JPH1172443A - Automatic macroscopic inspection apparatus - Google Patents

Automatic macroscopic inspection apparatus

Info

Publication number
JPH1172443A
JPH1172443A JP9234505A JP23450597A JPH1172443A JP H1172443 A JPH1172443 A JP H1172443A JP 9234505 A JP9234505 A JP 9234505A JP 23450597 A JP23450597 A JP 23450597A JP H1172443 A JPH1172443 A JP H1172443A
Authority
JP
Japan
Prior art keywords
light
illumination
image
angle
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9234505A
Other languages
Japanese (ja)
Other versions
JP3981895B2 (en
Inventor
Toshiaki Kitamura
俊昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23450597A priority Critical patent/JP3981895B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to PCT/JP1998/003076 priority patent/WO1999002977A1/en
Priority to AU81274/98A priority patent/AU8127498A/en
Priority to US09/462,279 priority patent/US6512578B1/en
Priority to KR1020007000043A priority patent/KR20010015544A/en
Priority to TW090106450A priority patent/TWI226428B/en
Priority to TW087111213A priority patent/TW449657B/en
Publication of JPH1172443A publication Critical patent/JPH1172443A/en
Application granted granted Critical
Publication of JP3981895B2 publication Critical patent/JP3981895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an automatic macroscopic inspection apparatus by which the macrocopic inspection of various objects to be inspected can be performed with good efficiency while an illumination device, an imaging device and the like are kept fixed. SOLUTION: An automatic macroscopic inspection apparatus is constituted of an illumination optical system 100 which is fixed, arranged and installed at a first prescribed angle with reference to a wafer 3 and by which illumination light comprising nearly parallel luminous fluxes is irradiated toward the whole face of the wafer 3, of an imaging element 6 which is fixed, arranged and installed at a second prescribed angle with reference to the wafer 3, which receives diffracted light or scattered light from the wafer 3 and which images the image of the wafer 3 and of an image processor 7 which fetches an image signal obtained by the imaging element 6 so as to perform an image processing operation and which performs a macroscopic inspection. It is provided with a plurality of interference filters by which the wavelength of the illumination light from the illumination optical system 100 is set so as to be variable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶製造用ガラス
基板や、IC製造用のウエハ等の表面検査を行う装置に
関し、特に、いわゆるマクロ検査と称される被検査物の
表面全体の検査を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting the surface of a glass substrate for manufacturing a liquid crystal or a wafer for manufacturing an IC, and more particularly to an apparatus for inspecting the entire surface of an object to be inspected, which is called a macro inspection. Related to the device to perform.

【0002】[0002]

【従来の技術】液晶製造用ガラス基板や、IC製造用の
ウエハ等(以下、これらを被検査物とも称する)の表面
のマクロ検査は、基板、ウエハ等の表面のキズ、レジス
ト塗布むら、フォトリソグラフィー工程における欠陥な
どを、被検査物の表面全体を観察して検査を行うもので
ある。従来のマクロ検査は、スポットライト状の白色拡
散光源を用いて、被検査物を回転させながら検査員が目
視判断して検査していた。
2. Description of the Related Art Macro inspection of the surface of a glass substrate for manufacturing a liquid crystal or a wafer for manufacturing an IC (hereinafter, also referred to as an object to be inspected) is performed by scratching the surface of the substrate or wafer, unevenness in resist coating, photo The inspection is performed by observing the entire surface of the inspection object for a defect or the like in the lithography process. In the conventional macro inspection, an inspector visually inspects and inspects while rotating an object to be inspected using a spotlight-like white diffused light source.

【0003】しかしながら、検査員による目視検査で
は、検査員毎の技術レベル差、および検査員の体調等に
よる検査レベルのばらつきがあり、安定した検査結果が
得にくい、効率が良くない等という問題がある。また、
液晶製造用ガラス基板、IC製造用のウエハ等の製造に
際しては微細な異物の付着等による表面汚染を避けなけ
ればならいなので、発塵要因となる人間による検査工程
はできるかぎり避けるべきである。
However, in the visual inspection by inspectors, there is a problem that there is a difference in technical level between the inspectors and a variation in the inspection levels due to the physical condition of the inspectors, so that it is difficult to obtain a stable inspection result and the efficiency is not good. is there. Also,
When manufacturing glass substrates for liquid crystal manufacturing, wafers for manufacturing ICs, and the like, surface contamination due to the attachment of fine foreign substances and the like must be avoided. Therefore, inspection steps by humans that cause dust generation should be avoided as much as possible.

【0004】このようなことから、マクロ検査工程を自
動化することが提案されており、このようなものとし
て、特公平6−8789号公報に開示の装置がある。こ
の装置では、ウエハ表面に光を照射し、この表面からの
反射光をITVカメラで受光して、被検査物の表面全体
の反射光画像を取得し、このようして得られた反射光画
像を予め測定した正常検査物の反射光画像と比較する画
像処理を行って被検査物のマクロ検査を行うようになっ
ている。この装置においては、ウエハ表面に対する光の
照射角度を種々変更して検査できるように、ITVカメ
ラは固定したままで、ウエハ表面角度および照明角度を
可変設定できるようになっている。
[0004] For this reason, it has been proposed to automate the macro inspection process. As such, there is an apparatus disclosed in Japanese Patent Publication No. 6-8789. This apparatus irradiates the wafer surface with light, receives the reflected light from the surface with an ITV camera, acquires a reflected light image of the entire surface of the inspection object, and obtains the reflected light image thus obtained. Is compared with a reflected light image of a normal inspection object measured in advance to perform a macro inspection of the inspection object. In this apparatus, the wafer surface angle and the illumination angle can be variably set while the ITV camera is fixed so that the inspection can be performed while changing the irradiation angle of light on the wafer surface in various ways.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな自動マクロ検査装置の場合には、ウエハ表面角度お
よび照明角度を可変設定させる機構が必要であり、この
ような機構の作動に際して可動部分からの発塵が生じて
被検査物表面を汚染する可能性があるという問題があ
る。なお、上記公報に開示の装置は、被検査物の表面か
ら直接反射される光を用いてマクロ検査を行うようにな
っており、被検査物表面への照射光の入射角度と反射光
の反射角度が等しくなる位置にカメラが配設される。
However, in such an automatic macro inspection apparatus, a mechanism for variably setting the wafer surface angle and the illumination angle is required. There is a problem that dust may be generated and contaminate the surface of the inspection object. Note that the apparatus disclosed in the above publication performs macro inspection using light directly reflected from the surface of the inspection object, and determines the incident angle of the irradiation light on the inspection object surface and the reflection of the reflected light. A camera is provided at a position where the angles are equal.

