JPH1171712A - Cable stayed bridge - Google Patents

Cable stayed bridge

Info

Publication number
JPH1171712A
JPH1171712A JP23232597A JP23232597A JPH1171712A JP H1171712 A JPH1171712 A JP H1171712A JP 23232597 A JP23232597 A JP 23232597A JP 23232597 A JP23232597 A JP 23232597A JP H1171712 A JPH1171712 A JP H1171712A
Authority
JP
Japan
Prior art keywords
girder
main
cable
torsional
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23232597A
Other languages
Japanese (ja)
Inventor
Takuya Murakami
琢哉 村上
Katsuaki Takeda
勝昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23232597A priority Critical patent/JPH1171712A/en
Publication of JPH1171712A publication Critical patent/JPH1171712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To retain the weight of girders and increase the resistance against the torsional deformation and the stability against wind, by providing a pair of crossing cables diagonally connecting the side end of one face of a main tower and the side end of the other face of a main girder, in a two-face hanging type. SOLUTION: The main towers T1, T2 side and the main girder side vibrate in the reverse phase in the distance between T1a-Gb, and T1b-Ga at the torsional vibration of the main girder G and a relative deformation is brought. Hence, crossing cables are installed between both sides to restrict the the relative displacement and the displacement of the girders. When crossing cables are installed between the main towers T1, T2 and the main girder G, the girder vibrates around the main towers T1, T2 at the torsional deformation of the girder. Hence, a horizontal vibration is accompanied by the torsional deformation of the girder, in the structure. The resistance of the horizontal deflective rigidity of the girder against the torsional deformation and the resistance of the pneumatic force acting on the girder against the torsional vibration at the horizontal vibration increase respectively. In this way, the torsional vibration number and the wind speed bringing about fluttering can be increased. Hence, the stability against wind can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、斜張橋の耐風安定
性を向上させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the wind resistance of a cable stayed bridge.

【0002】[0002]

【従来の技術】斜張橋ではしばしば耐風安定性が問題に
なる。斜張橋の設計で一番問題となるのは高風速で発散
振動をもたらすフラッターであり、このフラッターを設
計風速の範囲内で発現させないように設計しなければな
らない。すなわち、フラッター発現風速を十分高くする
対策が特に重要である。
2. Description of the Related Art In cable-stayed bridges, wind stability is often a problem. The most important issue in the design of a cable-stayed bridge is flutter that causes divergent vibration at high wind speeds, and it must be designed so that this flutter does not occur within the design wind speed range. That is, it is particularly important to take measures to sufficiently increase the wind speed at which flutter occurs.

【0003】フラッター発現風速を向上させる方法とし
ては、従来より、桁のねじれ剛性の増加、フェアリング
形状の変化、ダンパーの設置などによる方法が知られて
いる。大別すれば、以下の方法に分けられる(社団法人
日本道路協会「道路橋耐風設計便覧」p.143、平成
3年7月)。 ・橋桁の剛性を増やす ・橋桁の重量を増やす ・風により生ずる空気力を変化させる(例えば、桁の断
面形状を変化させる) ・減衰を増加させる(例えば、ダンパーの設置による) この中で、橋桁の剛性を増やす場合には、斜張橋で生じ
るフラッターは桁のねじれ振動が主体となるため、桁の
ねじれ剛性を増加させる対策が講じられる。桁のねじれ
剛性については、桁自身のねじれ剛性以外に、斜張橋ケ
ーブルの張り方も影響を及ぼす。すなわち、斜張橋ケー
ブルの吊り形式は、桁の中央にケーブルを集める1面吊
り形式よりも桁の両端で桁を支える2面吊り形式の方
が、桁のねじれ変形時にケーブルがより抵抗することに
なるため、桁のねじれ変形に対する剛性は高くなる。し
たがって、ねじれ剛性が必要となる場合には、通常、常
に2面吊り形式が採用される。
[0003] As a method for improving the wind speed exhibiting the flutter, a method of increasing the torsional rigidity of the girder, changing the shape of the fairing, installing a damper, and the like are conventionally known. It can be broadly classified into the following methods (Japan Road Association, “Road Bridge Wind Resistant Design Handbook” p.143, July 1991).・ Increase the rigidity of the bridge girder ・ Increase the weight of the bridge girder ・ Change the aerodynamic force generated by the wind (for example, change the cross-sectional shape of the girder) ・ Increase the damping (for example, by installing a damper) In order to increase the rigidity of the girder, the flutter generated on the cable-stayed bridge is mainly caused by the torsional vibration of the girder. Therefore, measures to increase the torsional rigidity of the girder are taken. Regarding the torsional rigidity of the girder, in addition to the torsional rigidity of the girder itself, the way in which the cable stayed bridge cable is tensioned also has an effect. In other words, the cable-stayed bridge cable suspension type is that the two-sided suspension type that supports the girder at both ends of the girder is more resistant to the torsional deformation of the girder than the single-sided suspension type that collects the cable at the center of the girder. Therefore, the rigidity of the spar against torsional deformation is increased. Therefore, when torsional rigidity is required, a two-sided suspension type is always adopted.

