JPH1169713A - Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body - Google Patents

Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body

Info

Publication number
JPH1169713A
JPH1169713A JP23046997A JP23046997A JPH1169713A JP H1169713 A JPH1169713 A JP H1169713A JP 23046997 A JP23046997 A JP 23046997A JP 23046997 A JP23046997 A JP 23046997A JP H1169713 A JPH1169713 A JP H1169713A
Authority
JP
Japan
Prior art keywords
spindle motor
dynamic pressure
bearing member
peripheral surface
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23046997A
Other languages
Japanese (ja)
Inventor
Hiromasa Shimaguchi
博匡 島口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP23046997A priority Critical patent/JPH1169713A/en
Publication of JPH1169713A publication Critical patent/JPH1169713A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a normal/reverse rotation spindle motor and a rotating body equipment, using the spindle motor as a drive source for the rotating body. SOLUTION: A radial dynamic pressure bearing portion of the dynamic pressure bearing of a spindle motor is constituted with a cylindrical bearing member 3, having a flat inner peripheral surface and a columnar bearing member 2, having regular ups and downs on the outer peripheral surface. Then, the columnar bearing member 2 is made by using three or more flat circular column pieces 2a to 2c, having a same shape and size with deviated center shaft holes provided at the same position and a shaft 1 having a concentric hole, a plurality of circular column pieces 2a to 2c are laminated orderly by arranging shaft holes with deviated centers, by changing the directions at constant angles of 180 deg. and 120 deg., the concentric shaft is pressed in the shaft holes with the deviated centers, and then the laminated type circular columnar bearing member with ups and downs constituted regularly on the outer peripheral surface can be constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一方向回転又は正
逆回転可能な空気動圧軸受を備えたスピンドルモータ、
及びこのスピンドルモータを磁気ディスク、光ディスク
或いはポリゴンミラー等の回転体を正方向又は逆方向の
いずれの方向にも回転駆動する回転体装置に回転体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle motor provided with an air dynamic pressure bearing capable of rotating in one direction or forward and reverse,
The present invention also relates to a rotator device for rotating a rotator such as a magnetic disk, an optical disk, or a polygon mirror in either a forward direction or a reverse direction.

【0002】[0002]

【従来の技術】磁気ディスク装置、光ディスク装置或い
はポリゴンミラーを備えた光偏向器等の回転体装置の駆
動源には、コアレスサーボモータの如きスピンドルモー
タが用いられている。そして、このような回転体装置に
用いられるスピンドルモータは小型高速回転機であるの
で、軸受特性が殆ど変化せず、騒音も極めて小さい等の
特長を有する空気動圧軸受が広く採用されている。
2. Description of the Related Art A spindle motor such as a coreless servomotor is used as a drive source for a rotating device such as a magnetic disk device, an optical disk device, or an optical deflector having a polygon mirror. Since the spindle motor used in such a rotating body device is a small high-speed rotating machine, an air dynamic pressure bearing having features such as little change in bearing characteristics and extremely low noise is widely used.

【0003】空気動圧軸受にはラジアル軸受とスラスト
軸受があるが、本発明に特に関連する従来のラジアル軸
受の構造を図5を参照して概説すると、6は外周面に動
圧発生溝Gが形成された円柱状軸受部材で、7は内周面
が平坦な円筒状軸受部材である。動圧発生溝Gは円筒状
軸受部材7の内周面に形成されてもよいが、この場合は
円柱状軸受部材6の外周面は平坦面とされる。動圧発生
溝Gは例えばヘリングボーン溝である。なお、円柱状軸
受部材6はシャフトと一体に形成されているが、これら
を別体に製作し組み合わせて形成してもよい。別体に製
作した場合は、円柱状軸受部材6には中心軸に沿ってシ
ャフト穴が設けられ、このシャフト穴にシャフトが圧入
固着されることになる。
There are a radial bearing and a thrust bearing as air dynamic pressure bearings. The structure of a conventional radial bearing particularly related to the present invention will be outlined with reference to FIG. Is a cylindrical bearing member, and 7 is a cylindrical bearing member having a flat inner peripheral surface. The dynamic pressure generating groove G may be formed on the inner peripheral surface of the cylindrical bearing member 7, but in this case, the outer peripheral surface of the cylindrical bearing member 6 is a flat surface. The dynamic pressure generating groove G is, for example, a herringbone groove. In addition, although the cylindrical bearing member 6 is formed integrally with the shaft, these may be formed separately and combined. When manufactured separately, the cylindrical bearing member 6 is provided with a shaft hole along the central axis, and the shaft is press-fitted into the shaft hole.

