity in other ranges, especially in the short wavelength range B, the pumping efficiency of the laser medium is very low in this wavelength range B, so that pumping in the entire wavelength range Only about 5% of the energy of light contributes to the excitation of laser active ions.
このように光励起の効率が5%程度で、残りの95%は
レーザ媒質内ですべて熱に変換されてしまうので、固体
レーザはそのレーザ媒質の密度従ってレーザ活性イオン
の密度が高くて、元来はずっと大レーザ出力を取り出せ
るはずのものが、実際には熱的に制約されて充分に高出
力運転ができない問題がある。In this way, the efficiency of photoexcitation is about 5%, and the remaining 95% is completely converted into heat in the laser medium. Therefore, the solid-state laser has a high density of the laser medium, that is, the density of the laser active ions. Is supposed to be able to take out a large laser output, but there is a problem in that it cannot be operated at a sufficiently high output due to thermal restrictions.
光励起効率の向上の観点から、最近に至り励起光源と
して半導体レーザを用いる固体レーザ装置が注目されて
いる。AlGaAs系の半導体レーザではよく知られているよ
うにAlとGaの組成比を変えることによりその発振波長を
調整できるので、これを例えばNd3+の励起効率のピーク
がある810nm付近に合わせることにより、光励起効率を
大幅に向上し、かつレーザ媒質の発熱の問題もほぼ完全
になくすことができる。しかし、周知のように半導体レ
ーザ1個あたりの出力は最大でも1W程度と低いので、こ
れを多数個並べて励起光源を構成しても数Wから数十W
程度の固体レーザ出力しか得られず、半導体レーザ励起
の固体レーザ装置は小出力用には適しても、現在ランプ
励起で得られている数百Wないし数kWの高出力レベルま
では届きそうもない。From the viewpoint of improving the photoexcitation efficiency, a solid-state laser device using a semiconductor laser as an excitation light source has recently attracted attention. As is well known in AlGaAs semiconductor lasers, the oscillation wavelength can be adjusted by changing the composition ratio of Al and Ga.For example, by adjusting this to near 810 nm where the peak of Nd 3+ excitation efficiency is present. In addition, the photoexcitation efficiency can be greatly improved, and the heat generation problem of the laser medium can be almost completely eliminated. However, as is well known, the output per semiconductor laser is as low as about 1 W at maximum, so even if a large number of semiconductor lasers are arranged to form an excitation light source, several W to several tens W
Only solid-state laser output can be obtained, and the solid-state laser device excited by the semiconductor laser is suitable for small output, but it is likely to reach the high output level of several hundred W or several kW currently obtained by lamp excitation. Absent.
本発明はかかる問題点を解決して、光励起効率が高く
かつ高出力用に適する固体レーザ装置を提供することを
目的とする。It is an object of the present invention to solve the above problems and provide a solid-state laser device having high photoexcitation efficiency and suitable for high output.
この目的は本発明によれば、固体のレーザ媒質中のレ
ーザ活性物質を光励起してレーザ発光させる固体レーザ
装置において、照射光を吸収してレーザ活性物質の光励
起に適する波長の蛍光を発する半導体からなる光変換手
段を設け、光変換手段に照射光を与えてそれから発せら
れる蛍光を励起光としてレーザ媒質中のレーザ活性物質
を光励起するように構成することによって達成される。According to the present invention, according to the present invention, in a solid-state laser device that optically excites a laser active substance in a solid laser medium to emit laser light, from a semiconductor that absorbs irradiation light and emits fluorescence having a wavelength suitable for photoexcitation of the laser active substance. It is achieved by providing the following light conversion means, and by irradiating the light conversion means with light and using the fluorescence emitted from the light conversion means as excitation light to optically excite the laser active substance in the laser medium.
