JPH1167446A - Organic electroluminescent element and its manufacture - Google Patents

Organic electroluminescent element and its manufacture

Info

Publication number
JPH1167446A
JPH1167446A JP9224971A JP22497197A JPH1167446A JP H1167446 A JPH1167446 A JP H1167446A JP 9224971 A JP9224971 A JP 9224971A JP 22497197 A JP22497197 A JP 22497197A JP H1167446 A JPH1167446 A JP H1167446A
Authority
JP
Japan
Prior art keywords
sealing
sealant
light
substrate
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9224971A
Other languages
Japanese (ja)
Other versions
JP3755252B2 (en
Inventor
Mitsuru Tanamura
満 棚村
Yoshiharu Sato
佳晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP22497197A priority Critical patent/JP3755252B2/en
Publication of JPH1167446A publication Critical patent/JPH1167446A/en
Application granted granted Critical
Publication of JP3755252B2 publication Critical patent/JP3755252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element capable of preventing the intrusion of moisture and oxygen for a long time securely by setting a sealing compound having a thickness-to-width ratio in a predetermined range by irradiating light converged only on a sealing part formed from the sealing compound and its vicinity, and hardening it. SOLUTION: A sealing compound 16 is coated around a luminous element 15 formed on a board 11 and then, a sealing member 17 is overlaid thereon and thereafter, the sealing compound 16 is hardened so as to bond the board 11 and the sealing member 17 together. In this case, the sealing compound 16 is so coated that the ratio of the thickness (t) to the width (w) of the sealing compound 16 after hardening becomes 1>=(t)/(w)>=0.0001. The sealing compound 16 is hardened as follows: the light from a light source 20 is so converged by way of an optical fiber 21 and a lens system 22 as to have a width approximately equal to that of the sealing compound 16 at the position of the sealing compound 16 made of a photo-curing resin and irradiated on it. The tip of the optical fiber 21 is movable in the direction parallel with the board 11 so that it can irradiate only the region coated with the sealing compound 16 thoroughly and correctly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電界発光素子及
びその製造方法に関するものであり、詳しくは、水分や
酸素の侵入による発光素子の劣化を防止して、発光素子
性能を長期にわたり安定に維持することができる有機電
界発光素子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device and a method of manufacturing the same, and more particularly, to preventing deterioration of the light emitting device due to intrusion of moisture or oxygen and maintaining the performance of the light emitting device stably for a long time. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】有機電界発光素子は、自発光、薄型、高
視野角などの優れた特長を備え、新しい平面型発光源、
表示素子として注目されている。
2. Description of the Related Art An organic electroluminescent device has excellent features such as self-emission, thinness, and a wide viewing angle.
It is receiving attention as a display element.

【0003】従来、有機電界発光素子を製造するために
は、ガラス基板上にITO(イソジウム・スズ酸化物)
などの透明導電膜をスパッタ等の方法で形成した後パタ
ーン加工して下部電極を形成し、この基板を真空蒸着槽
に設置して加熱蒸着などの方法で有機発光層及び上部電
極等を形成し、その後、発光部を外界から遮断する目的
で封止部材等を基板に固着していた。この封止部材とし
ては、一般にガラスが用いられるが、防湿機能を持った
有機材料などを用いたり(特開平7-282975号公報、特開
平8-222368号公報、特開平9-7763号公報)、複数の酸素
/ 水分の吸着封止部材を用いたりしている(特開平7-16
9567号公報、特開平7-211455号公報)。また、封止部材
と基板との間に吸着剤を入れたり(特開平9-35868 号公
報)、不活性ガスで満たすこと(特開平7-320865号公
報、特開平8-302340号公報)なども試みられている。こ
れらの封止部材の固着方法としては、封止部材自身の接
着機能を利用するか、或いはエポキシ系接着剤、熱硬化
性樹脂、光硬化性樹脂等のシール剤が用いられる。
Conventionally, in order to manufacture an organic electroluminescent device, ITO (isodium tin oxide) is formed on a glass substrate.
After forming a transparent conductive film such as by sputtering and patterning to form a lower electrode, this substrate is placed in a vacuum evaporation tank and an organic light emitting layer and an upper electrode are formed by a method such as heating evaporation. Thereafter, a sealing member or the like is fixed to the substrate for the purpose of shielding the light emitting unit from the outside. As the sealing member, glass is generally used, but an organic material having a moisture-proof function or the like may be used (Japanese Patent Application Laid-Open Nos. 7-282975, 8-222368, and 9-7763). , Multiple oxygen
/ Moisture absorption / sealing member is used (Japanese Patent Application Laid-Open
9567, JP-A-7-211455). Also, an adsorbent is inserted between the sealing member and the substrate (Japanese Patent Application Laid-Open No. 9-35868) or filled with an inert gas (Japanese Patent Application Laid-Open Nos. 7-320865 and 8-302340). Have also been tried. As a fixing method of these sealing members, a sealing agent such as an epoxy-based adhesive, a thermosetting resin, a photo-curing resin, or the like is used, using an adhesive function of the sealing member itself.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
封止方法では、水分や酸素の防止効果が十分でない;多
数の封止部材を用いるためコストがかさむ;封止方法が
複雑になり作業効率が悪い;などの問題点があった。ま
た、特に、ガラスを封止部材として用いた場合には、熱
硬化性樹脂で固着しようとすると硬化のための加熱によ
り発光素子自体の特性に悪影響があり、光硬化性樹脂で
固着する場合は硬化のための照射光により発光素子の特
性が変化するという問題があった。また、硬化樹脂の透
湿度も十分に小さくないため、長期的には透湿水分によ
る発光素子の劣化があるといった問題点もあった。
However, the conventional sealing method is not sufficient in preventing moisture and oxygen; the cost is increased due to the use of a large number of sealing members; Bad; In particular, when glass is used as a sealing member, if the glass is used for fixing with a thermosetting resin, the properties of the light emitting element itself are adversely affected by heating for curing, and if the glass is used for fixing with a photocurable resin. There is a problem that the characteristics of the light emitting element are changed by irradiation light for curing. Further, since the moisture permeability of the cured resin is not sufficiently small, there is a problem that the light emitting element is deteriorated due to moisture permeability in a long term.