【0006】しかし、最近においては、被検査物の表面
の繰り返しパターンに応じて発生する回折光や、散乱光
等を検査対象とすることが考えられている。このような
場合には、検査対象となる反射光の反射角度は、被検査
物のパターンピッチ等に応じて変化するため、これら各
種の角度に対応できるように、照明装置の照明角度、撮
像カメラの受光角度を調整する必要がある。このため、
この場合にも角度調整機構が必要であり、この機構から
の発塵による被検査物表面の汚染等が問題となる。
However, recently, it has been considered that diffracted light, scattered light, and the like generated according to the repetitive pattern on the surface of the inspection object are to be inspected. In such a case, the reflection angle of the reflected light to be inspected changes according to the pattern pitch of the inspection object, and so on. Needs to be adjusted. For this reason,
Also in this case, an angle adjusting mechanism is necessary, and contamination of the surface of the inspection object by dust generated from this mechanism becomes a problem.

【0007】本発明はこのような問題に鑑みたもので、
照明角度、被検査物の表面角度、受光装置もしくは撮像
装置の受光角度等を可変調整することなく、すなわち、
照明装置、撮像装置等を固定したまま、さまざまな被検
査物のマクロ検査を効率よく行うことができるような自
動マクロ検査装置を提供することを目的とする。
The present invention has been made in view of such a problem.
Without variably adjusting the illumination angle, the surface angle of the inspection object, the light receiving angle of the light receiving device or the imaging device, that is,
An object of the present invention is to provide an automatic macro inspection apparatus capable of efficiently performing a macro inspection of various inspection objects while fixing a lighting device, an imaging device, and the like.

【0008】[0008]

【課題を解決するための手段】このような目的達成のた
め、本発明に係る自動マクロ検査装置は、被検査物に対
して第1の所定角度で固定配設され、被検査物の全面に
向かってほぼ平行な光束を有した照明光を照射する照明
装置と、被検査物に対して第2の所定角度で固定配設さ
れ、被検査物から回折光もしくは散乱光を受光して被検
査物の像を撮像する撮像手段と、この撮像手段により得
られた画像信号を取り込み、画像処理を行って被検査物
のマクロ検査を行う画像処理手段と、照明装置からの照
明光の波長を可変設定する照明波長設定手段とを備えて
構成される。
In order to achieve the above object, an automatic macro inspection apparatus according to the present invention is fixedly disposed at a first predetermined angle with respect to an object to be inspected, and is provided over the entire surface of the object to be inspected. An illumination device for irradiating illumination light having a light beam substantially parallel to the inspection object; and an illumination device fixedly disposed at a second predetermined angle with respect to the inspection object, receiving diffracted light or scattered light from the inspection object and inspecting the inspection object. Image pickup means for picking up an image of an object, image processing means for taking in an image signal obtained by the image pickup means, performing image processing and performing macro inspection of the object to be inspected, and varying the wavelength of illumination light from the illumination device And an illumination wavelength setting means for setting.

【0009】このような構成の自動マクロ検査装置の場
合には、照明波長設定手段により照明光の波長を可変設
定できるので、被検査物から射出される回折光および散
乱光の方向を結像撮影手段の受光方向に合致するように
波長を設定すれば、効率の良いマクロ検査が行える。こ
のため、このマクロ検査装置の場合には、照明装置およ
び結像撮影手段を固定することができ、従来の装置のよ
うにこれらの向きを変える可動機構が不要であるので、
余計な発塵源がなくなり、被検査物の汚染が抑えられ
る。
In the case of the automatic macro inspection apparatus having such a configuration, since the wavelength of the illumination light can be variably set by the illumination wavelength setting means, the directions of the diffracted light and the scattered light emitted from the inspection object are imaged and photographed. If the wavelength is set so as to match the light receiving direction of the means, efficient macro inspection can be performed. For this reason, in the case of this macro inspection device, the illumination device and the imaging device can be fixed, and a movable mechanism for changing the direction of the device is unnecessary as in the conventional device.
An unnecessary dust source is eliminated, and contamination of the inspection object is suppressed.

【0010】なお、照明装置を、拡散光源およびこれか
らの光をほぼ平行な光束に変換する平行変換手段から構
成するのが好ましく、この場合、平行変換手段を、拡散
光源が焦点位置になるようにして配設された凹面鏡から
構成するのが好ましい。このように凹面鏡を用いること
により白色光を用いた照明の場合でも色収差発生の問題
がなくなる。また、同様な理由から、撮像手段を、被検
査物からの回折光もしくは散乱光を収束させる凹面鏡
と、この凹面鏡により収束された光から被検査物の像を
撮影するカメラ手段とから構成するのが好ましい。
It is preferable that the illuminating device is composed of a diffusion light source and parallel conversion means for converting light from the light source into a substantially parallel light beam. In this case, the parallel conversion means is arranged so that the diffusion light source is located at a focal position. It is preferable to constitute the concave mirror arranged. The use of the concave mirror eliminates the problem of chromatic aberration even in the case of illumination using white light. For the same reason, the imaging means is constituted by a concave mirror for converging diffracted light or scattered light from the object to be inspected, and a camera means for taking an image of the object from the light converged by the concave mirror. Is preferred.

【0011】また、照明装置を、ライン状の拡散光源
と、このライン状拡散光源のラインに沿って対向配設さ
れたシリンドリカルレンズとから構成することもでき、
この場合には、シリンドリカルレンズによりライン状拡
散光源からの光を少なくとも一方向にほぼ平行となる光
束を作り出して被検査物を照明する。
Further, the illumination device may be composed of a linear diffused light source and cylindrical lenses opposed to each other along the line of the linear diffused light source.
In this case, the inspection object is illuminated by using the cylindrical lens to generate a light beam that is substantially parallel to the light from the linear diffusion light source in at least one direction.