上記構成にいう光変換手段はそれが受ける照射光を蛍
光に変換するもので、これに用いる半導体は蛍光の波長
ないし波長範囲をレーザ活性物質の光励起効率が高い波
長範囲に容易に合わせ得るものが望ましく、この意味で
これにAlxGa1-xAsを用い、そのAlの含有率xによって蛍
光の波長を調整できるようにするのが好適である。ま
た、蛍光の波長範囲をレーザ活性物質の光励起効率のピ
ークに正確に合わせ得るようにできるだけ狭くする上で
は、半導体には直接遷移形のエネルギバンド構造をもつ
ものとするのが望ましく、AlGaAsはこの点でも本発明に
おける光変換手段用の半導体として適する。このAlGaAs
を用いた場合、光変換手段はもちろんその単層構成とす
ることでよいが、場合により言わゆるダブルヘテロ接合
構造をもつ複合層構成するることができる。The light conversion means referred to in the above configuration is for converting the irradiation light it receives into fluorescence, and the semiconductor used for this is one that can easily match the wavelength or wavelength range of fluorescence to the wavelength range in which the photoexcitation efficiency of the laser active substance is high. In this sense, Al x Ga 1-x As is preferably used in this sense, and the wavelength of fluorescence can be adjusted by the content x of Al. Further, in order to make the wavelength range of the fluorescence as narrow as possible so that it can be accurately matched to the peak of the photoexcitation efficiency of the laser active material, it is desirable that the semiconductor has a direct transition type energy band structure. Also in this respect, it is suitable as a semiconductor for the light converting means in the present invention. This AlGaAs
In the case of using, the light converting means may of course have a single layer structure, but in some cases a composite layer structure having a so-called double heterojunction structure can be used.
光変換手段の実際の形態としては半導体を薄い層ない
しは膜状に形成するのがよく、これを透明な1対の保持
板例えばガラス板間に挟持させた板状体の形で光変換手
段を構成して、固体レーザ装置内に組み込むのが適切で
ある。As a practical form of the light converting means, it is preferable that the semiconductor is formed in a thin layer or a film shape, and the light converting means is formed in the form of a plate-like member sandwiched between a pair of transparent holding plates, for example, glass plates. It is suitable for construction and incorporation in a solid state laser device.
よく知られているように半導体はエネルギ準位の低い
価電帯とその上の伝導帯とからなるエネルギバンド構造
をもっており、照射光を受けたとき価電帯内の電子が伝
導帯に励起され、この励起電子が再び価電帯に遷移ない
しは落ち込むときに伝導帯と価電帯との間のエネルギギ
ャップEgで決まる波長λの蛍光を発する。この蛍光の波
長は λ=Eg/hc (1) で表される。ただしhはブランク定数,cは光速度とす
る。また、この半導体はそれが受ける照射光中の上式の
波長λより長い波長成分はほとんど吸収しないが、それ
以下の波長成分は非常によく吸収する。As is well known, a semiconductor has an energy band structure consisting of a valence band with a low energy level and a conduction band above it. When receiving irradiation light, electrons in the valence band are excited into the conduction band. , When this excited electron transits to the valence band again or falls, it emits fluorescence with a wavelength λ determined by the energy gap Eg between the conduction band and the valence band. The wavelength of this fluorescence is represented by λ = Eg / hc (1). However, h is a blank constant and c is the speed of light. Further, this semiconductor hardly absorbs a wavelength component longer than the above wavelength λ in the irradiation light received by the semiconductor, but absorbs a wavelength component below that very well.
本発明はこの原理を利用したもので、例えば前記した
第4図(b)の光源の発光強度分布について説明する
と、上述の半導体を用いた光変換手段が発する蛍光の波
長λをレーザ活性物質の光励起効率のよい波長範囲A内
に合わせて置くことにより、この光源から光変換手段が
受ける照射光中のこの範囲A内の波長成分はもちろんそ
れより波長の短い範囲B内の波長成分も吸収させ、波長
範囲A内の蛍光に変換してレーザ媒質に励起光として与
えることにより、いままで利用されていなかった波長範
囲B内の波長成分をレーザ活性物質の光励起に有効利用
するものである。The present invention utilizes this principle. For example, the emission intensity distribution of the light source shown in FIG. 4 (b) will be described. The wavelength λ of the fluorescence emitted by the light conversion means using the above-mentioned semiconductor is determined by the laser active material. By arranging it in the wavelength range A where the photoexcitation efficiency is good, not only the wavelength component in this range A in the irradiation light received by the light converting means from this light source but also the wavelength component in the range B having a shorter wavelength than that are absorbed. The wavelength component in the wavelength range B, which has not been used until now, is effectively used for the optical excitation of the laser active substance by converting the fluorescence into the fluorescence in the wavelength range A and giving it as excitation light to the laser medium.