【0004】また、斜張橋において、ねじれ剛性を増加
させる場合には、通常は桁のねじれ剛性を増加させる方
法をとる。ケーブルに関する対策については、ケーブル
を左右交差するように設置して斜張橋の主塔の振動を抑
制する対策はあるが(実開平7−10013号公報)、
斜張橋の主桁の振動を抑制しようとする対策は講じられ
ていない。
When increasing the torsional rigidity of a cable-stayed bridge, a method of increasing the torsional rigidity of a girder is usually employed. Regarding measures for cables, there is a measure to control the vibration of the main tower of the cable-stayed bridge by installing the cables so that they cross each other (Japanese Utility Model Laid-Open No. 7-10013).
No measures have been taken to reduce the vibration of the main girder of the cable stayed bridge.

【0005】[0005]

【発明が解決しようとする課題】従来のねじれ振動数を
向上させる方法において、桁のねじれ剛性を増加させる
方法では、桁重量が増加するため、桁を支えるケーブル
径の増加、主塔の剛性増加、主塔基部の剛性増加を招
き、経済性に問題が生じる。
In the conventional method for increasing the torsional frequency, the method for increasing the torsional rigidity of the girder increases the girder weight, so that the diameter of the cable supporting the girder increases and the rigidity of the main tower increases. This increases the rigidity of the base of the main tower, causing a problem in economics.

【0006】本発明は、上記のような経済性に関する問
題点を解決するためになされたもので、桁の重量を増加
させずに桁のねじれ変形に対する抵抗を増大させ、耐風
安定性を向上させることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems relating to economy, and increases resistance to torsion deformation of a girder without increasing weight of the girder, thereby improving wind resistance stability. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明に係る斜張橋は、
2面吊り形式の斜張橋において、主塔の一面側端部と主
桁の他面側端部を斜めに連結する少なくとも1対の交差
ケーブルを具備することを特徴とするものである。ま
た、主塔同士を同一面側で水平に連結する1対の水平ケ
ーブルを具備するものである。さらに、水平ケーブルと
交差ケーブルを併設する構成としたものである。
The cable-stayed bridge according to the present invention comprises:
A cable-stayed bridge of the two-sided suspension type is characterized by comprising at least one pair of crossover cables that diagonally connect one end of the main tower to the other end of the main girder. It also comprises a pair of horizontal cables that connect the main towers horizontally on the same side. Further, a horizontal cable and a cross cable are provided side by side.