【0005】本発明は上記従来の問題点を解決し、発光
素子に悪影響を及ぼすことなく、水分や酸素の侵入を長
期にわたり確実に防止することができる有機電界発光素
子及びその製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides an organic electroluminescent device capable of reliably preventing moisture and oxygen from entering for a long period of time without adversely affecting the light emitting device, and a method of manufacturing the same. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明の有機電界発光素
子は、基板とプレート状の封止部材との間に発光素子部
が配置され、該発光素子部の周囲部分において、該基板
と封止部材が光硬化性樹脂を含むシール剤でシールされ
た有機電界発光素子において、該シール剤の厚みtと幅
wとの比が、1 ≧t/w ≧0.0001であり、該シール剤は、
該シール剤によるシール部及びその近傍のみに集光した
光を照射して硬化されていることを特徴とする。
According to the organic electroluminescent device of the present invention, a light emitting element portion is disposed between a substrate and a plate-shaped sealing member, and the substrate is sealed with the substrate around the light emitting element portion. In the organic electroluminescent element in which the stop member is sealed with a sealant containing a photocurable resin, the ratio of the thickness t to the width w of the sealant is 1 ≧ t / w ≧ 0.0001, and the sealant is
It is characterized in that it is cured by irradiating the condensed light only on the seal portion and the vicinity thereof with the sealant.

【0007】本発明の有機電界発光素子の製造方法は、
基板とプレート状の封止部材との間に発光素子部が配置
され、該発光素子部の周囲部分において、該基板と封止
部材が光硬化性樹脂を含むシール剤でシールされた有機
電界発光素子を製造する方法において、該基板と封止部
材との少なくとも一方に光硬化性樹脂を含むシール剤を
付着させた後、該シール剤に光を照射して硬化させる工
程を有する有機電界発光素子の製造方法において、該シ
ール剤を、硬化後の厚みtと幅wとの比が、1≧t/w ≧
0.0001となるように付着させ、該シール剤の付着部及び
その近傍のみに集光した光を照射してシール剤を硬化さ
せることを特徴とする。
The method for manufacturing an organic electroluminescent device of the present invention comprises:
An organic electroluminescence in which a light emitting element portion is disposed between a substrate and a plate-shaped sealing member, and the substrate and the sealing member are sealed with a sealant containing a photocurable resin in a peripheral portion of the light emitting element portion. In a method for manufacturing an element, an organic electroluminescent element having a step of adhering a sealant containing a photocurable resin to at least one of the substrate and the sealing member and then irradiating the sealant with light to cure the sealant. Wherein the ratio of the thickness t to the width w after curing is 1 ≧ t / w ≧
The method is characterized in that the sealant is adhered so as to have a thickness of 0.0001, and the condensed light is applied to only the adhered portion of the sealant and the vicinity thereof to cure the sealant.