なお、上述の半導体のエネルギバンド構造をより詳細
に電子の運動量ないしは波数ベクトルについて見ると、
価電帯は上方に凸な,伝導帯は下方に凸なバンド形状を
それぞれもつが、いわゆる直接遷移形の半導体では価電
帯の頂上と伝導帯の底とがほぼ一致するバンド構造をも
っている。この場合、照射光によって価電帯から伝導帯
に励起された電子は、ごく短い緩和時間内でその運動量
を緩和して伝導帯の底に落ち込み、そこから価電帯の頂
上に遷移して蛍光を発生させる。直接遷移形の半導体で
は、この遷移時に電子の運動量変化がほとんどないか
ら、間接遷移形に比べて蛍光発生の量子効率が高くほぼ
100%であり、かつ蛍光の波長範囲も狭いので、本発明
にとって非常に有利な利点を有することになる。When the energy band structure of the above-mentioned semiconductor is viewed in more detail with respect to the electron momentum or wave number vector,
The valence band has an upwardly convex band shape and the conduction band has a downwardly convex band shape. However, a so-called direct transition type semiconductor has a band structure in which the top of the valence band and the bottom of the conduction band substantially coincide with each other. In this case, the electrons excited from the valence band to the conduction band by the irradiation light relax their momentum and fall to the bottom of the conduction band within a very short relaxation time, from which they transit to the top of the valence band and emit fluorescence. Generate. The direct transition type semiconductor has almost no change in electron momentum during this transition, so that the quantum efficiency of fluorescence generation is higher than that of the indirect transition type and is almost the same.
Since it is 100% and the wavelength range of fluorescence is narrow, it has a very advantageous advantage for the present invention.
前述のAlGaAsはそのAlとGaとの成分比を選択すること
により、レーザ活性物質の光励起効率が高い波長範囲の
蛍光を発生させることができ、かつこの成分範囲内で直
接遷移形のエネルギバンド構造をもっている。By selecting the component ratio of Al and Ga, AlGaAs described above can generate fluorescence in the wavelength range in which the photoexcitation efficiency of the laser active material is high, and within this component range, a direct transition type energy band structure. I have
以下、図を参照しながら本発明の実施例を説明する。
第1図は前の第5図に対応して本発明による固体レーザ
装置の概要構成を例示するもので、対応部分には同じ符
号が付けられている。以下において、前と重複する部分
の説明は一切省略するものとする。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 exemplifies a schematic structure of a solid-state laser device according to the present invention corresponding to FIG. 5 described above, and corresponding parts are designated by the same reference numerals. In the following, the description of the same parts as those described above will be omitted.
第1図に示された実施例では、レーザ媒質1は大出力
の固体レーザ装置に適するいわゆるスラブ形であって、
同図(b)の断面からわかるようにやや偏平な方形断面
をもつ板状体に形成され、その材質としては例えばNd3+
ドープのYAGが用いられる。前述のように、このレーザ
媒質は第4図(a)に示す波長特性の光励起効率ηを有
する。In the embodiment shown in FIG. 1, the laser medium 1 is a so-called slab type suitable for a high-power solid-state laser device,
As can be seen from the cross section of FIG. 2B, it is formed into a plate-like body having a slightly flat rectangular cross section, and its material is, for example, Nd 3+.
Doped YAG is used. As described above, this laser medium has the optical excitation efficiency η of the wavelength characteristic shown in FIG.
かかるスラブ形のレーザ媒質1を用いる固体レーザ装
置では、同図(a)に示されたようにレーザ媒質1の1
対の斜端面1aから出入するレーザ光LLはその内部で図の
上下の1対の板面により全反射されながらジグザグ状に
進行し、これによって、レーザ媒質1のもついわゆる熱
レンズ効果が減少される。さらに、同図(b)に示すよ
うに、レーザ媒質1の図の左右の側面には熱絶縁1bが施
され、その断面の左右方向の温度勾配をなくして熱レン
ズ効果を一層減少させるようになっている。In the solid-state laser device using the slab type laser medium 1, as shown in FIG.