【0008】2面吊り形式の斜張橋では、桁のねじれ変
形に伴い、斜張ケーブルが伸縮して主桁の変形に抵抗す
るが、斜張ケーブルの伸縮により主塔も変形するため、
桁のねじれ変形に抵抗する。いま、図1に示す斜張橋を
例にとって説明する。図1において、2本の塔柱T1
a、T1bからなる主塔をT1、2本の塔柱T2a、T
2bからなる主塔をT2とし、さらに、主桁Gの端部を
Ga、Gbとする(添え字のa、bは橋の中心に対して
断面方向の両側を示す)。桁の片側の端部(例えばGa
側)に定着された斜張ケーブルCは塔側においても全て
同一の塔柱(例えばT1a側)に定着されているため、
桁がねじれ振動を生じる場合には、桁の両端に設置され
ている1対の斜張ケーブルおよび斜張ケーブルと接続さ
れている1対の塔柱が交互に引張、圧縮を生じる。例え
ば、T1a−Gaをつなぐ斜張ケーブルおよびT2a−
Gaをつなぐ斜張ケーブルに引張力が作用する場合に
は、T1b−Gbをつなぐ斜張ケーブルおよびT2b−
Gbをつなぐ斜張ケーブルには圧縮力が作用する。した
がって、桁のねじれ変形によって生じる斜張ケーブルC
の張力変動により、主塔T1、T2にもねじれ変形が生
じる。
In the cable-stayed bridge of the two-sided suspension type, the cable stayed cable expands and contracts to resist the deformation of the main girder due to the torsion deformation of the girder, but the main tower also deforms due to the expansion and contraction of the cable stayed cable.
Resists torsional deformation of girders. Now, the cable stayed bridge shown in FIG. 1 will be described as an example. In FIG. 1, two tower columns T1
a and T1b are represented by T1, two columns T2a and T
The main tower composed of 2b is T2, and the ends of the main girder G are Ga and Gb (subscripts a and b indicate both sides in the cross-sectional direction with respect to the center of the bridge). One end of the girder (eg, Ga
Cable) fixed on the same side of the tower (for example, on the T1a side).
When a girder generates torsional vibration, a pair of cable stays installed at both ends of the girder and a pair of tower columns connected to the cable stay cable alternately generate tension and compression. For example, a cable stayed cable connecting T1a-Ga and T2a-
When a tensile force acts on the cable staying cable connecting Ga, the cable staying cable connecting T1b-Gb and T2b-
A compression force acts on the cable staying cable connecting Gb. Accordingly, the cable stayed cable C generated by the torsional deformation of the spar
Due to the fluctuation of the tension, the main towers T1 and T2 also undergo torsional deformation.

【0009】その状態を図2に示す。主桁と主塔がねじ
れ変形することにより、塔頂付近と主桁端部との距離は
変化する。例えば、塔頂と主桁の中央径間中央部の距離
で考えると、Ga側が下方に変位した場合には、ねじれ
変形のため、Gb側は上方へ変位する。したがって、そ
れに従い、T1a、T2a側は中央径間側に、T1b、
T2b側は側径間側に変形する。
FIG. 2 shows this state. The torsional deformation of the main girder and the main tower changes the distance between the top of the tower and the end of the main girder. For example, considering the distance between the tower top and the center of the center span of the main girder, when the Ga side is displaced downward, the Gb side is displaced upward due to torsional deformation. Therefore, accordingly, the T1a, T2a side is on the center span side, and the T1b,
The T2b side is deformed to the side span side.

【0010】そこで、本発明においては、図1に点線で
示すように、1対のケーブルC1a,C1b(T1a−
Gb、T1b−Gaを連結するケーブル)を交差させて
付加することにより、主桁のねじれ変形に伴う主塔のね
じれ変形に抵抗させる。すなわち、図2で示したよう
に、桁のねじれ振動時にはT1a−Gb間、T1b−G
a間の距離は主塔側、主桁側が逆相に振動するため、相
対変位を生じる。したがって、相対変位が生じる両者間
に交差ケーブルを設置することにより、相対変位を拘束
させ、それが桁の変位を拘束させることになる。
In the present invention, a pair of cables C1a and C1b (T1a-
By adding Gb, T1b-Ga connecting cables crossing each other, the main tower is resistant to torsional deformation caused by torsional deformation of the main girder. That is, as shown in FIG. 2, during the torsional vibration of the spar, between T1a and Gb, between T1b and G1.
The distance between a and the main tower side and the main girder side vibrate in opposite phases, so that a relative displacement occurs. Therefore, by installing the cross cable between the two members where the relative displacement occurs, the relative displacement is restricted, which restricts the displacement of the girder.