【0004】ラジアル動圧軸受は上述の如く、円柱状軸
受部材6と円筒状軸受7とからなり、円柱状軸受部材6
の外周面と円筒状軸受部材7の内周面の一方の面は動圧
発生溝を有する面とし、且つ他方の面は動圧発生溝を有
しない平坦面としたものである。そして、前記動圧発生
溝を有する面と前記動圧発生溝を有しない平坦面との間
に形成された数ミクロンの軸受すきまに、高速回転によ
る作動空気を押し込み正圧を発生させることによって、
ポンプイン方式のラジアル動圧軸受として機能するもの
である。
As described above, the radial dynamic pressure bearing is composed of the cylindrical bearing member 6 and the cylindrical bearing 7, and the cylindrical bearing member 6
One of the outer peripheral surface and the inner peripheral surface of the cylindrical bearing member 7 is a surface having a dynamic pressure generating groove, and the other surface is a flat surface having no dynamic pressure generating groove. Then, a positive pressure is generated by pushing working air by high-speed rotation into a bearing clearance of several microns formed between the surface having the dynamic pressure generating groove and the flat surface not having the dynamic pressure generating groove,
It functions as a pump-in type radial dynamic pressure bearing.

【0005】図7に示す如きラジアル動圧軸受は回転方
向に対して鋭角に浅い溝を設けることによって、回転エ
ネルギーを摩擦力を介して圧力に変換して動圧を発生さ
せる機構であるため、一方向にしか回転することができ
ないものである。即ち、正方向用のラジアル動圧軸受
か、逆方向用のラジアル動圧軸受かは、製造時に決まる
のである。最近になって、例えば日本機械学会論文集5
8巻555号に「ポンプイン型とポンプアウト型を併用
した正逆回転ヘリングボーンジャーナル気体軸受」と題
する論文(論文No.92−0550)が発表された。
A radial dynamic pressure bearing as shown in FIG. 7 is a mechanism for generating dynamic pressure by converting rotational energy into pressure through frictional force by providing a shallow groove at an acute angle to the rotational direction. It can only rotate in one direction. That is, whether the bearing is the radial dynamic pressure bearing for the forward direction or the radial dynamic pressure bearing for the reverse direction is determined at the time of manufacturing. Recently, for example, Transactions of the Japan Society of Mechanical Engineers 5
No. 8, No. 555, a paper entitled “Forward and Reverse Rotating Herringbone Journal Gas Bearing Using Pump-in Type and Pump-out Type” (Paper No. 92-0550) was published.

【0006】図8は前記論文に掲載された正逆回転ラジ
アル動圧軸受の原理を示す一部断面の斜視図で、6は外
周面に略V字形の複数の浅い溝からなるヘリングボーン
動圧発生溝Gが形成された円柱状軸受部材、7は円柱状
軸受部材6を回転可能に支持する円筒状軸受部材、そし
て、8は円筒状軸受部材7の壁面に設けられた外気への
導通孔である。導通孔8はヘリングボーン動圧発生溝G
の中央に位置するように配置されている。また、導通孔
8は角度的に等間隔に配置して複数個、例えば3個設け
られている。この正逆回転ラジアル動圧軸受は、回転方
向により、潤滑気体を軸受内部へ押し込み内部を高圧に
するポンプイン方式と、潤滑気体を軸受中央部で外気か
ら吸い込みその流体が軸受すきまを通過する時の抵抗に
よって高圧を発生するポンプアウト方式を切り換えて軸
受として機能する。
FIG. 8 is a perspective view of a partial cross section showing the principle of the forward / reverse rotating radial dynamic pressure bearing disclosed in the above-mentioned paper. Reference numeral 6 denotes a herringbone dynamic pressure having a plurality of substantially V-shaped shallow grooves on the outer peripheral surface. A cylindrical bearing member in which the generating groove G is formed, 7 is a cylindrical bearing member rotatably supporting the cylindrical bearing member 6, and 8 is a communication hole to the outside air provided on a wall surface of the cylindrical bearing member 7. It is. The conduction hole 8 is a herringbone dynamic pressure generating groove G.
It is arranged so that it may be located in the center of. In addition, a plurality of, for example, three conductive holes 8 are provided at equal angular intervals. This forward / reverse rotating radial dynamic pressure bearing uses a pump-in system that pushes lubricating gas into the bearing depending on the direction of rotation to increase the pressure inside the bearing. By switching the pump-out system that generates a high pressure by the resistance of the above, it functions as a bearing.

【0007】ポンプイン方式とポンプアウト方式の切り
換えは、図示していない正逆切換弁を外気との導通孔8
に設けることによって実現される。即ち、正回転の場合
には正逆切換弁を閉じて外気への導通孔8を遮断し、ポ
ンプイン効果により作動気体を軸受すきまに押し込み正
圧を発生するポンプイン方式の軸受として機能する。ま
た、逆回転の場合には弁を開いて外気への導通孔8を開
放し、ポンプアウト効果により作動気体を導通孔8を通
して軸受すきま内に吸い込み、軸端に向かう流量を生じ
させることによって正圧を発生させるポンプアウト方式
の軸受として機能するのである。しかしながら、正逆回
転動圧軸受は、ポンプイン方式とポンプアウト方式の切
換手段に適切なものが開発されていないこともあって、
未だ実用化されていない。
To switch between the pump-in system and the pump-out system, a forward / reverse switching valve (not shown) is connected to a communication hole 8 with the outside air.
This is realized by providing That is, in the case of forward rotation, the forward / reverse switching valve is closed to shut off the communication hole 8 to the outside air, and the pump functions as a pump-in type bearing for generating a positive pressure by pushing the working gas into the bearing clearance by the pump-in effect. In the case of reverse rotation, the valve is opened to open the communication hole 8 to the outside air, and the working gas is sucked into the bearing clearance through the communication hole 8 by the pump-out effect to generate a flow toward the shaft end, thereby causing a positive flow. It functions as a pump-out type bearing that generates pressure. However, as for the forward / reverse rotation dynamic pressure bearing, there is no thing suitable for the switching means of the pump-in system and the pump-out system, which has been developed.
It has not been put to practical use yet.