The laser light LL entering and exiting from the pair of oblique end faces 1a travels in a zigzag shape while being totally reflected by the pair of upper and lower plate surfaces in the figure, thereby reducing the so-called thermal lens effect of the laser medium 1. It Further, as shown in FIG. 3B, thermal insulation 1b is applied to the left and right side surfaces of the laser medium 1 in the figure to eliminate the temperature gradient in the left and right direction of the cross section and further reduce the thermal lens effect. Has become.
このスラブ形のレーザ媒質1にその1対の板面側から
励起光ELを与えるため、この実施例ではその上下に本発
明による光変換手段10がそれぞれ図示のように設けら
れ、この例では光変換手段10はAlGaAsの薄い層ないしは
膜を1対のガラス板間に挟持した板状体に形成され、適
宜な手段で閉鎖容器5の第1図(a)の左右の側壁に固
定される。この1対の光変換手段10に照射光IRをそれぞ
れ与えるため、それらに対応してこの例では照射光源6
が閉鎖容器5の上下部分にそれぞれ配置され、閉鎖容器
5内に通流される冷却媒体CMによって冷却される。この
照射光源6としては、種々の高出力の放電灯や白熱灯の
ほか前述のように太陽光を利用することもできるが、こ
の実施例では第4図(b)の波長特性の発光強度Iの分
布をもつクリプトン放電灯が用いられるものとする。In order to apply the pumping light EL to the slab-shaped laser medium 1 from the pair of plate surfaces, the light converting means 10 according to the present invention are provided above and below the slab-shaped laser medium 1 as shown in FIG. The conversion means 10 is formed in a plate-like body in which a thin layer or film of AlGaAs is sandwiched between a pair of glass plates, and is fixed to the left and right side walls of the closed container 5 in FIG. Irradiation light IR is given to each of the pair of light conversion means 10, and accordingly, in this example, the irradiation light source 6 is provided.
Are arranged in the upper and lower parts of the closed container 5, and are cooled by the cooling medium CM flowing in the closed container 5. As the irradiation light source 6, in addition to various high-power discharge lamps and incandescent lamps, sunlight can be used as described above, but in this embodiment, the emission intensity I of the wavelength characteristic of FIG. 4 (b) is used. A krypton discharge lamp with a distribution of shall be used.
さて、第4図(a)の光励起効率ηをもつレーザ媒質
1に対しては、図の範囲A内の波長とくに光励起効率η
の最大ピークがある810nmの波長をもつ蛍光を発する光
変換手段10が有利であるから、光変換手段10用の半導体
としてのAlGaAs中のAlとGaの組成比をこれに適合させる
ように選択する。いまAlの成分比をxとすると、AlxGa
1-xAs半導体のエネルギギャップEgは次式で表される。Now, for the laser medium 1 having the photoexcitation efficiency η shown in FIG. 4 (a), the wavelength within the range A in the figure, particularly the photoexcitation efficiency η
Since the light conversion means 10 that emits fluorescence having a wavelength of 810 nm having the maximum peak of is advantageous, the composition ratio of Al and Ga in AlGaAs as a semiconductor for the light conversion means 10 is selected to match this. . Assuming that the Al component ratio is x, Al x Ga
The energy gap Eg of a 1-x As semiconductor is expressed by the following equation.
Eg=1.424+1.247x(eV) (2) 前述の(1)式の波長λを810nmとするエネルギギャ
ップEgは1.53eVであるから、これを上の(2)式に入れ
るとx=0.086となり、この組成をAlGaAs半導体に持た
せることにより、Nd3+ドープのYAGを用いたレーザ媒質
1の最大光励起効率に適合した波長の蛍光をレーザ媒質
10に発生させることができ、かつAlの成分比が低い組成
領域のAlGaAsは前述の直接遷移形半導体である。もっと
も、これから発生される蛍光の波長λには実際には若干
の温度依存性があるが、その程度はふつう0.3nm/℃であ
るから、第4図(a)の波長範囲の幅の100nmと比べて
蛍光の波長の変化幅は充分小さく実用上あまり問題はな
い。Eg = 1.424 + 1.247x (eV) (2) Since the energy gap Eg of the above formula (1) where wavelength λ is 810 nm is 1.53eV, if this is put into the above formula (2), x = 0.086. By providing this composition to the AlGaAs semiconductor, the fluorescence of the wavelength suitable for the maximum photoexcitation efficiency of the laser medium 1 using Nd 3+ doped YAG is generated.