【0012】ここで、照明波長設定手段による波長設定
は、次のようにして行われる。すなわち、上記第1の所
定角度が被検査物の表面に直角な線に対して角度θiで
あり、上記第2の所定角度が前記被検査物の表面に直角
な線に対して角度θdであるときに、照明光の波長λ
が、次式(1)を満足するように設定される。
Here, the wavelength setting by the illumination wavelength setting means is performed as follows. That is, the first predetermined angle is an angle θi with respect to a line perpendicular to the surface of the inspection object, and the second predetermined angle is an angle θd with respect to a line perpendicular to the surface of the inspection object. Sometimes the wavelength λ of the illumination light
Is set so as to satisfy the following equation (1).

【0013】[0013]

【数1】 (sinθi − sinθd) = n・λ/p ・・・(1) 但し、n: 撮像対象となる回折光の次数 p: 被検査物の表面のパターンピッチ(Sin θi−sin θd) = n · λ / p (1) where n: the order of diffracted light to be imaged p: pattern pitch on the surface of the inspection object

【0014】このように照明光の波長λを設定すれば、
撮像手段により効率良くn次の回折光を捉えて、この回
折光を用いたマクロ検査を効率良く行うことができる。
By setting the wavelength λ of the illumination light in this way,
The imaging means can efficiently capture the nth-order diffracted light and efficiently perform a macro inspection using the diffracted light.

【0015】なお、回折光ではなく散乱光を撮像手段に
より捉えてマクロ検査を行うときには照明波長設定手段
により波長設定は次のようにして行われる。すなわち、
第1の所定角度が被検査物の表面に直角な線に対して角
度θiであり、第2の所定角度が被検査物の表面に直角
な線に対して角度θdであり、照明波長設定手段により
設定される照明光の波長をλとしたときに、次式(2)
により決まる角度θd’と、次式(3)により決まる角
度θd”とに対して、 θd’<θd<θd”となるよ
うな照明光の波長λが照明波長設定手段により設定され
る。
When the macro inspection is performed by capturing the scattered light instead of the diffracted light by the imaging means, the wavelength is set by the illumination wavelength setting means as follows. That is,
The first predetermined angle is an angle θi with respect to a line perpendicular to the surface of the object, and the second predetermined angle is an angle θd with respect to a line perpendicular to the surface of the object. Where λ is the wavelength of the illumination light set by the following equation (2)
Is set by the illumination wavelength setting means so that θd ′ <θd <θd ″ with respect to the angle θd ′ determined by the following equation and the angle θd ″ determined by the following equation (3).

【0016】[0016]

【数2】 (sinθi − sinθd’) = n・λ/p ・・・(2) (sinθi − sinθd”) = (n+1)・λ/p ・・・(3) 但し、n: 照明光から発生する回折光の次数 p: 被検査物の表面のパターンピッチ(Sin θi−sin θd ′) = n · λ / p (2) (sin θi−sin θd ″) = (n + 1) · λ / p (3) where n: generated from illumination light Order of diffracted light to be emitted p: Pattern pitch on the surface of the inspection object

【0017】このようにして照明光の波長λを設定すれ
ば、n次の回折光の方向と(n+1)次の回折光の方向
との間に撮像手段が位置し、撮像手段には回折光は入射
せず、散乱光のみが入手する。このため、この場合に
は、散乱光を用いたマクロ検査を効率良く行うことがで
きる。
If the wavelength λ of the illumination light is set in this way, the imaging means is located between the direction of the n-th order diffracted light and the direction of the (n + 1) th order diffracted light. Does not enter and only scattered light is obtained. Therefore, in this case, the macro inspection using the scattered light can be efficiently performed.

【0018】[0018]

【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。図1に本発明に係る自動マクロ検査
装置の第1の実施例に係る概略構成を示しており、この
装置は、ウエハ(被検査物)3の表面に平行光束の照明
光を照射する照明光学系100と、ウエハ3からの回折
光、散乱光等を受光する受光系101と、撮像素子(撮
像カメラ)6と、画像処理装置7とから構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 shows a schematic configuration according to a first embodiment of an automatic macro inspection apparatus according to the present invention. This apparatus is an illumination optical system that irradiates the surface of a wafer (inspection object) 3 with illumination light of a parallel light flux. The system 100 includes a light receiving system 101 that receives diffracted light, scattered light, and the like from the wafer 3, an imaging device (imaging camera) 6, and an image processing device 7.

【0019】照明光学系100は、光源部1と凹面鏡2
によって構成される。光源部1は凹面鏡2の焦点位置に
配設されており、光源部1からの拡散光は凹面鏡2によ
り平行光束に変換されてウエハ3に向かって照射され
る。このとき凹面鏡2はウエハ3の全面を照明可能な口
径を有し、平行光束の照明光によりウエハ3の全面が同
時に照明される。光源部1は白色光源であるハロゲンラ
ンプと、照明波長域を制限する干渉フィルタとを有す
る。この干渉フィルタは所定の波長域の光を透過するバ
ンドパスフィルタとして機能し、異なる波長域の光を透
過させる複数の干渉フィルタを外部から手動ないし遠隔
操作により切り替え、光源部1から照射される光の波長
選択が可能となっている。
The illumination optical system 100 includes a light source 1 and a concave mirror 2.
Composed of The light source unit 1 is disposed at the focal position of the concave mirror 2, and the diffused light from the light source unit 1 is converted into a parallel light beam by the concave mirror 2 and radiated toward the wafer 3. At this time, the concave mirror 2 has a diameter capable of illuminating the entire surface of the wafer 3, and the entire surface of the wafer 3 is simultaneously illuminated by the illumination light of the parallel light flux. The light source unit 1 includes a halogen lamp, which is a white light source, and an interference filter that limits an illumination wavelength range. The interference filter functions as a band-pass filter that transmits light in a predetermined wavelength range, and switches a plurality of interference filters that transmit light in different wavelength ranges from the outside by manual or remote control, and the light emitted from the light source unit 1 Wavelength can be selected.

【0020】受光系101は、上記のようにしてウエハ
3に照射されたときにウエハ3から発生する回折光もし
くは散乱光を受光するもので、ウエハ3の全面からの回
折光もしくは散乱光を取り込むに十分な口径を有した凹
面鏡4と、この凹面鏡4に入射して集光された光を結像
させる受光レンズ5とを有する。このとき受光レンズ5
は撮像素子6に結像させるようになっており、撮像素子
6によりウエハ3の回折光もしくは散乱光の像が撮影さ
れる。
The light receiving system 101 receives the diffracted light or the scattered light generated from the wafer 3 when the wafer 3 is irradiated as described above, and takes in the diffracted light or the scattered light from the entire surface of the wafer 3. A concave mirror 4 having a sufficient diameter, and a light receiving lens 5 for forming an image of the light incident on the concave mirror 4 and condensed. At this time, the light receiving lens 5
Is formed on the image pickup device 6, and the image of the diffracted light or the scattered light of the wafer 3 is photographed by the image pickup device 6.