【0008】ところで、一方向回転ラジアル動圧軸受も
正逆回転ラジアル動圧軸受も、軸受面の一方にはヘリン
グボーン溝の如き動圧発生溝を形成しなければならな
い。動圧発生溝の形成は、円柱状軸受部材の外周面につ
いてはNC加工により、また円筒状軸受部材の内周面に
ついてはNC加工またはボール転造による塑形加工によ
り通常は行われている。軸受部材は銅合金またはアルミ
合金などの軟質金属であるが、加工が施される面は円柱
の外周面または円筒の内周面であるため高度な加工技術
が必要であり大量生産が困難である。多数のNC機械を
設置し、且つ多数の熟練の作業員で加工すれば大量生産
は可能であるが、これでは製造コストが著しく高くなっ
てしまう。このような状況のため、動圧軸受を備えた正
逆回転可能な実用的なスピンドルモータは存在しない。
従って、動圧軸受を備えたスピンドルモータを回転体の
駆動源とする回転体装置で、正逆回転可能なものは未だ
実用化されていない。
Incidentally, in both the one-way rotating radial dynamic pressure bearing and the forward / reverse rotating radial dynamic pressure bearing, a dynamic pressure generating groove such as a herringbone groove must be formed on one of the bearing surfaces. The formation of the dynamic pressure generating groove is usually performed by NC processing on the outer peripheral surface of the cylindrical bearing member and by NC processing or plastic forming by ball rolling on the inner peripheral surface of the cylindrical bearing member. The bearing member is a soft metal such as a copper alloy or an aluminum alloy, but the surface to be processed is the outer peripheral surface of a cylinder or the inner peripheral surface of a cylinder, so advanced processing technology is required and mass production is difficult. . If a large number of NC machines are installed and processed by a large number of skilled workers, mass production is possible, but this greatly increases the manufacturing cost. Under such circumstances, there is no practical spindle motor having a dynamic pressure bearing and capable of rotating forward and reverse.
Therefore, a rotating body device that uses a spindle motor having a dynamic pressure bearing as a driving source of the rotating body and that can rotate normally and reversely has not yet been put to practical use.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、正逆
回転可能な動圧軸受を備えたスピンドルモータ、又はこ
のスピンドルモータを磁気ディスク、光ディスク或いは
ポリゴンミラー等の回転体の駆動源とした回転体装置を
提供することにある。本発明の他の目的は、組立が容易
で大量生産に適した一方向回転又は正逆回転可能なラジ
アル動圧軸受を備えたスピンドルモータ、このスピンド
ルモータを回転体の駆動源とした回転体装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spindle motor having a dynamic pressure bearing capable of rotating forward and backward, or to use this spindle motor as a drive source for a rotating body such as a magnetic disk, an optical disk or a polygon mirror. An object of the present invention is to provide a rotating body device. Another object of the present invention is to provide a spindle motor equipped with a radial dynamic pressure bearing capable of easy one-way rotation and forward / reverse rotation suitable for mass production and a rotating body device using the spindle motor as a driving source of a rotating body. Is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、ロータをステ
ータに動圧軸受で支承した正逆回転可能なスピンドルモ
ータ、又はこの正逆回転可能なスピンドルモータを回転
体の駆動源とした回転体装置において、前記動圧軸受を
偏芯軸穴を有する3個以上の複数の同一形状・寸法の平
坦な円柱片を前記偏芯軸穴を揃え且つ順に一定角度で方
向を変えて積層し、更に1個の同芯軸を前記偏芯軸穴に
圧入固着して規則性凹凸を外周面に形成した積層型円柱
状軸受部材と、平坦な内周面を有する円筒状軸受部材と
で構成した。
SUMMARY OF THE INVENTION The present invention relates to a spindle motor in which a rotor is supported on a stator by a dynamic pressure bearing, or a rotating body using the spindle motor capable of rotating in a forward or reverse direction as a driving source of the rotating body. In the apparatus, the dynamic pressure bearing is stacked by stacking three or more flat cylindrical pieces having the same shape and dimensions having an eccentric shaft hole with the eccentric shaft holes aligned and sequentially changing the direction at a certain angle, One concentric shaft was press-fitted and fixed in the eccentric shaft hole to form a laminated cylindrical bearing member having regular irregularities formed on the outer peripheral surface, and a cylindrical bearing member having a flat inner peripheral surface.