AlGaAs in the composition region that can be generated in 10 and has a low Al component ratio is the above-mentioned direct transition type semiconductor. However, the wavelength λ of the fluorescence emitted from this has a slight temperature dependence in practice, but since the degree is usually 0.3 nm / ° C, it is 100 nm, which is the width of the wavelength range in FIG. 4 (a). In comparison, the variation width of the fluorescence wavelength is sufficiently small and there is no problem in practical use.
以上のように構成された本発明による固体レーザ装置
では、照射光源6からの照射光IR中の第4図(b)の範
囲AおよびB内の波長成分を光変換手段10の半導体が吸
収して、第4図(a)の光励起効率ηの最高ピークに対
応する波長の蛍光に変換してレーザ媒質Iに与えること
ができる。光変換手段10は従来利用できなかった範囲B
の波長成分をも有効利用し、かつそれをレーザ活性物質
の最高光励起効率に対応する波長の蛍光に変換するの
で、固体レーザ装置の光励起効率を従来よりも格段に向
上することができる。また、光変換手段10は従来の半導
体レーザと異なり、その全面が照射光IRを励起光ELとし
ての蛍光に変換する役目を果たすので、大きなエネルギ
の励起光をレーザ媒質Iに与えることができ、従って本
発明により大出力の固体レーザ装置を提供することがで
きる。In the solid-state laser device according to the present invention configured as described above, the semiconductor of the light conversion means 10 absorbs the wavelength components in the range A and B of FIG. 4 (b) in the irradiation light IR from the irradiation light source 6. Then, the fluorescence can be converted into fluorescence having a wavelength corresponding to the highest peak of the photoexcitation efficiency η in FIG. The light conversion means 10 cannot be used in the range B
Since the wavelength component of is also effectively used and is converted into fluorescence having a wavelength corresponding to the maximum photoexcitation efficiency of the laser active material, the photoexcitation efficiency of the solid-state laser device can be remarkably improved. Moreover, unlike the conventional semiconductor laser, the entire surface of the light conversion means 10 serves to convert the irradiation light IR into the fluorescence as the excitation light EL, so that excitation light of large energy can be given to the laser medium I, Therefore, the present invention can provide a high-power solid-state laser device.
第2図は単層の半導体を用いた光変換手段10の構成例
を示すもので、同図(a)に製作中の状態が,同図
(b)に完成時の状態がそれぞれ一部拡大断面で示され
ている。同図(a)に示すように、まずGaAs基板11上に
上述の組成のAlGaAs層14を例えば液相エピタキシャル法
により例えば0.3mmの厚みに成長させ、GaAs基板11の部
分を研磨またはエッチング法により除去した上で所定寸
法に形状を整え、同図(b)のようにガラス等の透明板
10aの間に並べて挟持させて光変換手段10を構成する。FIG. 2 shows an example of the structure of the light conversion means 10 using a single-layer semiconductor. A state during manufacture is shown in FIG. 2 (a) and a state at the time of completion is partially enlarged in FIG. 2 (b). Shown in cross section. As shown in FIG. 3A, first, the AlGaAs layer 14 having the above-described composition is grown on the GaAs substrate 11 to have a thickness of, for example, 0.3 mm by the liquid phase epitaxial method, and the portion of the GaAs substrate 11 is polished or etched. After removing it, the shape is adjusted to a predetermined size, and a transparent plate such as glass as shown in FIG.
The light conversion means 10 is formed by arranging and sandwiching between 10a.