【0011】さらに、主塔と主桁間に交差ケーブルを設
置すると、図3に示すように、桁のねじれ変形時に主塔
を中心とするように桁を振動させるため、桁のねじれ変
形に水平振動を伴うような構造となる(図3(b)参
照)。したがって、桁の水平たわみ剛性がねじれ変形に
抵抗する効果、さらには水平振動時に桁に作用する空気
力(常に減衰力となる)がねじれ振動に抵抗する効果と
して期待できる。したがって、付加的にケーブルを交差
させて設置するだけでなく、通常の斜張ケーブルの一部
を交差させて設置するだけでも桁のねじれ振動に抵抗す
る効果が増大する。
Further, when a cross cable is installed between the main tower and the main girder, as shown in FIG. 3, the girder vibrates around the main tower when the girder is torsionally deformed. The structure is accompanied by vibration (see FIG. 3B). Therefore, it can be expected that the horizontal deflection rigidity of the spar resists torsional deformation, and that the aerodynamic force (which always becomes a damping force) acting on the spar during horizontal vibration resists torsional vibration. Therefore, the effect of resisting the torsional vibration of the girder is increased by merely crossing and installing a part of a normal cable stayed cable in addition to crossing the cables additionally.

【0012】さらに、1本のケーブルが太くなる場合に
は、2本ケーブルに分けて(いわゆるダブルケーブルに
して)建設されるが、その場合でも、内側のケーブル同
士を交差させることによって、同等の効果が得られる。
Further, when one cable becomes thicker, the cable is divided into two cables (a so-called double cable), and even in such a case, the same cable can be obtained by crossing the inner cables. The effect is obtained.

【0013】また、主塔T1a−T2a、T1b−T2
b間を水平ケーブルで連結することによっても、桁のね
じれ振動に対して抵抗できる。すなわち、図2で説明し
たように、T1a−T2a間、T1b−T2b間の距離
は桁のねじれ振動に伴い変動し、相対変位が生じる。こ
の相対変位を拘束するように1対の水平ケーブルで連結
することにより、主塔の変形ひいては桁のねじれ変形を
拘束できる。上記のような方法により、主桁のねじれ時
の剛性を増大させることが可能となり、その結果、ねじ
れ振動数の向上、フラッター発現風速の上昇が可能とな
る。つまり、耐風安定性が向上する。
The main towers T1a-T2a, T1b-T2
By connecting the cables b with a horizontal cable, it is possible to resist the torsional vibration of the spar. That is, as described with reference to FIG. 2, the distance between T1a and T2a and the distance between T1b and T2b fluctuate with the torsional vibration of the spar, and a relative displacement occurs. By connecting with a pair of horizontal cables so as to restrain the relative displacement, the deformation of the main tower and the torsional deformation of the girder can be restrained. According to the above-described method, it is possible to increase the rigidity of the main girder when the main girder is twisted, and as a result, it is possible to improve the torsional frequency and to increase the flutter developing wind speed. That is, wind resistance is improved.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図4は本発明の実施の形態1に係る斜張
橋の概念図である。同図は3径間の斜張橋を示すもので
あり、2本の塔柱T1a、T1bを有する主塔T1と、
2本の塔柱T2a、T2bを有する主塔T2と、主桁G
と、斜張ケーブルCとからなる斜張橋において、主塔T
1と主桁G間および主塔T2と主桁G間にそれぞれ1対
の主ケーブルC1aとC1b、C2aとC2bを交差さ
せて付加的に設置し、さらに、側径間側にもそれぞれ1
対の補助ケーブルC1saとC1sb、C2saとC2
sbを交差させて付加的に設置したものである。すなわ
ち、主ケーブルC1aは主塔T1の左側塔柱T1aの端
部と主桁Gの右側端部Gbを斜めに連結し、主ケーブル
C1bは右側塔柱T1bの端部と主桁Gの左側端部Ga
を斜めに連結する。主ケーブルC2a、C2bについて
も、同様の接続関係で、主塔T2の塔柱T2a、T2b
の端部と主桁Gの端部を斜めに連結する。これによっ
て、1対の主ケーブルC1a、C1bと1対の主ケーブ
ルC2a、C2bが交差して設置される。また、補助ケ
ーブルC1sa、C1sb、C2sa、C2sbは、主
ケーブルの付加的設置により、主塔に作用する中央径間
側の水平張力と側径間側の水平張力の釣り合いが崩れる
のを防ぐために設置される。なお、主ケーブルと補助ケ
ーブルは主塔に対して対称に設置することが好ましい。
Embodiment 1 FIG. FIG. 4 is a conceptual diagram of the cable stayed bridge according to Embodiment 1 of the present invention. The figure shows a cable-stayed bridge of three spans, a main tower T1 having two tower columns T1a and T1b,
A main tower T2 having two tower columns T2a and T2b;
And the cable-stayed cable C, the main tower T
A pair of main cables C1a and C1b, and a pair of main cables C2a and C2b are additionally installed between the main girder G and the main tower T2 and the main girder G, respectively.
A pair of auxiliary cables C1sa and C1sb, C2sa and C2
sb are crossed and additionally installed. That is, the main cable C1a diagonally connects the end of the left tower T1a of the main tower T1 and the right end Gb of the main girder G, and the main cable C1b is connected to the end of the right tower T1b and the left end of the main girder G. Part Ga
Are connected diagonally. The main cables C2a and C2b have the same connection relation, and the main columns T2a and T2b of the main tower T2 have the same connection relationship.
And the end of the main girder G are connected diagonally. As a result, the pair of main cables C1a, C1b and the pair of main cables C2a, C2b are installed crossing each other. The auxiliary cables C1sa, C1sb, C2sa, and C2sb are installed to prevent the balance between the horizontal tension on the central span and the horizontal tension on the lateral span acting on the main tower due to the additional installation of the main cable. Is done. The main cable and the auxiliary cable are preferably installed symmetrically with respect to the main tower.