【0021】このようにして撮像素子6により撮影され
たウエハの像は、画像処理装置7に送られ、ここに予め
撮影されて記憶されている正常ウエハの像と比較して、
表面欠陥検査等のマクロ検査が行われる。
The image of the wafer photographed by the image pickup device 6 in this manner is sent to the image processing device 7 and compared with the image of a normal wafer previously photographed and stored therein.
Macro inspection such as surface defect inspection is performed.

【0022】この例においては、光源部1は凹面鏡の前
側焦点位置付近に配設され、ウエハ3は凹面鏡4の後側
焦点面付近に配設されており、これにより、凹面反射鏡
を用いた反射型のテレセントリック光学系としている。
このように光学系に凹面鏡を用いているために色収差の
問題がなく、精度の高い検査が可能である。
In this example, the light source unit 1 is arranged near the front focal point of the concave mirror, and the wafer 3 is arranged near the rear focal plane of the concave mirror 4, whereby a concave reflecting mirror is used. It is a reflection type telecentric optical system.
Since the concave mirror is used in the optical system, there is no problem of chromatic aberration, and a highly accurate inspection can be performed.

【0023】このような構成の自動マクロ検査装置を用
いてウエハ3のマクロ検査を行う例を説明する。まず、
図示しない搬送機構により図2に示す検査位置にウエハ
3が搬送される。そして、上記のような配置に対応する
とともに検査の種類に対応して光源部1の干渉フィルタ
を選択する。この例では、照明光学系100および受光
系101は固定配設されており、照明光学系100から
ウエハ3への照明光の入射角度は常に一定であり、且つ
受光系101へ入射される回折光の回折角度も常に一定
であるため、所望の検査光が受光系101に入射するよ
うに干渉フィルタの選択を行うものである。
An example in which a macro inspection of the wafer 3 is performed by using the automatic macro inspection apparatus having the above configuration will be described. First,
The wafer 3 is transferred to the inspection position shown in FIG. 2 by a transfer mechanism (not shown). Then, the interference filter of the light source unit 1 is selected corresponding to the above arrangement and the type of inspection. In this example, the illumination optical system 100 and the light receiving system 101 are fixedly arranged, the incident angle of the illumination light from the illumination optical system 100 to the wafer 3 is always constant, and the diffracted light incident on the light receiving system 101 is Since the diffraction angle is always constant, the interference filter is selected so that the desired inspection light is incident on the light receiving system 101.

【0024】この点について図3および図4を参照して
詳しく説明する。図3に示すように、ウエハ3の表面に
基本ピッチpで繰り返しパターンが設けられている場合
には、照明光の入射角度θiと、回折光の射出角度θd
との関係は、次式(4)のようになる。
This will be described in detail with reference to FIGS. As shown in FIG. 3, when a repetitive pattern is provided at the basic pitch p on the surface of the wafer 3, the incident angle θi of the illumination light and the emission angle θd of the diffracted light
Is as shown in the following equation (4).

【0025】[0025]

【数3】 (sinθi − sinθd) = n・λ/p ・・・(4) 但し、λ: 照明光の波長 n: 撮像対象となる回折光の次数(Sinθi−sinθd) = n · λ / p (4) where λ: wavelength of illumination light n: order of diffracted light to be imaged

【0026】このため、ウエハ3に対して、入射角度が
角度θiとなる方向から平行光束照明が行われるように
照明光学系100を配設し、回折光の反射角度θdに対
向して凹面鏡4が位置するように受光系101を配設す
ると、照明光の波長がλのときに、受光系101により
n次の回折光を最も効率よく受光できることがわかる。
本例では、照明光学系100および受光系101を固定
配設しており、その配設位置に対して、n次の回折光が
最も効率良く受光系101により受光されるような波長
λとなるように干渉フィルタが選択される。
For this reason, the illumination optical system 100 is provided so that the parallel light beam illumination is performed on the wafer 3 from the direction in which the incident angle becomes the angle θi, and the concave mirror 4 faces the reflection angle θd of the diffracted light. It is understood that when the light receiving system 101 is disposed such that the light is located, the light receiving system 101 can most efficiently receive the n-th order diffracted light when the wavelength of the illumination light is λ.
In this example, the illumination optical system 100 and the light receiving system 101 are fixedly arranged, and the wavelength λ is such that the n-th order diffracted light is most efficiently received by the light receiving system 101 with respect to the arrangement position. The interference filter is selected as follows.

【0027】一方、受光系101により散乱光を受光し
てマクロ検査を行う場合もある。この場合には、図4に
示すように、n次の回折光の射出角度θd’と、(n+
1)次の回折光の射出角度θd”との間の位置に、受光
系101の凹面鏡4が位置するように、照明光の波長λ
が設定される。具体的には、n次の回折光の射出角度θ
d’は次式(5)で決まり、(n+1)次の回折光の射
出角度θd”は次式(6)で決まるため、受光系101
の凹面鏡4に入射する回折光の角度θdが、θd’<θ
d<θd” となるような照明光の波長λが照明波長設
定手段により設定される。
On the other hand, there is a case where the macro inspection is performed by receiving the scattered light by the light receiving system 101. In this case, as shown in FIG. 4, the emission angle θd ′ of the n-th order diffracted light and (n +
1) The wavelength λ of the illumination light is set so that the concave mirror 4 of the light receiving system 101 is located at a position between the emission angle θd ″ of the next diffracted light.
Is set. Specifically, the emission angle θ of the n-th order diffracted light
d ′ is determined by the following equation (5), and the emission angle θd ″ of the (n + 1) th-order diffracted light is determined by the following equation (6).
Angle θd of the diffracted light incident on the concave mirror 4 is θd ′ <θ
The illumination light wavelength λ such that d <θd ”is set by the illumination wavelength setting means.