【0011】[0011]

【発明の実施の形態】中心軸方向で切断した断面図であ
る図3と図4に示す如く、互いい違いに規則的な段差即
ち凹凸を有する外周面を有する前記円柱状軸受部材を、
平坦な内周面を有する円筒状軸受部材に挿入配置した場
合、これらの間に形成される軸受すきまは、前記円柱片
と同数の複数の偏芯型ドーナツ状空隙が一定角度で方向
を変えて積層されたものである。図6に誇張して示す如
く、前記偏芯型ドーナツ状空隙は、その軸方向の厚さは
前記円柱片と同じであり、その外周面は前記円筒状軸受
部材の内周面であり且つその内周面は前記円柱片の外周
面であるから、前記一定角度が180度であれば、円周
方向の厚さは前記円柱片の偏芯軸穴の最も遠い部分が最
も薄く、これと180度の位置にある最も近い部分が最
も厚く、この間の厚みは徐々に変化しているのである。
要するに、前記偏芯型ドーナツ状空隙は、前記偏芯軸穴
の最も遠い部分が最小で、最も近い部分が最大で、且つ
この間の部分は徐々に大きさを変えているものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 3 and 4, which are sectional views cut in the direction of the central axis, the cylindrical bearing member having an outer peripheral surface having regular steps, ie, irregularities, is provided.
When inserted and arranged in a cylindrical bearing member having a flat inner peripheral surface, the bearing clearance formed between them is such that a plurality of eccentric donut-shaped voids of the same number as the cylindrical pieces change direction at a fixed angle. They are stacked. As shown exaggeratedly in FIG. 6, the eccentric donut-shaped gap has the same axial thickness as that of the cylindrical piece, and its outer peripheral surface is the inner peripheral surface of the cylindrical bearing member. Since the inner peripheral surface is the outer peripheral surface of the cylindrical piece, if the predetermined angle is 180 degrees, the thickness in the circumferential direction is the thinnest at the farthest part of the eccentric shaft hole of the cylindrical piece, The nearest part at the position of the degree is the thickest, and the thickness during this period changes gradually.
In short, the eccentric donut-shaped void is such that the farthest part of the eccentric shaft hole is the smallest, the closest part is the largest, and the part between them is gradually changing in size.

【0012】図6に示す如き偏芯型ドーナツ状空隙を積
層した場合、前記一定角度を180度とすれば、1段目
の偏芯型ドーナツ状空隙の最大空隙部分の上には2段目
の偏芯型ドーナツ状空隙の最小空隙部分が位置し、2段
目の偏芯型ドーナツ状空隙の最小空隙部分の上には3段
目の偏芯型ドーナツ状空隙の最大空隙部分が位置するこ
とになる。当然のことながら、1段目の偏芯型ドーナツ
状空隙の最小空隙部分の上には2段目の偏芯型ドーナツ
状空隙の最大空隙部分が位置し、2段目の偏芯型ドーナ
ツ状空隙の最大空隙部分の上には3段目の偏芯型ドーナ
ツ状空隙の最小空隙部分が位置することになる。
When the eccentric donut-shaped gap as shown in FIG. 6 is laminated, if the predetermined angle is set to 180 degrees, the second eccentric donut-shaped gap is placed above the maximum gap portion of the first eccentric donut-shaped gap. The minimum gap portion of the eccentric donut-shaped void is located, and the largest void portion of the third stage eccentric donut-shaped void is located above the minimum void portion of the second-stage eccentric donut-shaped void. Will be. Naturally, the largest gap portion of the second-stage eccentric donut-shaped gap is located above the smallest gap portion of the first-stage eccentric-shaped donut-shaped gap. The minimum gap portion of the third-stage eccentric donut-shaped gap is located above the largest gap portion of the gap.

【0013】従って、スラスト方向には広い空隙と狭い
空隙が交互に段差を生じて規則的に形成される。また上
述の如く、ラジアル方向には外周面と内周面の間の幅で
与えられる前記ドーナツ状空隙の幅がなだらかに変化し
ている。このようにスラスト方向には規則的な段差を生
じ且つラジアル方向にはなだらかに変化する空隙が、前
記円柱状軸受部材の外周面と前記円筒状軸受部材の内周
面との間に軸受すきまとして形成されているので、前記
円柱状軸受部材が正方向に高速回転するとスラスト方向
にもラジアル方向にも作動空気に圧力差が発生し、動圧
軸受として機能する。また逆方向に回転する場合も、軸
受すきまに方向性がないから全く同じように、スラスト
方向にもラジアル方向にも作動空気に圧力差が発生し、
動圧軸受として機能する。従って、一方向回転の動圧軸
受としては勿論のこと、正逆回転ラジアル動圧軸受とし
ても機能する。この場合、正逆回転切換弁の如き正逆回
転切換手段を動圧軸受に備える必要が全くない。
Therefore, wide gaps and narrow gaps are alternately formed in the thrust direction and alternately form steps. Further, as described above, the width of the donut-shaped void, which is given by the width between the outer peripheral surface and the inner peripheral surface, changes gradually in the radial direction. In this way, a gap that generates a regular step in the thrust direction and changes gradually in the radial direction serves as a bearing clearance between the outer peripheral surface of the cylindrical bearing member and the inner peripheral surface of the cylindrical bearing member. As a result, when the cylindrical bearing member rotates at a high speed in the forward direction, a pressure difference is generated in the working air in both the thrust direction and the radial direction, thereby functioning as a dynamic pressure bearing. Also, when rotating in the opposite direction, there is no directivity in the bearing clearance, and in exactly the same way, a pressure difference occurs in the working air in both the thrust and radial directions,
Functions as a dynamic pressure bearing. Therefore, it functions not only as a one-way rotating dynamic pressure bearing but also as a forward / reverse rotating radial dynamic pressure bearing. In this case, there is no need to provide the dynamic pressure bearing with a forward / reverse rotation switching means such as a forward / reverse rotation switching valve.