【0015】本実施形態の作用を主塔T1側を例にとっ
て説明する。主ケーブルC1a、C1bの付加的設置に
より、主桁Gのねじれ変形に伴う主塔T1のねじれ変形
に抵抗させることができる。すなわち、桁のねじれ振動
時には、T1a−Gb間、T1b−Ga間の距離は主塔
側、主桁側が逆相に振動するため、相対変位が生じる。
T1a−Gb間の変位が大きくなる場合には、主ケーブ
ルC1aが抵抗し、一方、T1b−Ga間の変位が大き
くなる場合には、主ケーブルC1bが抵抗して、相対変
位を減少させる。したがって、本実施形態の構成による
と、橋桁のねじれ変形に対する抵抗を増大させることが
できるため、フラッター発現風速を上昇させることがで
きる。
The operation of this embodiment will be described by taking the main tower T1 as an example. By additionally installing the main cables C1a and C1b, it is possible to resist the torsional deformation of the main tower T1 due to the torsional deformation of the main girder G. That is, at the time of the torsional vibration of the girder, the distance between T1a-Gb and the distance between T1b-Ga vibrate in opposite phases on the main tower side and the main girder side, so that relative displacement occurs.
When the displacement between T1a and Gb increases, the main cable C1a resists. On the other hand, when the displacement between T1b and Ga increases, the main cable C1b resists and reduces the relative displacement. Therefore, according to the configuration of the present embodiment, the resistance to the torsional deformation of the bridge girder can be increased, and the fluttering wind speed can be increased.

【0016】本実施形態では、主ケーブルは1段として
いるが、図5に示すように上下2段、あるいはそれ以上
の多段に設置してもよい。なお、図5では通常の斜張ケ
ーブルは省略してある。
In the present embodiment, the main cable has one stage, but it may be installed in two stages, upper and lower, or more stages as shown in FIG. In FIG. 5, a normal cable stayed cable is omitted.