第3図はダブルヘテロ接合構造をもつ複合層の半導体
を用いた光変換手段10を第2図と同じ要領で示すもので
ある。同図(a)に示すように、GaAs基板11上にまずx
=0.2の組成をもつAlAs層12を液相エピタキシャル法に
より厚目に成長させた後に、気相エピタキシャル法によ
りx=0.45の組成のAlGaAs層13,x=0.08の組成のAlGaAs
層14およびx=0.45の組成のAlGaAs層15を順次成長さ
せ、AlGaAs層12〜15の全体の厚みを前と同じ0.3mm程度
とした上でGaAs基板12を前と同様に除去する。この複合
半導体層を1対の透明板10aおよび10b間に挟持して光変
換手段10を構成するのも第2図の場合と同様である。FIG. 3 shows an optical conversion means 10 using a semiconductor of a composite layer having a double heterojunction structure in the same manner as in FIG. First, as shown in FIG.
= 0.2 thick AlAs layer 12 was grown thick by liquid phase epitaxial method, then AlGaAs layer 13 with x = 0.45 and AlGaAs layer with x = 0.08 by vapor phase epitaxial method.
The layer 14 and the AlGaAs layer 15 having a composition of x = 0.45 are successively grown, the total thickness of the AlGaAs layers 12 to 15 is set to about 0.3 mm which is the same as before, and the GaAs substrate 12 is removed as before. This composite semiconductor layer is sandwiched between a pair of transparent plates 10a and 10b to form the light conversion means 10, as in the case of FIG.
以上のように構成された複合半導体層は、図でハッチ
ングを施されたAlGaAs層14とその上下のAl成分比の異な
るAlGaAs層13および15の間にそれぞれヘテロ接合が形成
されたダブルヘテロ接合構造をもち、照射光を例えば透
明板10aの側から受けたときその吸収によって複合半導
体層内に発生する励起電子ないしキャリアがエネルギギ
ャップの小なAlGaAs層14に集められ、その価電帯への遷
移の際に発せられる蛍光が例えば透明板10b側から励起
光としてレーザ媒質1に与えられる。この励起電子のAl
GaAs層14への集中は複合半導体層内の各層間に電位差を
適宜に与えることによって促進することも可能である。The composite semiconductor layer configured as described above has a double heterojunction structure in which a heterojunction is formed between the AlGaAs layer 14 hatched in the figure and the AlGaAs layers 13 and 15 having different Al component ratios above and below the AlGaAs layer 14. Excited electrons or carriers generated in the composite semiconductor layer due to absorption of irradiated light from the transparent plate 10a side are collected in the AlGaAs layer 14 having a small energy gap and transition to the valence band thereof. The fluorescence emitted at this time is given to the laser medium 1 as excitation light from the transparent plate 10b side, for example. This excited electron Al
The concentration on the GaAs layer 14 can be promoted by appropriately providing a potential difference between the layers in the composite semiconductor layer.
この第3図の実施例における複合半導体層は、蛍光発
生上の量子効率は第2図の場合ほど必ずしも良好ではな
いが、実際面ではそれよりもAlGaAs層14のAl成分の管理
が容易なので、光変換手段用半導体の製作上有利な利点
を有する。The quantum efficiency of the composite semiconductor layer in the embodiment of FIG. 3 in terms of fluorescence generation is not necessarily as good as in the case of FIG. 2, but in practice, the Al component of the AlGaAs layer 14 is easier to manage, so This has an advantageous advantage in manufacturing a semiconductor for a light conversion means.
以上説明した実施例からも推察されるように、本発明
はかかる例に限らず種々の態様で実施をすることができ
る。As can be inferred from the embodiments described above, the present invention is not limited to such examples and can be implemented in various modes.