【0008】シール剤の厚みtと幅wとの比を、1 ≧t/
w ≧0.0001とすることにより、水分や酸素の侵入を効果
的に防止することができる。
[0008] The ratio of the thickness t to the width w of the sealant is 1 ≧ t /
By setting w ≧ 0.0001, intrusion of moisture or oxygen can be effectively prevented.

【0009】また、シール剤の硬化に当り、シール剤の
付着部分及びその近傍のみに集光した光を照射すること
により、光の照射による発光素子部の性能劣化を防止す
ることができる。
Further, in curing the sealant, by irradiating the condensed light only on the portion where the sealant is attached and in the vicinity thereof, it is possible to prevent the performance of the light emitting element portion from being deteriorated due to the light irradiation.

【0010】この光の集光には、光ファイバーを用いる
か、光レンズとミラーを組み合わせて用いるのが有利で
ある。
In order to collect the light, it is advantageous to use an optical fiber or to use an optical lens and a mirror in combination.

【0011】また、シール剤の付着及び光の照射による
一連のシール作業は水分量10000ppm以下の乾燥雰囲気下
で行うことが好ましい。
Further, it is preferable that a series of sealing operations by applying a sealing agent and irradiating light is performed in a dry atmosphere having a water content of 10,000 ppm or less.

【0012】[0012]

【発明の実施の形態】以下、本発明の有機電界発光素子
及びその製造方法について、図面を参照しながら説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an organic electroluminescent device of the present invention and a method for manufacturing the same will be described with reference to the drawings.

【0013】まず、本発明の有機電界発光素子の発光素
子部について説明する。尚、以下の説明で用いる一般的
な材料に関する説明は特開平8−236271号公報に
詳しい。
First, the light emitting element portion of the organic electroluminescent element of the present invention will be described. Incidentally, a description of general materials used in the following description is described in detail in JP-A-8-236271.

【0014】図1〜3は本発明に用いられる一般的な有
機電界素子の発光素子部の構造例を模式的に示す断面図
であり、11は基板、12は陽極、13は有機発光層、
13aは正孔輸送層、13bは電子輸送層、13cは正
孔注入層、14は陰極、15は発光素子部を各々表わ
す。
1 to 3 are cross-sectional views schematically showing examples of the structure of a light-emitting element portion of a general organic electric field element used in the present invention, wherein 11 is a substrate, 12 is an anode, 13 is an organic light-emitting layer,
13a represents a hole transport layer, 13b represents an electron transport layer, 13c represents a hole injection layer, 14 represents a cathode, and 15 represents a light emitting element portion.

【0015】基板11は有機電界発光素子の支持体とな
るものであり、石英やガラスの板、金属板や金属箔、プ
ラスチックのフィルムやシートなどが用いられる。
The substrate 11 serves as a support for the organic electroluminescent element, and is made of a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like.

【0016】基板11上に設けられる陽極12は、有機
発光層13への正孔注入の役割を果たすものである。こ
の陽極12は、通常、アルミニウム、金、銀、ニッケ
ル、パラジウム、白金等の金属、インジウム及び/又は
スズの酸化物などの金属酸化物、ヨウ化銅などのハロゲ
ン化金属、カーボンブラック、或いは、ポリ(3-メチル
チオフェン)、ポリピロール、ポリアニリン等の導電性
高分子などにより構成される。陽極12は一般にスパッ
タリング法、真空蒸着法などにより形成される。
The anode 12 provided on the substrate 11 plays a role of injecting holes into the organic light emitting layer 13. The anode 12 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, and platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black; It is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, and polyaniline. The anode 12 is generally formed by a sputtering method, a vacuum evaporation method, or the like.

【0017】陽極12上に設けられる有機発光層13
は、電界を与えられた電極間において、陽極から注入さ
れた正孔と陰極から注入された電子を効率よく輸送して
再結合させ、かつ、再結合により効率よく発光する材料
から形成される。通常、この有機発光層13は発光効率
の向上のために、図2に示すように、正孔輸送層13a
と電子輸送層13bに分割して機能分離型にすることが
行われる(Appl. Phys.Lett., 51 巻,913 頁,1987
年)。
Organic light emitting layer 13 provided on anode 12
Is formed of a material that efficiently transports and recombines holes injected from the anode and electrons injected from the cathode between electrodes to which an electric field is applied, and emits light efficiently by the recombination. Usually, the organic light emitting layer 13 is provided with a hole transport layer 13a as shown in FIG.
And the electron transport layer 13b to obtain a function-separated type (Appl. Phys. Lett., 51, 913, 1987).
Year).

【0018】上記の機能分離型素子において、正孔輸送
層13aの材料に要求される条件としては、陽極12か
らの正孔注入効率が高く、かつ、注入された正孔を効率
よく輸送することができることが挙げられる。
In the above function-separated element, the conditions required for the material of the hole transport layer 13a are that the hole injection efficiency from the anode 12 is high and that the injected holes are transported efficiently. What can be done.