【0017】実施の形態2.図6は本発明の実施の形態
2に係る斜張橋の概念図である。ここでは、実施の形態
1と異なり、通常の1対の斜張ケーブルCを用いて主塔
および主桁に対する連結面の一方を他面側に変えること
により交差ケーブルを構成したもので、中央径間側最上
段ケーブルCu1a、Cu1b(主塔T1側)、Cu2
a、Cu2b(主塔T2側)を交差ケーブルとして設置
している。主塔と主桁間に交差ケーブルを設置すると、
桁のねじれ振動時には主塔を中心とするように桁を振動
させるため、桁の水平たわみ振動と連成する構造とな
る。したがって、桁の水平たわみ剛性がねじれ変形の抑
制に寄与する効果により桁のねじれ振動に対する抵抗が
増大すること、さらには水平振動時に桁に作用する空気
力(常に減衰力となる)が期待できることから、ねじれ
剛性の増加、減衰力となる空気力の増加により、フラッ
ター発現風速を上昇させることができる。
Embodiment 2 FIG. FIG. 6 is a conceptual diagram of a cable stayed bridge according to Embodiment 2 of the present invention. Here, unlike the first embodiment, a crossover cable is formed by changing one of the connecting surfaces for the main tower and the main girder to the other surface side using a normal pair of cable-stayed cables C. Intermediate uppermost cable Cu1a, Cu1b (main tower T1 side), Cu2
a, Cu2b (main tower T2 side) is installed as a crossover cable. When crossing cables are installed between the main tower and the main girder,
At the time of the torsional vibration of the girder, the girder vibrates around the main tower, so that the structure is coupled to the horizontal deflection vibration of the girder. Therefore, the horizontal deflection rigidity of the girder contributes to the suppression of torsional deformation, thereby increasing the resistance of the girder to torsional vibration, and furthermore, the aerodynamic force acting on the girder during horizontal vibration (always a damping force) can be expected. By increasing the torsional rigidity and the aerodynamic force acting as the damping force, it is possible to increase the fluttering wind speed.

【0018】実施の形態3.図7は本発明の実施の形態
3に係る斜張橋の概念図である。なお、図7では通常の
斜張ケーブルは省略してある。ここでは、実施の形態1
と異なり、主塔同士を同一面側で連結する1対の水平ケ
ーブルC3a、C3bを付加している。また、この水平
ケーブルC3a、C3bの付加により、主塔に作用する
中央径間側の水平張力と側径間側の水平張力の釣り合い
が崩れるため、側径間側にも釣り合いを保つための補助
ケーブルC3as1、C3bs1(主塔T1側)、C3
as2、C3bs2(主塔T2側)が設置されている。
桁のねじれ振動時には、主塔間隔T1a−T2a間、T
1b−T2b間の距離は桁のねじれ振動に伴い変動し、
相対変位が生じる。この相対変位を拘束するように主塔
同士を水平ケーブルC3a、C3bで連結することによ
り、桁のねじれ振動を拘束することができる。また、主
塔と主桁間を連結する交差ケーブルC1a−C1b、C
2a−C2bの作用効果は実施の形態1と同様である。
したがって、本実施形態の構成により、桁のねじれ振動
時の剛性を増大させることができるため、フラッター発
現風速を上昇させることができる。
Embodiment 3 FIG. 7 is a conceptual diagram of a cable stayed bridge according to Embodiment 3 of the present invention. In FIG. 7, a normal cable stayed cable is omitted. Here, the first embodiment
Unlike this, a pair of horizontal cables C3a and C3b connecting the main towers on the same surface side is added. Also, the addition of the horizontal cables C3a and C3b breaks the balance between the horizontal tension on the central span and the horizontal tension on the lateral span acting on the main tower. Cables C3as1, C3bs1 (main tower T1 side), C3
as2 and C3bs2 (main tower T2 side) are installed.
At the time of the torsional vibration of the girder, the interval between the main towers T1a-T2a, T
The distance between 1b and T2b varies with the torsional vibration of the girder,
A relative displacement occurs. By connecting the main towers with horizontal cables C3a and C3b so as to restrain the relative displacement, the torsional vibration of the girder can be restrained. Also, cross cables C1a-C1b, C connecting the main tower and the main girder.
The functions and effects of 2a-C2b are the same as those of the first embodiment.
Therefore, according to the configuration of the present embodiment, the rigidity of the girder at the time of torsional vibration can be increased, so that the fluttering wind speed can be increased.