【0028】[0028]

【数4】 (sinθi − sinθd’) = n・λ/p ・・・(5) (sinθi − sinθd”) = (n+1)・λ/p ・・・(6)(Sinθi−sinθd ′) = n · λ / p (5) (sinθi−sinθd ″) = (n + 1) · λ / p (6)

【0029】上記のように波長λの選択を行うと、この
波長の照明光がウエハ3に照射されたときに、図4に示
すように、n次の回折光は角度θd’の方向に射出さ
れ、(n+1)次の回折光はθd”の方向に射出され、
これらの間に受光系101の凹面鏡4が位置するため、
受光系101には回折光は入射せず、散乱光のみが受光
され、散乱光を用いた効率の良いマクロ検査が行われ
る。
When the wavelength λ is selected as described above, when the illumination light of this wavelength is applied to the wafer 3, the n-th order diffracted light is emitted in the direction of the angle θd 'as shown in FIG. Then, the (n + 1) th order diffracted light is emitted in the direction of θd ″,
Since the concave mirror 4 of the light receiving system 101 is located between them,
No diffracted light enters the light receiving system 101, only scattered light is received, and an efficient macro inspection using scattered light is performed.

【0030】ここで元に戻って、上記のようにして受光
系101により受光された回折光もしくは散乱光は、凹
面鏡4により受光レンズ5に集光されるとともに受光レ
ンズ4により撮像素子6の上に結像される。このように
して撮像素子6により撮影された画像情報は、画像処理
装置6に送られ、正常ウエハの画像と対比されてマクロ
検査が自動的に行われる。
Here, returning to the original state, the diffracted light or the scattered light received by the light receiving system 101 as described above is condensed on the light receiving lens 5 by the concave mirror 4 and is also reflected on the image sensor 6 by the light receiving lens 4. Is imaged. The image information photographed by the image pickup device 6 in this manner is sent to the image processing device 6, and is compared with the image of the normal wafer, and the macro inspection is automatically performed.

【0031】なお、ウエハ3を検査位置で支持する装置
に回転支持機構を設け、ウエハ3の回転位置調整を行え
るようにしても良い。このようにした場合、ウエハ3の
パターン方向、キズ欠陥等のように、照明光と、回折光
強度、散乱光の発生方向が回転位置に応じて異なるとき
に、ウエハ3を回転させて最も検査効率の良い方向に設
定することができる。
The apparatus for supporting the wafer 3 at the inspection position may be provided with a rotation support mechanism so that the rotation position of the wafer 3 can be adjusted. In this case, when the illumination light, the intensity of the diffracted light, and the direction in which the scattered light is generated differ depending on the rotational position, such as the pattern direction of the wafer 3 and the scratch defect, the wafer 3 is most rotated and inspected. It can be set in a direction that is more efficient.

【0032】なお、上記実施例では、凹面鏡を用いた
が、これに変えて反射型のフレネルゾーンプレートを用
いても良い。さらに、レンズを用いた屈折光学系で色収
差補正を行ったものを用いることもできる。
Although the concave mirror is used in the above embodiment, a reflection type Fresnel zone plate may be used instead. Further, a lens obtained by performing chromatic aberration correction with a refractive optical system using a lens can also be used.

【0033】次に、本発明に係る自動マクロ検査装置の
第2の実施例について図2を参照して説明する。なお、
この例の装置において、上記第1の実施例の装置と同一
部分には同一の符号を付して説明する。この装置は、照
明光学系102、受光系101、撮像素子6および画像
処理装置7から構成され、照明光学系102のみが第1
の実施例の装置と異なるだけである。
Next, a second embodiment of the automatic macro inspection apparatus according to the present invention will be described with reference to FIG. In addition,
In the apparatus of this example, the same parts as those of the apparatus of the first embodiment are denoted by the same reference numerals and described. This device includes an illumination optical system 102, a light receiving system 101, an image sensor 6, and an image processing device 7, and only the illumination optical system 102 is a first optical system.
It is different only from the device of the embodiment of FIG.

【0034】照明光学系102は、光源部10と、光フ
ァイバ送光系11およびシリンドリカルレンズ12によ
って構成され、ウエハ3の全面を照明可能な光束をウエ
ハ3に照射する。光源部10は白色光源光であるハロゲ
ンランプと、照明波長域を制限する干渉フィルタとから
なる。これについては、第1の実施例と同一構成であ
る。
The illumination optical system 102 includes a light source unit 10, an optical fiber light transmission system 11 and a cylindrical lens 12, and irradiates the wafer 3 with a light beam capable of illuminating the entire surface of the wafer 3. The light source unit 10 includes a halogen lamp that is white light source light, and an interference filter that limits an illumination wavelength range. This is the same configuration as the first embodiment.

【0035】光ファイバ送光系11は、一端側(入射
端)が光源部10に対向して光源部10からの照明光を
受光し、他端側(出射端)は一次元のライン状に配列さ
れて構成されている。このため、光ファイバ送光系11
の他端側からの射出光束は、図2の紙面と平行な面内で
は角度θの広がり角度を持つ拡散光であり、紙面に垂直
な方向へのファイバのライン長分の奥行きを持つ光源と
なる。
The optical fiber transmission system 11 has one end (incident end) facing the light source 10 to receive the illumination light from the light source 10 and the other end (emission end) in a one-dimensional line shape. It is arranged and configured. Therefore, the optical fiber transmission system 11
The light beam emitted from the other end of the light source is diffused light having a spread angle of θ in a plane parallel to the paper surface of FIG. 2, and a light source having a depth corresponding to the fiber line length in a direction perpendicular to the paper surface. Become.

【0036】この光ファイバ送光系11の他端は、シリ
ンドリカルレンズ12の後側焦点となる位置に位置して
おり、光ファイバ送光系11の他端側から射出された拡
散光はシリンドリカルレンズ12により紙面に平行な面
内では平行光束に近い光束に変換される。これにより、
少なくとも図2の紙面に平行な面内では上記第1実施例
で示したテレセントリック光学系と同等な平行光束がウ
エハ3の全面に照射される。
The other end of the optical fiber light transmission system 11 is located at a position to be the rear focal point of the cylindrical lens 12, and the diffused light emitted from the other end of the optical fiber light transmission system 11 is a cylindrical lens. 12, the light is converted into a light flux close to a parallel light flux in a plane parallel to the paper surface. This allows
At least in a plane parallel to the plane of FIG. 2, a parallel light beam equivalent to the telecentric optical system shown in the first embodiment is irradiated onto the entire surface of the wafer 3.