【0019】正孔輸送層13aは上記の正孔輸送材料を
塗布法或いは真空蒸着法により前記陽極12上に積層す
ることにより形成される。正孔輸送層13aの膜厚は、
通常、10〜300nm 、好ましくは30〜100nm である。この
ように薄い膜を一様に形成するためには、一般に真空蒸
着法がよく用いられる。
The hole transport layer 13a is formed by laminating the above hole transport material on the anode 12 by a coating method or a vacuum evaporation method. The thickness of the hole transport layer 13a is
Usually, it is 10 to 300 nm, preferably 30 to 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0020】陽極12と正孔輸送層13aのコンタクト
を向上させるために、図3に示すように、陽極12と正
孔輸送層13aとの間に正孔注入層13cを設けること
が考えられる。正孔注入層13cに用いられる材料に
は、陽極12とのコンタクトがよく均一な薄膜が形成で
き、熱的に安定、即ち、融点及びガラス転移温度が高
く、融点としては 300℃以上、ガラス転移温度としては
100℃以上が要求される。
In order to improve the contact between the anode 12 and the hole transport layer 13a, a hole injection layer 13c may be provided between the anode 12 and the hole transport layer 13a as shown in FIG. The material used for the hole injection layer 13c can form a uniform thin film with good contact with the anode 12 and is thermally stable, that is, has a high melting point and a high glass transition temperature, a melting point of 300 ° C. or higher, and a glass transition temperature of 300 ° C. or higher. As the temperature
100 ° C or higher is required.

【0021】正孔注入層13cも、正孔輸送層13aと
同様にして薄膜形成可能であるが、正孔注入層13cの
形成材料が無機物の場合には、更に、スパッタ法や電子
ビーム蒸着法、プラズマCVD法が用いられる。正孔注
入層13cの膜厚は、通常、3 〜100nm 、好ましくは10
〜50nmである。
The hole injection layer 13c can be formed into a thin film in the same manner as the hole transport layer 13a. However, when the material for forming the hole injection layer 13c is an inorganic material, the hole injection layer 13c can be further formed by sputtering or electron beam evaporation. The plasma CVD method is used. The thickness of the hole injection layer 13c is usually 3 to 100 nm, preferably 10 to 100 nm.
5050 nm.

【0022】正孔輸送層13aの上には電子輸送層13
bが設けられる。電子輸送層13bは、電界を与えられ
た電極間において陰極14からの電子を効率よく正孔輸
送層13aの方向に輸送することができる化合物より形
成される。
The electron transport layer 13 is provided on the hole transport layer 13a.
b is provided. The electron transport layer 13b is formed of a compound capable of efficiently transporting electrons from the cathode 14 between the electrodes to which an electric field is applied in the direction of the hole transport layer 13a.

【0023】このように電子輸送層13bに用いられる
電子輸送性化合物としては、陰極14からの電子注入効
率が高く、かつ、注入された電子を効率よく輸送するこ
とができる化合物であることが必要である。そのために
は、電子親和力が大きく、しかも電子移動度が大きく、
更に安定性に優れトラップとなる不純物が製造時や使用
時に発生しにくい化合物であることが要求される。
As described above, the electron transporting compound used in the electron transporting layer 13b must be a compound having a high electron injection efficiency from the cathode 14 and capable of efficiently transporting the injected electrons. It is. For that purpose, the electron affinity is large, the electron mobility is large,
Further, the compound is required to be a compound which has excellent stability and hardly generates impurities serving as a trap during production or use.

【0024】電子輸送層13bも正孔輸送層13aと同
様の方法で形成することができるが、通常は真空蒸着法
が用いられる。電子輸送層13bの膜厚は、通常、10〜
200nm、好ましくは30〜100 nmである。
The electron transporting layer 13b can be formed in the same manner as the hole transporting layer 13a, but usually, a vacuum evaporation method is used. The film thickness of the electron transport layer 13b is usually 10 to
It is 200 nm, preferably 30-100 nm.