【0014】[0014]

【実施例】図1は、本発明に係る正逆回転可能なシャフ
ト回転型スピンドルモータの一実施例で、10はステー
タのベースプレート、11はステータコイル、12はロ
ータ磁石、13はロータの略カップ状ハブで、フロッピ
ーディスクや光ディスク等の回転体を支持する。動圧軸
受はシャフト兼用の同芯軸1と、同芯軸1が圧入固着さ
れる偏芯穴を有する同一形状・寸法の円柱片2a、2
b、2cを積層して構成された積層型円柱状軸受部材
2、平坦な内周面を有する円筒状軸受部材3、ドーナツ
盤状上カバー4及びドーナツ盤状下カバー5からなる。
円筒状軸受部材3はベースプレート10に立設され、且
つシャフト1の上端には略カップ状ハブ13が同軸にし
て固着されている。ステータコイル11は円筒状軸受部
材3の外周面に取り付けられ、且つ略カップ状ハブ13
の内周面にはロータ磁石12が取り付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a shaft rotating type spindle motor according to the present invention, which is rotatable forward and backward. 10 is a base plate of a stator, 11 is a stator coil, 12 is a rotor magnet, and 13 is a substantially cup of a rotor. The rotating hub such as a floppy disk or an optical disk is supported by the hub. The dynamic pressure bearing includes a concentric shaft 1 also serving as a shaft, and cylindrical pieces 2a, 2a, 2c having the same shape and dimensions having an eccentric hole into which the concentric shaft 1 is press-fitted and fixed.
b, 2c, a laminated cylindrical bearing member 2, a cylindrical bearing member 3 having a flat inner peripheral surface, a donut-shaped upper cover 4, and a donut-shaped lower cover 5.
The cylindrical bearing member 3 is erected on a base plate 10, and a substantially cup-shaped hub 13 is coaxially fixed to the upper end of the shaft 1. The stator coil 11 is attached to the outer peripheral surface of the cylindrical bearing member 3 and has a substantially cup-shaped hub 13.
The rotor magnet 12 is attached to the inner peripheral surface of the rotor.

【0015】図1に示すスピンドルモータにおいて、ラ
ジアル動圧は、積層型円柱状軸受部材2の規則性凹凸を
有する外周面と円筒状軸受部材3の平坦な内周面との間
の軸受すきまに発生する。図1に示すスピンドルモータ
には、必要に応じて、磁気軸受或いは動圧軸受のスラス
ト軸受が用いられる。例えば、積層型円柱状軸受部材2
の上端面と下端面にスパイラル溝の如き動圧発生溝をそ
れぞれ形成し、ドーナツ盤状上カバー4の下端面とドー
ナツ盤状下カバー5の上端面をいずれも平坦面とするこ
とによって、スラスト動圧軸受を構成することができ
る。
In the spindle motor shown in FIG. 1, the radial dynamic pressure is applied to the bearing clearance between the outer peripheral surface having regular irregularities of the laminated cylindrical bearing member 2 and the flat inner peripheral surface of the cylindrical bearing member 3. Occur. In the spindle motor shown in FIG. 1, a magnetic bearing or a thrust bearing of a dynamic pressure bearing is used as necessary. For example, a laminated cylindrical bearing member 2
A dynamic pressure generating groove such as a spiral groove is formed on the upper end surface and the lower end surface of the donut-shaped upper cover 4 and the upper end surface of the donut-shaped lower cover 5 are flat. A dynamic pressure bearing can be configured.

【0016】図2は、本発明に係る回転体装置がフロッ
ヒーディスク装置である場合の一実施例の斜視図であ
り、複数枚のフロッヒーディスク14はスピンドルモー
タSMの回転体支持部によって支持され、一方向または
正逆両方向に選択的に回転駆動される。
FIG. 2 is a perspective view of an embodiment in which the rotating device according to the present invention is a floppy disk device. A plurality of floppy disks 14 are supported by a rotating member supporting portion of a spindle motor SM. And selectively driven to rotate in one direction or in both forward and reverse directions.