【0037】このようにウエハ3に照明光が照射される
と、これにより生じる回折光もしくは散乱光が受光系1
01により受光され、撮像素子6により撮像され、画像
処理装置7において画像処理がなされてマクロ検査が行
われるのであるが、これについては第1実施例と同じな
のでその説明は省略する。
When the wafer 3 is irradiated with the illuminating light as described above, the diffracted light or the scattered light generated by the illuminating light is converted into the light receiving system 1.
01, an image is picked up by the image pickup device 6, image processing is performed in the image processing device 7, and macro inspection is performed. However, since this is the same as in the first embodiment, description thereof will be omitted.

【0038】このような構成のマクロ検査装置の場合に
は、照明光学系の構成が小型、コンパクト化でき、且つ
低コスト化できる。
In the case of the macro inspection apparatus having such a configuration, the configuration of the illumination optical system can be reduced in size, size, and cost.

【0039】なお、上記第1および第2実施例におい
て、光源部を、白色光源と分光器を組み合わせて構成す
ることも可能である。
In the first and second embodiments, the light source may be constituted by combining a white light source and a spectroscope.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
第1の所定角度で固定配設された照明装置と、第2の所
定角度で固定配設されて回折光もしくは散乱光による被
検査物の像を撮像する撮像手段と、この撮像手段により
得られた画像から被検査物のマクロ検査を行う画像処理
手段とを有し、さらに、照明波長設定手段により照明光
の波長を可変設定できるように構成されているので、被
検査物から射出される回折光および散乱光の方向を結像
撮影手段の受光方向に合致するように波長を設定すれ
ば、効率の良いマクロ検査が行える。このため、このマ
クロ検査装置の場合には、照明装置および結像撮影手段
を固定することができ、従来の装置のようにこれらの向
きを変える可動機構が不要であり、余計な発塵源がなく
なり、被検査物の汚染を抑えることができる。
As described above, according to the present invention,
An illumination device fixedly disposed at a first predetermined angle; an imaging unit fixedly disposed at a second predetermined angle and imaging an image of the inspection object by diffracted light or scattered light; Image processing means for performing macro-inspection of the inspection object from the image obtained, and furthermore, it is configured such that the wavelength of the illumination light can be variably set by the illumination wavelength setting means. If the wavelength is set so that the directions of the light and the scattered light coincide with the light receiving direction of the imaging unit, efficient macro inspection can be performed. For this reason, in the case of this macro inspection device, the illumination device and the imaging device can be fixed, and a movable mechanism for changing the direction of the device is unnecessary as in the conventional device, and an extra dust source is not generated. As a result, contamination of the inspection object can be suppressed.

【0041】なお、照明装置を、拡散光源およびこれか
らの光をほぼ平行な光束に変換する平行変換手段から構
成するのが好ましく、この場合、平行変換手段を、拡散
光源が焦点位置になるようにして配設された凹面鏡から
構成するのが好ましい。このように凹面鏡を用いること
により白色光を用いた照明の場合でも色収差発生の問題
がなくなる。また、同様な理由から、撮像手段を、被検
査物からの回折光もしくは散乱光を収束させる凹面鏡
と、この凹面鏡により収束された光から被検査物の像を
撮影するカメラ手段とから構成するのが好ましい。
It is preferable that the illuminating device is composed of a diffusion light source and parallel conversion means for converting light from the light source into a substantially parallel light beam. In this case, the parallel conversion means is arranged so that the diffusion light source is located at the focal position. It is preferable to constitute the concave mirror arranged. The use of the concave mirror eliminates the problem of chromatic aberration even in the case of illumination using white light. For the same reason, the imaging means is constituted by a concave mirror for converging diffracted light or scattered light from the object to be inspected, and a camera means for taking an image of the object from the light converged by the concave mirror. Is preferred.

【0042】また、照明装置を、ライン状の拡散光源
と、このライン状拡散光源のラインに沿って対向配設さ
れたシリンドリカルレンズとから構成することもでき、
この場合には、シリンドリカルレンズによりライン状拡
散光源からの光を少なくとも一方向にほぼ平行となる光
束を作り出して被検査物を照明する。このようにすれ
ば、照明装置を小型、コンパクト化して、低コスト化を
図ることができる。
Also, the illumination device can be composed of a linear diffused light source and cylindrical lenses arranged opposite to each other along the line of the linear diffused light source.
In this case, the inspection object is illuminated by using the cylindrical lens to generate a light beam that is substantially parallel to the light from the linear diffusion light source in at least one direction. In this way, the size and size of the lighting device can be reduced, and the cost can be reduced.

【0043】なお、回折光を用いたマクロ検査を行うと
きには、照明波長設定手段による波長設定は、前述の式
(1)を満足するようになされる。この式(1)は回折
光が受光系(撮像手段)の方に射出されるための条件で
あり、これにより、撮像手段により効率良くn次の回折
光を捉えて、この回折光を用いたマクロ検査を効率良く
行うことができる。
When the macro inspection using the diffracted light is performed, the wavelength setting by the illumination wavelength setting means is made to satisfy the above-mentioned equation (1). This equation (1) is a condition for diffracted light to be emitted toward the light receiving system (imaging means), whereby the n-th order diffracted light is efficiently captured by the imaging means, and this diffracted light is used. Macro inspection can be performed efficiently.

【0044】回折光ではなく散乱光を撮像手段により捉
えてマクロ検査を行うときには照明波長設定手段により
波長設定は、前述の式(2)により決まる角度θd’
と、前述の式(3)により決まる角度θd”とに対し
て、 θd’<θd<θd” となるような照明光の波
長λが照明波長設定手段により設定される。このように
して照明光の波長λを設定すれば、n次の回折光の方向
と(n+1)次の回折光の方向との間に撮像手段が位置
し、撮像手段には回折光は入射せず、散乱光のみが入手
する。このため、この場合には、散乱光を用いたマクロ
検査を効率良く行うことができる。
When the macro inspection is performed by capturing the scattered light instead of the diffracted light by the imaging means, the wavelength setting by the illumination wavelength setting means is performed by the angle θd ′ determined by the above equation (2).
And the angle θd ″ determined by the above equation (3), the wavelength λ of the illumination light is set by the illumination wavelength setting means so that θd ′ <θd <θd ″. When the wavelength λ of the illumination light is set in this manner, the imaging unit is located between the direction of the n-th order diffracted light and the direction of the (n + 1) th order diffracted light, and the diffracted light is incident on the imaging unit. Scattered light only. Therefore, in this case, the macro inspection using the scattered light can be efficiently performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る自動マクロ検査装置
を示す概略図である。
FIG. 1 is a schematic diagram showing an automatic macro inspection apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る自動マクロ検査装置
を示す概略図である。
FIG. 2 is a schematic view showing an automatic macro inspection apparatus according to a second embodiment of the present invention.