【0019】なお、上記水平ケーブルの併設は、図5、
図6に示した斜張橋に対しても可能である。
Note that the horizontal cable is installed in parallel with FIG.
This is also possible for the cable-stayed bridge shown in FIG.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、主塔と
桁の相対変位を拘束する交差ケーブル、または主塔間の
相対変位を拘束する水平ケーブルを設置するだけで、桁
のねじれ振動時の抵抗が増大し、その結果、ねじれ振動
数が向上することにより、フラッター発現風速を上昇さ
せることができる。また、従来の、桁のねじれ剛性を増
大させる方法のように橋梁の全体重量を増加させること
がないため、経済的に優れている。
As described above, according to the present invention, the twisting of the girder can be achieved only by installing the cross cable that restrains the relative displacement between the main tower and the girder or the horizontal cable that restrains the relative displacement between the main tower and the girder. The resistance at the time of vibration is increased, and as a result, the torsional frequency is improved, so that the fluttering wind speed can be increased. Further, since the total weight of the bridge is not increased unlike the conventional method of increasing the torsional rigidity of the girder, the bridge is economically excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の斜張橋の概念図である。FIG. 1 is a conceptual view of a cable stayed bridge according to the present invention.

【図2】ねじれ振動時の各部材の挙動を示す図である。FIG. 2 is a diagram showing the behavior of each member during torsional vibration.

【図3】交差ケーブルの効果を示す図である。FIG. 3 is a diagram illustrating an effect of a cross cable.

【図4】本発明の実施の形態1に係る斜張橋の概念図で
ある。
FIG. 4 is a conceptual diagram of the cable stayed bridge according to Embodiment 1 of the present invention.

【図5】交差ケーブルを2段に設置した場合を示す図で
ある。
FIG. 5 is a diagram showing a case where crossover cables are installed in two stages.

【図6】本発明の実施の形態2に係る斜張橋の概念図で
ある。
FIG. 6 is a conceptual diagram of a cable stayed bridge according to Embodiment 2 of the present invention.

【図7】本発明の実施の形態3に係る斜張橋の概念図で
ある。
FIG. 7 is a conceptual diagram of a cable stayed bridge according to Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

T1、T2:主塔 T1a、T1b、T2a、T2b:塔柱 G:主桁 C:斜張ケーブル C1a、C1b、C2a、C2b:主ケーブル C1sa、C1sb、C2sa、C2sb:補助ケーブ
ル Cu1a、Cu1b、Cu2a、Cu2b:最上段ケー
ブル C3a、C3b:水平ケーブル C3as1、C3bs1、C3as2、C3bs2:補
助ケーブル
T1, T2: Main tower T1a, T1b, T2a, T2b: Tower G: Main girder C: Cable stay cable C1a, C1b, C2a, C2b: Main cable C1sa, C1sb, C2sa, C2sb: Auxiliary cable Cu1a, Cu1b, Cu2a , Cu2b: uppermost cable C3a, C3b: horizontal cable C3as1, C3bs1, C3as2, C3bs2: auxiliary cable