【0017】図3は、図1の正逆回転可能なスピンドル
モータの構成及び動作を説明するために、偏芯関係を誇
張して示した正逆回転可能な動圧軸受の縦断面図であ
る。図3において、3個の円柱片2a、2b及び2cは
円柱状軸受部材2の構成要素である。各円柱片2a、2
b及び2cは直径並びに厚さが同一で、且つ中心軸から
僅かに偏芯して形成された偏芯軸穴を有する平坦な表面
の円柱片である。これら3個の平坦面の円柱片は、図3
に横断面図で示す如く、その偏芯軸穴を揃えて上から順
に180度角度を変えて配置して積層され、且つこれら
偏芯軸穴にシャフトとなる同芯軸1が圧入固着される。
或いは、その偏芯軸穴を揃えて上から順に120度角度
を変えて配置して積層され、且つこれら偏芯軸穴にシャ
フトとなる同芯軸1が圧入固着されてもよい。このよう
にして、積層型円柱状軸受部材2は所定の外形を有する
ように構成される。そして、この積層型円柱状軸受部材
2は、円筒状軸受部材3の中に回転可能に挿入配置され
る。
FIG. 3 is a longitudinal sectional view of a forward / reverse rotatable dynamic pressure bearing in which the eccentric relationship is exaggerated for explaining the configuration and operation of the forward / reverse rotatable spindle motor of FIG. . In FIG. 3, three cylindrical pieces 2a, 2b and 2c are components of the cylindrical bearing member 2. Each cylindrical piece 2a, 2
Reference numerals b and 2c denote cylindrical pieces having the same diameter and thickness, and having a flat surface having an eccentric shaft hole formed slightly eccentric from the central axis. These three flat-surfaced cylindrical pieces are shown in FIG.
As shown in the cross-sectional view, the eccentric shaft holes are aligned and stacked in order from the top at an angle of 180 degrees, and the concentric shaft 1 serving as a shaft is press-fitted and fixed to these eccentric shaft holes. .
Alternatively, the eccentric shaft holes may be aligned and stacked at different angles of 120 degrees from the top in order, and the concentric shaft 1 serving as a shaft may be press-fitted and fixed to these eccentric shaft holes. In this way, the laminated cylindrical bearing member 2 is configured to have a predetermined outer shape. The stacked cylindrical bearing member 2 is rotatably inserted into the cylindrical bearing member 3.

【0018】図4は、それぞれが偏芯軸穴が設けられた
同一形状・寸法の平坦な表面を有する円柱片2a、2
b、2c、2d及び2eを前記偏芯軸穴を揃え且つ順に
一定角度で方向を変えて積層し、更に1個の同芯軸1を
前記偏芯軸穴に圧入固着して規則性凹凸を外周面に形成
した積層型円柱状軸受部材2と、円筒状軸受部材3とか
らなる正逆回転可能な動圧軸受の縦断面図で、図1と同
様に偏芯関係を誇張して示してある。図4における前記
一定角度は、図1と同様に選ばれる。
FIG. 4 shows cylindrical pieces 2a, 2a, 2a, 2a having flat surfaces of the same shape and dimensions each having an eccentric shaft hole.
b, 2c, 2d, and 2e are stacked with the eccentric shaft holes aligned and sequentially changing the direction at a fixed angle, and one concentric shaft 1 is press-fitted and fixed to the eccentric shaft holes to remove regular irregularities. 1 is a longitudinal sectional view of a hydrodynamic bearing capable of forward / reverse rotation composed of a laminated cylindrical bearing member 2 and a cylindrical bearing member 3 formed on the outer peripheral surface. FIG. is there. The constant angle in FIG. 4 is selected as in FIG.

【0019】図1にはシャフト回転型スピンドルモータ
を示したが、図3又は図4に示す如き積層型円柱状軸受
部材と内周面が平坦な円筒状軸受部材とで構成されたラ
ジアル軸受部を有する空気動圧軸受で、ロータをステー
タに支承したシャフト固定型スピンドルモータも本発明
に従って実施できる。
FIG. 1 shows a rotary shaft type spindle motor, but a radial bearing portion composed of a laminated cylindrical bearing member and a cylindrical bearing member having a flat inner peripheral surface as shown in FIG. 3 or FIG. According to the present invention, a fixed shaft type spindle motor in which a rotor is supported by a stator with an air dynamic pressure bearing having the following structure can be used.

【0020】[0020]