【図3】ウエハに照射される照明光と回折光との関係を
示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between illumination light and diffraction light applied to a wafer.

【図4】ウエハに照射される照明光とn次および(n+
1)次の回折光と受光系の凹面鏡位置との関係を示す説
明図である。
FIG. 4 shows the illumination light applied to the wafer and the n-th order light and (n +
1) It is an explanatory view showing the relationship between the next diffracted light and the position of the concave mirror of the light receiving system.

【符号の説明】[Explanation of symbols]

1,10 光源部 2,4 凹面鏡 3 ウエハ 5 受光レンズ 6 撮像素子 7 画像処理装置 11 光ファイバ送光系 12 シリンドリカルレンズ 100,102 照明光学系 101 受光系 DESCRIPTION OF SYMBOLS 1,10 Light source part 2,4 Concave mirror 3 Wafer 5 Light receiving lens 6 Image sensor 7 Image processing device 11 Optical fiber light transmission system 12 Cylindrical lens 100,102 Illumination optical system 101 Light receiving system

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検査物に対して第1の所定角度で対向
して固定配設され、前記被検査物の全面に向かってほぼ
平行な光束を有した照明光を照射する照明装置と、 前記被検査物に対して第2の所定角度で対向して固定配
設され、前記被検査物から前記照明光の照射により発生
する回折光もしくは散乱光を受光して前記被検査物の像
を撮像する撮像手段と、 この撮像手段により得られた画像信号を取り込み、画像
処理を行って前記被検査物のマクロ検査を行う画像処理
手段と、 前記照明装置からの照明光の波長を可変設定する照明波
長設定手段とを備えたことを特徴とする自動マクロ検査
装置。
An illumination device fixedly arranged to face an object to be inspected at a first predetermined angle and irradiating illumination light having a light flux substantially parallel to the entire surface of the object to be inspected; The inspection object is fixedly disposed opposite to the inspection object at a second predetermined angle, receives the diffraction light or the scattered light generated by the irradiation of the illumination light from the inspection object, and forms an image of the inspection object. Imaging means for taking an image; image processing means for taking in an image signal obtained by the imaging means, performing image processing and performing a macro inspection of the object to be inspected, and variably setting a wavelength of illumination light from the illumination device. An automatic macro inspection apparatus comprising: an illumination wavelength setting unit.
【請求項2】 前記照明装置が、拡散光源と、この拡散
光源からの光をほぼ平行な光束に変換する平行変換手段
とからなることを特徴とする請求項1に記載の自動マク
ロ検査装置。
2. The automatic macro inspection apparatus according to claim 1, wherein the illumination device includes a diffused light source and a parallel conversion unit that converts light from the diffused light source into a substantially parallel light flux.
【請求項3】 前記平行変換手段が、前記拡散光源が焦
点位置になるようにして配設された凹面鏡からなること
を特徴とする請求項2に記載の自動マクロ検査装置。
3. The automatic macro inspection apparatus according to claim 2, wherein said parallel conversion means comprises a concave mirror arranged so that said diffused light source is located at a focal position.
【請求項4】 前記撮像手段が、前記被検査物からの前
記回折光もしくは散乱光を収束させる凹面鏡と、この凹
面鏡により収束された前記回折光もしくは散乱光から前
記被検査物の像を結像させて撮像するカメラ手段とから
なることを特徴とする請求項1〜3のいずれかに記載の
自動マクロ検査装置。
4. The image pickup means forms a concave mirror for converging the diffracted light or scattered light from the test object, and forms an image of the test object from the diffracted light or scattered light converged by the concave mirror. The automatic macro inspection apparatus according to any one of claims 1 to 3, further comprising a camera means for taking an image by making an image.
【請求項5】 前記照明装置が、ライン状の拡散光源
と、このライン状拡散光源のラインに沿って対向配設さ
れたシリンドリカルレンズとからなり、このシリンドリ
カルレンズにより前記ライン状拡散光源からの光を少な
くとも一方向にほぼ平行となる光束を作り出して前記被
検査物を照明することを特徴とする請求項1に記載の自
動マクロ検査装置。
5. The illumination device comprises a linear diffused light source and a cylindrical lens disposed to face the line of the linear diffused light source, and the light from the linear diffused light source is provided by the cylindrical lens. 2. The automatic macro inspection apparatus according to claim 1, wherein a light beam substantially parallel to at least one direction is generated to illuminate the inspection object.
【請求項6】 前記第1の所定角度が前記被検査物の表
面に直角な線に対して角度θiであり、前記第2の所定
角度が前記被検査物の表面に直角な線に対して角度θd
であるときに、前記照明波長設定手段により設定される
前記照明光の波長λが、次式 (sinθi − sinθd) = n・λ/p 但し、n: 撮像対象となる回折光の次数 p: 被検査物の表面のパターンピッチ を満足するように設定されることを特徴とする請求項1
に記載の自動マクロ検査装置。
6. The apparatus according to claim 1, wherein the first predetermined angle is an angle θi with respect to a line perpendicular to the surface of the object, and the second predetermined angle is an angle θi with respect to a line perpendicular to the surface of the object. Angle θd
Where, the wavelength λ of the illumination light set by the illumination wavelength setting means is given by the following equation: (sin θ i −sin θ d) = n · λ / p where n: the order of the diffracted light to be imaged p: 2. The method according to claim 1, wherein the pattern pitch is set so as to satisfy a pattern pitch of a surface of the inspection object.
An automatic macro inspection apparatus according to item 1.
【請求項7】 前記第1の所定角度が前記被検査物の表
面に直角な線に対して角度θiであり、前記第2の所定
角度が前記被検査物の表面に直角な線に対して角度θd
であり、前記照明波長設定手段により設定される前記照
明光の波長をλとしたときに、次式 (sinθi − sinθd’) = n・λ/p 但し、n: 照明光から発生する回折光の次数 p: 被検査物の表面のパターンピッチ により決まる角度θd’と、 (sinθi − sinθd”) = (n+1)・λ/p により決まる角度θd”とに対して、 θd’<θd<θd” となるような前記照明光の波長λが前記照明波長設定手
段により設定されることを特徴とする請求項1に記載の
自動マクロ検査装置。
7. The method according to claim 1, wherein the first predetermined angle is an angle θi with respect to a line perpendicular to the surface of the object to be inspected, and the second predetermined angle is an angle θi with respect to a line perpendicular to the surface of the object to be inspected. Angle θd
Where λ is the wavelength of the illuminating light set by the illuminating wavelength setting means, the following equation is given: (sin θi−sin θd ′) = n · λ / p where n: diffraction light generated from the illumination light Order p: θd ′ <θd <θd ″, where θd ′ is determined by the pattern pitch of the surface of the inspection object and θd ″ is determined by (sinθi−sinθd ″) = (n + 1) · λ / p. 2. The automatic macro inspection apparatus according to claim 1, wherein the wavelength [lambda] of the illumination light is set by the illumination wavelength setting unit.
JP23450597A 1997-07-10 1997-08-29 Automatic macro inspection device Expired - Lifetime JP3981895B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23450597A JP3981895B2 (en) 1997-08-29 1997-08-29 Automatic macro inspection device
AU81274/98A AU8127498A (en) 1997-07-10 1998-07-09 Device and method for inspecting surface
US09/462,279 US6512578B1 (en) 1997-07-10 1998-07-09 Method and apparatus for surface inspection
KR1020007000043A KR20010015544A (en) 1997-07-10 1998-07-09 Device and method for inspecting surface
PCT/JP1998/003076 WO1999002977A1 (en) 1997-07-10 1998-07-09 Device and method for inspecting surface
TW090106450A TWI226428B (en) 1997-07-10 1998-07-10 Surface inspection device
TW087111213A TW449657B (en) 1997-07-10 1998-07-10 Surface inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23450597A JP3981895B2 (en) 1997-08-29 1997-08-29 Automatic macro inspection device