以上説明したとおり本発明によれば、固体のレーザ媒
質中のレーザ活性物質を光励起してレーザ発光させる固
体レーザ装置において、照射光を吸収してレーザ活性物
質の光励起に適する波長の蛍光を発する半導体からなる
光変換手段を設け、この光変換手段に照射光を与えてそ
れから発せられる蛍光を励起光としてレーザ媒質中のレ
ーザ活性物質を光励起するようにしたので、照射光中の
従来レーザ媒質のレーザ活性物質の光励起効率が低くて
ほとんど吸収できなかった範囲の波長成分をも光変換手
段の半導体に吸収させ、この半導体を種類や組成をレー
ザ活性物質に適合させることにより、この吸収した照射
光を光励起効率が良好な波長の蛍光に変換して励起光と
してレーザ媒質に与えることができ、この照射光の波長
成分の有効利用とレーザ活性物質の光励起効率の改善と
によって、固体レーザ装置の光励起効率を従来よりも格
段に向上することができる。As described above, according to the present invention, in a solid-state laser device that optically excites a laser active substance in a solid laser medium to emit laser light, a semiconductor that absorbs irradiation light and emits fluorescence having a wavelength suitable for photoexcitation of the laser active substance. Since the light conversion means is composed of the laser light and the irradiation light is applied to the light conversion means to excite the laser-active substance in the laser medium by using the fluorescence emitted from the light conversion means as excitation light, the laser light of the conventional laser medium in the irradiation light is emitted. The semiconductor of the light conversion means is made to absorb the wavelength component in the range that could hardly be absorbed due to the low photoexcitation efficiency of the active substance, and the type and composition of this semiconductor are adapted to the laser active substance, whereby the absorbed irradiation light is absorbed. It can be converted into fluorescence having a wavelength with good photoexcitation efficiency and given to the laser medium as excitation light, and the wavelength component of this irradiation light can be effectively used and read. By the improvement of excitation efficiency The active substance, the excitation efficiency of the solid-state laser apparatus can be significantly improved than before.
また、本発明における光変換手段はその全面が照射光
を光励起用の蛍光に変換する役目を果たすので、光変換
手段から大きなエネルギをもつ励起光をレーザ媒質に与
えることができ、かつこの励起光が効率よくレーザ活性
物質の光励起に使われるので、レーザ媒質内の励起光に
よる発熱を従来より格段に減少させることができ、これ
らの複合効果により大出力の固体レーザ装置を提供する
ことが本発明の実施により可能になる。Further, since the entire surface of the light converting means in the present invention serves to convert the irradiation light into fluorescence for photoexcitation, it is possible to give excitation light having a large energy to the laser medium from the light converting means, and Is efficiently used for photoexcitation of the laser active material, heat generation due to the excitation light in the laser medium can be significantly reduced as compared with the prior art, and it is possible to provide a solid-state laser device with a large output by the combined effect of the present invention. It becomes possible by carrying out.
さらに、光変換手段用に直接遷移形の半導体を用いる
ことにより、上述の効果を一層高めることができる。Further, by using a direct transition type semiconductor for the light conversion means, the above-mentioned effect can be further enhanced.
第1図から第4図までが本発明に関し、第1図は本発明
による固体レーザ装置の実施例の縦および横断面図、第
2図および第3図は光変換手段のそれぞれ異なる実施例
の一部拡大断面図、第4図はレーザ活性物質の光励起効
率および照射光の光強度分布の波長特性を例示する線図
である。第5図は従来の代表的な固体レーザ装置の縦お
よび横断面図である。図において、 1:レーザ媒質、2:部分反射鏡、3:全反射鏡、5:固体レー
ザ装置の閉鎖容器、6:照射光源、10:光変換手段、10a,1
0b:光変換手段用透明板、11:GaAs基板、12,13,15:AlGaA
s層、14:光変換手段用半導体としてのAlGaAs層、EL:励
起光、I:照射光の光強度、IR:照射光、LL:レーザ光、
λ:波長、η:レーザ活性物質の光励起効率、である。1 to 4 relate to the present invention, FIG. 1 is a longitudinal and transverse sectional view of an embodiment of a solid-state laser device according to the present invention, and FIGS. 2 and 3 are of different embodiments of a light converting means. Partially enlarged cross-sectional view, FIG. 4 is a diagram illustrating the photoexcitation efficiency of the laser active substance and the wavelength characteristic of the light intensity distribution of the irradiation light. FIG. 5 is a vertical and horizontal sectional view of a typical conventional solid-state laser device. In the figure, 1: laser medium, 2: partial reflection mirror, 3: total reflection mirror, 5: closed container of solid-state laser device, 6: irradiation light source, 10: light conversion means, 10a, 1
0b: Transparent plate for light conversion means, 11: GaAs substrate, 12, 13, 15: AlGaA
s layer, 14: AlGaAs layer as a semiconductor for light conversion means, EL: excitation light, I: light intensity of irradiation light, IR: irradiation light, LL: laser light,
λ: wavelength, η: photoexcitation efficiency of laser active substance.