【発明の効果】本発明に係るスピンドルモータ、又はス
ピンドルモータを回転体の駆動源とした回転体装置にお
ける空気動圧軸受は、そのラジアル動圧軸受構成要素で
ある円柱状軸受部材を複数の同一円柱片を一定角度で方
向を変えて積層して組付けるだけで製作できるものであ
るから、従来の手間のかかるNC加工等によるヘリング
ボーン溝のような動圧発生溝の形成の必要が全く、従っ
て大量に且つ安価に製作することができる。また従来は
NC加工等で動圧発生溝を形成するので、円柱状軸受部
材も円筒状軸受部材もある程度の直径を有する必要があ
り、この機械加工の制約から小型の動圧軸受の製作が困
難であった。本発明においては、このような機械加工を
必要としないから、空気動圧軸受を更に小型にすること
ができる。このような数々の特長を有する積層型円柱状
軸受部材と円筒状軸受部材とで構成したラジアル動圧軸
受で、ロータをステータに支承した本発明に係るスピン
ドルモータは、小型で安価、製作が容易であり、しか
も、その空気動圧軸受のラジアル動圧発生溝には方向性
がないので正逆回転も可能であり、磁気ディスク、光デ
ィスク或いはポリゴンミラー等の回転体を駆動する回転
体装置に最適である。
According to the present invention, an air dynamic pressure bearing in a spindle motor according to the present invention or a rotating device using the spindle motor as a driving source of a rotating body has a plurality of cylindrical bearing members as radial dynamic pressure bearing components. Since it can be manufactured simply by changing the direction of the cylinder pieces at a fixed angle and assembling them, there is no need to form dynamic pressure generating grooves such as herringbone grooves by conventional laborious NC processing, etc. Therefore, it can be manufactured in large quantities and at low cost. Conventionally, since the dynamic pressure generating grooves are formed by NC processing or the like, both the columnar bearing member and the cylindrical bearing member need to have a certain diameter, and it is difficult to manufacture a small dynamic pressure bearing due to the restriction of the mechanical processing. Met. In the present invention, since such machining is not required, the size of the air dynamic pressure bearing can be further reduced. A spindle motor according to the present invention, in which a rotor is supported on a stator by using a radial dynamic pressure bearing composed of a laminated cylindrical bearing member and a cylindrical bearing member having various features as described above, is small, inexpensive, and easy to manufacture. In addition, since the radial dynamic pressure generating groove of the air dynamic pressure bearing has no direction, it can also be rotated forward and reverse, and is most suitable for a rotating body device for driving a rotating body such as a magnetic disk, an optical disk or a polygon mirror. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】偏芯軸穴を有する3個の円柱片からなる積層型
円柱状軸受部材と、平坦な内周面を有する円筒状軸受部
材とで構成したラジアル動圧軸受の一実施例の縦断面図
である。
FIG. 1 is a longitudinal section of an embodiment of a radial dynamic pressure bearing constituted by a laminated cylindrical bearing member having three cylindrical pieces having an eccentric shaft hole and a cylindrical bearing member having a flat inner peripheral surface. FIG.

【図2】偏芯軸穴を有する5個の円柱片からなる積層型
円柱状軸受部材と、平坦な内周面を有する円筒状軸受部
材とで構成したラジアル動圧軸受の一実施例の縦断面図
である。
FIG. 2 is a longitudinal section of an embodiment of a radial dynamic pressure bearing constituted by a laminated cylindrical bearing member having five cylindrical pieces having eccentric shaft holes and a cylindrical bearing member having a flat inner peripheral surface. FIG.

【図3】図1又は図2のラジアル動圧軸受の横断面図で
ある。
FIG. 3 is a cross-sectional view of the radial dynamic pressure bearing of FIG. 1 or FIG.

【図4】図1又は図2のラジアル動圧軸受において、偏
芯軸穴を有する1個の円柱片と平坦な内周面を有する円
筒状軸受部材との間に形成される偏芯型ドーナツ状空隙
を誇張して示した図である。
4 is an eccentric donut formed between one cylindrical piece having an eccentric shaft hole and a cylindrical bearing member having a flat inner peripheral surface in the radial dynamic pressure bearing of FIG. 1 or FIG. 2; FIG. 2 is a diagram showing exaggeratedly shaped voids.

【図5】従来のラジアル動圧軸受の一部断面の斜視図で
ある。
FIG. 5 is a perspective view of a partial cross section of a conventional radial dynamic pressure bearing.

【図6】従来の正逆回転ラジアル動圧軸受の一部断面の
斜視図である。
FIG. 6 is a perspective view of a partial cross section of a conventional forward / reverse rotating radial dynamic pressure bearing.

【図7】本発明に係るシャフト回転型スピンドルモータ
の一実施例の断面図である。
FIG. 7 is a cross-sectional view of one embodiment of a rotary shaft type spindle motor according to the present invention.

【図8】本発明に係るスピンドルモータをHDDのメデ
ィアの駆動源としたフロッピー装置の斜視図である。
FIG. 8 is a perspective view of a floppy device using a spindle motor according to the present invention as a drive source of an HDD medium.

【符号の説明】[Explanation of symbols]