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2面吊り形式の斜張橋において、 主塔の一面側端部と主桁の他面側端部を斜めに連結する
少なくとも1対の交差ケーブルを具備することを特徴と
する斜張橋。
1. A cable-stayed bridge of a two-sided suspension type, comprising at least one pair of crossover cables diagonally connecting one end of a main tower and one end of a main girder diagonally. Cable-stayed bridge.
【請求項2】 2面吊り形式の斜張橋において、 主塔同士を同一面側で水平に連結する1対の水平ケーブ
ルを具備することを特徴とする斜張橋。
2. A cable-stayed bridge of a two-sided suspension type, comprising a pair of horizontal cables for connecting the main towers horizontally on the same side.
【請求項3】 前記1対の水平ケーブルをさらに具備す
ることを特徴とする請求項1記載の斜張橋。
3. The cable-stayed bridge according to claim 1, further comprising the pair of horizontal cables.
JP23232597A 1997-08-28 1997-08-28 Cable stayed bridge Pending JPH1171712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23232597A JPH1171712A (en) 1997-08-28 1997-08-28 Cable stayed bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23232597A JPH1171712A (en) 1997-08-28 1997-08-28 Cable stayed bridge

Publications (1)

Publication Number Publication Date
JPH1171712A true JPH1171712A (en) 1999-03-16

Family

ID=16937436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23232597A Pending JPH1171712A (en) 1997-08-28 1997-08-28 Cable stayed bridge

Country Status (1)

Country Link
JP (1) JPH1171712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134831A (en) * 2011-01-05 2011-07-27 四川腾中重工机械有限公司 Pneumatic wing plate structure for improving flutter stability of steel truss girder suspension bridge
CN102140776A (en) * 2011-01-05 2011-08-03 四川腾中重工机械有限公司 Asymmetric pneumatic wing plate for improving flutter stability of steel truss girder suspension bridge
RU2502844C1 (en) * 2012-04-28 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Hanging bridge
CN109711041A (en) * 2018-12-25 2019-05-03 中铁大桥勘测设计院集团有限公司 Temperature self-adaptation tower Liang Shunqiao is to constrained procedure and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134831A (en) * 2011-01-05 2011-07-27 四川腾中重工机械有限公司 Pneumatic wing plate structure for improving flutter stability of steel truss girder suspension bridge
CN102140776A (en) * 2011-01-05 2011-08-03 四川腾中重工机械有限公司 Asymmetric pneumatic wing plate for improving flutter stability of steel truss girder suspension bridge
RU2502844C1 (en) * 2012-04-28 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Hanging bridge
CN109711041A (en) * 2018-12-25 2019-05-03 中铁大桥勘测设计院集团有限公司 Temperature self-adaptation tower Liang Shunqiao is to constrained procedure and system

Similar Documents

Publication Publication Date Title
CA1223108A (en) Stiffening girder type suspension bridge
JPH0849215A (en) Cable structure of suspension bridge
JP2007262796A (en) Diagonal member erection structure of diagonal suspension frame and its diagonal member erection method
CN111046482A (en) Steel truss equivalent stiffness calculation method
JP3476198B2 (en) Suspension method of bridge girder in suspension bridge
JPH1171712A (en) Cable stayed bridge
CN113356035B (en) Water body damping device and method for controlling vortex vibration and flutter of sea-crossing and river-crossing bridge
CN102191746B (en) Suspension bridge with single main cable
Ko et al. Modal analysis of suspension bridge deck units in erection stage
JPH1129908A (en) Vibration control method of suspension bridge girder, and the suspension bridge
JP2000154507A (en) Tower top displacement suppression type multispan suspension bridge
CA1169208A (en) Long-span bridges
JPH09302614A (en) Suspension bridge
JP2001193013A (en) Edge box girder bridge
JP5619594B2 (en) Damping structure of parallel bridge
JP3430690B2 (en) Suspension bridge
JP3663700B2 (en) Wind resistant structure
CN202081370U (en) Single main cable suspension bridge
Hayashikawa Torsional vibration analysis of suspension bridges with gravitational stiffness
JPH07102525A (en) Wind-resistant vibration mitigating structure in building suspension bridge
JPH11264114A (en) Improving method of torsional attenuation of suspension bridge and suspension bridge
CN114481830B (en) Cable isolation vibration damper in cable-stayed-suspension cooperative system
JP2005314921A (en) Suspended bridge
JPS5914482Y2 (en) Wind-resistant vibration damping bridge
JPH02243807A (en) Stiffening girder of suspension bridge having double concrete floor system