Claims (1)
励起してレーザ発光させる固体レーザ装置において、 照射光を吸収してレーザ活性物質の光励起に適する波長
の蛍光を発する半導体からなる光変換手段を設け、光変
換手段に照射光を与えてそれから発せられる蛍光を励起
光としてレーザ媒質中のレーザ活性物質を光励起するよ
うにしたことを特徴とする固体レーザ装置。1. A solid-state laser device for optically exciting a laser active substance in a solid laser medium to emit laser light, wherein the light conversion means is composed of a semiconductor which absorbs irradiation light and emits fluorescence having a wavelength suitable for photoexcitation of the laser active substance. The solid-state laser device is characterized in that irradiation light is provided to the light conversion means, and fluorescence emitted from the light conversion means is used as excitation light to optically excite the laser active substance in the laser medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27832888A JPH0821743B2 (en) | 1988-11-02 | 1988-11-02 | Solid-state laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27832888A JPH0821743B2 (en) | 1988-11-02 | 1988-11-02 | Solid-state laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02123776A JPH02123776A (en) | 1990-05-11 |
JPH0821743B2 true JPH0821743B2 (en) | 1996-03-04 |
Family
ID=17595798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27832888A Expired - Lifetime JPH0821743B2 (en) | 1988-11-02 | 1988-11-02 | Solid-state laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0821743B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4713271B2 (en) * | 2005-08-10 | 2011-06-29 | 株式会社リコー | LASER OSCILLATION METHOD, LASER DEVICE, AND LASER DEVICE ARRAY |
JP4955419B2 (en) * | 2007-02-27 | 2012-06-20 | 有限会社岡本光学加工所 | White light excitation laser device |
JP6497344B2 (en) * | 2016-03-16 | 2019-04-10 | トヨタ自動車株式会社 | Solar pumped laser equipment |
JP6547705B2 (en) * | 2016-07-28 | 2019-07-24 | トヨタ自動車株式会社 | Fluorescence confinement structure of solar light pumped laser |
-
1988
- 1988-11-02 JP JP27832888A patent/JPH0821743B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02123776A (en) | 1990-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7693192B2 (en) | Mode-locked laser device | |
US5351251A (en) | Laser apparatus | |
Konno et al. | 80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd: YAG rod laser | |
US4701928A (en) | Diode laser pumped co-doped laser | |
US7801187B2 (en) | Mode-locked laser device | |
JPH06505369A (en) | External cavity semiconductor laser system | |
US5841805A (en) | Three-level laser system | |
Erhard et al. | Pumping schemes for multi-kW thin disk lasers | |
JP4407039B2 (en) | Solid-state laser device and solid-state laser device system | |
US4956843A (en) | Simultaneous generation of laser radiation at two different frequencies | |
US5117432A (en) | Vanadium-pumped titanium x-ray laser | |
JPH0821743B2 (en) | Solid-state laser device | |
Garnov et al. | Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media | |
Saiki et al. | Effective fluorescence lifetime and stimulated emission cross-section of Nd/Cr: YAG ceramics under CW lamplight pumping | |
US20040095975A1 (en) | Multiple-disk laser system | |
US4301426A (en) | Solid state laser and material | |
JPH04137573A (en) | Composite slab laser medium and laser device | |
US8315283B2 (en) | Wavelength selectable laser systems and related methods | |
JPH07321394A (en) | Crystal for solid state laser | |
JPH06120586A (en) | Solid state laser equipment | |
Kushnir et al. | Influence of the resonator geometry on the output power of a laser with several active elements | |
JP2001223423A (en) | Laser device | |
Naboĭkin et al. | Stimulated emission of light from doped molecular crystals at 4.2° K | |
Hwang et al. | An analytical model for longitudinally pumped continuous‐wave laser | |
JP2003298164A (en) | Laser oscillating method and laser device |