1 同芯軸 2 円柱状軸受部材 2a,2b 2c,2d,2e 円柱片 3 円筒状軸受部材 4 上カバー 5 下カバー 6 円柱状軸受部材 7 円筒状軸受部材 8 導通孔 G 動圧発生溝 10 ステータのベースプレート 11 ステータコイル 12 ロータ磁石 13 ハブ 14 メディア SM スピンドルモータ DESCRIPTION OF SYMBOLS 1 Concentric shaft 2 Cylindrical bearing member 2a, 2b 2c, 2d, 2e Cylindrical piece 3 Cylindrical bearing member 4 Upper cover 5 Lower cover 6 Cylindrical bearing member 7 Cylindrical bearing member 8 Conducting hole G Dynamic pressure generating groove 10 Stator Base plate 11 Stator coil 12 Rotor magnet 13 Hub 14 Media SM Spindle motor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ロータをステータに動圧軸受で支承した
正逆回転可能なスピンドルモータにおいて、前記動圧軸
受は偏芯軸穴を有する3個以上の複数の同一形状・寸法
の平坦な円柱片を前記偏芯軸穴を揃え且つ順に一定角度
で方向を変えて積層し、更に1個の同芯軸を前記偏芯軸
穴に圧入固着して規則性凹凸を外周面に形成した積層型
円柱状軸受部材と、平坦な内周面を有する円筒状軸受部
材とからなることを特徴とする正逆回転可能なスピンド
ルモータ。
1. A forward / reverse rotating spindle motor having a rotor supported on a stator by a dynamic pressure bearing, wherein the dynamic pressure bearing has three or more flat cylindrical pieces having the same shape and dimensions having an eccentric shaft hole. Are laminated by aligning the eccentric shaft holes and sequentially changing the direction at a constant angle, and press-fitting and fixing one concentric shaft into the eccentric shaft hole to form regular irregularities on the outer peripheral surface. A spindle motor comprising: a column-shaped bearing member; and a cylindrical bearing member having a flat inner peripheral surface.
【請求項2】 前記一定角度が180度であることを特
徴とする請求項1のスピンドルモータ。
2. The spindle motor according to claim 1, wherein the predetermined angle is 180 degrees.
【請求項3】 前記一定角度が120度であることを特
徴とする請求項1のスピンドルモータ。
3. The spindle motor according to claim 1, wherein the predetermined angle is 120 degrees.
【請求項4】 ロータをステータに動圧軸受で支承した
正逆回転可能なスピンドルモータであって、前記動圧軸
受は偏芯軸穴を有する3個以上の複数の同一形状・寸法
の平坦な円柱片を前記偏芯軸穴を揃え且つ順に一定角度
で方向を変えて積層し、更に1個の同芯軸を前記偏芯軸
穴に圧入固着して規則性凹凸を外周面に形成した積層型
円柱状軸受部材と、平坦な内周面を有する円筒状軸受部
材とからなることを特徴とする正逆回転可能なスピンド
ルモータを、回転体の駆動源とした回転体装置。
4. A spindle motor in which a rotor is supported on a stator by a dynamic pressure bearing and is rotatable in forward and reverse directions, wherein said dynamic pressure bearing has three or more flat eccentric shaft holes having the same shape and dimensions. Laminating cylindrical pieces by aligning the eccentric shaft holes and changing the direction at a fixed angle in order, and pressing and fixing one concentric shaft into the eccentric shaft holes to form regular irregularities on the outer peripheral surface. A rotating body device comprising: a rotary motor as a drive source of a rotating body, wherein the rotating body comprises a cylindrical roller bearing member and a cylindrical bearing member having a flat inner peripheral surface.
JP23046997A 1997-08-13 1997-08-13 Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body Pending JPH1169713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23046997A JPH1169713A (en) 1997-08-13 1997-08-13 Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23046997A JPH1169713A (en) 1997-08-13 1997-08-13 Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body

Publications (1)

Publication Number Publication Date
JPH1169713A true JPH1169713A (en) 1999-03-09

Family

ID=16908321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23046997A Pending JPH1169713A (en) 1997-08-13 1997-08-13 Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body

Country Status (1)

Country Link
JP (1) JPH1169713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074839A (en) * 2005-09-08 2007-03-22 Fujitsu Ltd Motor having dynamic pressure bearing and disk unit equipped therewith
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074839A (en) * 2005-09-08 2007-03-22 Fujitsu Ltd Motor having dynamic pressure bearing and disk unit equipped therewith
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor

Similar Documents

Publication Publication Date Title
JP3411421B2 (en) Manufacturing method of thrust plate for spindle motor
JP2004092910A (en) Fluid bearing system
JP3727253B2 (en) Hydrodynamic bearing device
JP3939987B2 (en) Spindle motor
JPH1169713A (en) Spindle motor, and rotating body equipment using the spindle motor as drive source for rotating body
JP3983435B2 (en) Hydrodynamic bearing unit
KR0175501B1 (en) Spindle unit and method of assembling the spindle unit
US6805489B2 (en) Dynamic pressure bearing device
JP2566658Y2 (en) Motor bearing device
JPH09317755A (en) Bearing device and spindle motor for magnetic recorder using this bearing device
JP2002364637A (en) Kinetic pressure gas bering device
JP3782918B2 (en) Hydrodynamic bearing unit
JP4110605B2 (en) motor
JP3578810B2 (en) Spindle motor
JPH11113215A (en) Motor equipped with dynamic pressure bearing and rotator equipment using the motor as driving source
KR100305428B1 (en) A spindle motor having hemi-spherical bearing
JP2966738B2 (en) Dynamic pressure thrust bearing device
JPH03157513A (en) Bearing structure
JPH04111256A (en) Spindle motor
JPS59198849A (en) Motor unit with dynamic pressure slot
JPH0898460A (en) Motor
JP2933811B2 (en) Small motor
JP3877115B2 (en) Spindle motor
JP3479880B2 (en) Spindle motor
JPH0757079B2 (en) Spindle motor