Publications (2)

Publication Number Publication Date
JPH1172443A true JPH1172443A (en) 1999-03-16
JP3981895B2 JP3981895B2 (en) 2007-09-26

Family

ID=16972088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23450597A Expired - Lifetime JP3981895B2 (en) 1997-07-10 1997-08-29 Automatic macro inspection device

Country Status (1)

Country Link
JP (1) JP3981895B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071323A1 (en) * 2000-03-24 2001-09-27 Olympus Optical Co., Ltd. Apparatus for detecting defect
JP2007057487A (en) * 2005-08-26 2007-03-08 Nikon Corp Surface defect inspecting device
JP2007101227A (en) * 2005-09-30 2007-04-19 Toshiba Corp Surface inspection device
JP2008026306A (en) * 2006-06-20 2008-02-07 Hoya Corp Pattern defect inspecting method, pattern defect inspecting apparatus, method for manufacturing photomask product and method for manufacturing substrate for display device
US7330042B2 (en) 2003-03-26 2008-02-12 Nikon Corporation Substrate inspection system, substrate inspection method, and substrate inspection apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071323A1 (en) * 2000-03-24 2001-09-27 Olympus Optical Co., Ltd. Apparatus for detecting defect
US6501545B2 (en) 2000-03-24 2002-12-31 Olympus Optical Co., Ltd. Defect detecting apparatus
JP4671573B2 (en) * 2000-03-24 2011-04-20 オリンパス株式会社 Substrate transport device and visual inspection device
US7330042B2 (en) 2003-03-26 2008-02-12 Nikon Corporation Substrate inspection system, substrate inspection method, and substrate inspection apparatus
JP2007057487A (en) * 2005-08-26 2007-03-08 Nikon Corp Surface defect inspecting device
JP4736629B2 (en) * 2005-08-26 2011-07-27 株式会社ニコン Surface defect inspection equipment
JP2007101227A (en) * 2005-09-30 2007-04-19 Toshiba Corp Surface inspection device
JP4690841B2 (en) * 2005-09-30 2011-06-01 株式会社東芝 Surface inspection device
JP2008026306A (en) * 2006-06-20 2008-02-07 Hoya Corp Pattern defect inspecting method, pattern defect inspecting apparatus, method for manufacturing photomask product and method for manufacturing substrate for display device
KR101320183B1 (en) * 2006-06-20 2013-10-22 호야 가부시키가이샤 Method for inspecting pattern defect, apparatus for inspecting pattern defect, method of manufacturing photomask, and method of manufacturing substrate for display device

Also Published As

Publication number Publication date
JP3981895B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US7372062B2 (en) Defect inspection device and substrate manufacturing system using the same
US6512578B1 (en) Method and apparatus for surface inspection
JP3692685B2 (en) Defect inspection equipment
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
JP3729154B2 (en) Pattern defect inspection method and apparatus
JP3379805B2 (en) Surface defect inspection equipment
JP4110095B2 (en) Pattern profile inspection apparatus, inspection method, and exposure apparatus
JP5489186B2 (en) Surface inspection device
JPH0961365A (en) Surface defect inspecting device
US7924517B2 (en) Spatial filter, a system and method for collecting light from an object
JP2004012301A (en) Method and apparatus for detecting pattern defect
JP2008058248A (en) Diffracted light detector and inspection system
JP2003177102A (en) Method and apparatus for inspecting pattern defects
JP3981895B2 (en) Automatic macro inspection device
JPH1151874A (en) Defect inspection system
KR20020093507A (en) Apparatus for inspecting parts
JP2003202302A (en) Surface defect-inspecting apparatus
JP2008064656A (en) Peripheral edge inspecting apparatus
JP2006313143A (en) Irregularity inspection device and method thereof
JP2002350359A (en) Defect inspection device
JP3575586B2 (en) Scratch inspection device
JP2003302356A (en) Defect inspection apparatus and method
JP3659954B2 (en) Substrate defect inspection system
JP2010107465A (en) Device and method for inspecting defect
JPH11260689A (en) Uniform optical system, pattern tester and pattern testing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term