【0025】陰極14は、有機発光層13に電子を注入
する役割を果たす。陰極形成材料としては、前記陽極1
2に使用される材料を用いることが可能であるが、効率
よく電子注入を行なうには、仕事関数の低い金属が好ま
しく、スズ、マグネシウム、インジウム、カルシウム、
アルミニウム、銀等の適当な金属又はそれらの合金が用
いられる。陰極14の膜厚は通常、陽極2と同様であ
る。低仕事関数金属からなる陰極を保護する目的で、こ
の上に更に、仕事関数が高く大気に対して安定な金属層
を積層することは素子の安定性を増す上で有効である。
この目的のために、アルミニウム、銀、ニッケル、クロ
ム、金、白金等の金属が使われる。
The cathode 14 plays a role of injecting electrons into the organic light emitting layer 13. As the cathode forming material, the anode 1
Although it is possible to use the material used for No. 2, for efficient electron injection, a metal having a low work function is preferable, and tin, magnesium, indium, calcium,
A suitable metal such as aluminum or silver or an alloy thereof is used. The thickness of the cathode 14 is usually the same as that of the anode 2. To protect the cathode made of a low work function metal, it is effective to further stack a metal layer having a high work function and being stable to the atmosphere to increase the stability of the device.
For this purpose, metals such as aluminum, silver, nickel, chromium, gold, platinum and the like are used.

【0026】なお、図1〜3は本発明に係る発光素子部
の一例を示すものであって、本発明は何ら図示のものに
制限されるものではない。例えば、図1とは逆の構造、
即ち、基板11上に陰極14、有機発光層13、陽極1
2の順に積層することも可能であり、既述したように少
なくとも一方が透明性の高い2枚の基板の間にこのよう
な発光素子部を設けることも可能である。同様に、図2
及び図3に示した前記各層構成とは逆の構造に積層する
ことも可能である。
FIGS. 1 to 3 show an example of a light emitting element section according to the present invention, and the present invention is not limited to those shown in the drawings. For example, the reverse structure of FIG.
That is, the cathode 14, the organic light emitting layer 13, and the anode 1
It is also possible to laminate in the order of 2, and as described above, it is also possible to provide such a light emitting element portion between two substrates, at least one of which has high transparency. Similarly, FIG.
And it is also possible to laminate | stack in the structure opposite to the said each layer structure shown in FIG.

【0027】次に、本発明に係るシール方法について図
4〜10を参照して説明する。
Next, a sealing method according to the present invention will be described with reference to FIGS.

【0028】図4は発光素子部が形成された基板にシー
ル剤を塗布した状態を示す斜視図、図5は、この基板に
封止部材を固着した状態を示す断面図である。
FIG. 4 is a perspective view showing a state in which a sealant is applied to a substrate on which a light emitting element portion is formed, and FIG. 5 is a sectional view showing a state in which a sealing member is fixed to the substrate.

【0029】まず、図4に示す如く、陽極、有機発光層
及び陰極よりなる発光素子部15が形成された基板11
の発光素子部15の周囲にシール剤16を塗布し、その
後、図5に示す如く、封止部材17を重ね合わせた後、
シール剤16を硬化させて基板11と封止部材17とを
固着する。
First, as shown in FIG. 4, a substrate 11 on which a light emitting element portion 15 comprising an anode, an organic light emitting layer and a cathode is formed.
A sealing agent 16 is applied around the light emitting element portion 15 of FIG. 5, and then, as shown in FIG.
The sealing agent 16 is cured to fix the substrate 11 and the sealing member 17 together.

【0030】シール剤16に要求される性能としては、
酸素及び水分の透過性が小さいこと、基板11及び封止
部材17との密着性が高いこと、塗布しやすいことなど
がある。
The performance required of the sealant 16 is as follows:
The permeability of oxygen and moisture is low, the adhesion to the substrate 11 and the sealing member 17 is high, and application is easy.

【0031】本発明においては、シール剤16として、
エポキシ系、アクリル系等の光硬化性樹脂、好ましく
は、エポキシ系の光硬化性樹脂を用いる。なお、本発明
において、光硬化性樹脂とは、硬化に際し少なくとも光
照射を必要とするものであり、光照射のみで硬化させる
ものに限らず、光照射により反応を開始させた後、加熱
処理を行って反応を促進するものも包含する。
In the present invention, as the sealant 16,
An epoxy or acrylic photocurable resin, preferably an epoxy photocurable resin is used. Note that, in the present invention, the photocurable resin is a resin that requires at least light irradiation for curing, and is not limited to one that cures only by light irradiation. It also includes those that perform the reaction to promote the reaction.

【0032】また、封止部材17としては、ガラス板、
PMMA(ポリメチルメタクリレート)などのアクリル
系基板又はフィルム、ポリカーボネート基板又はフィル
ム、ポリオレフィン基板又はフィルムなどの透明或いは
半透明の樹脂基板又はフィルム、好ましくはガラス板を
用いることができ、その厚さは通常の場合、0.1〜
2.0mm程度である。この封止部材は、酸素や水などに
対するガスバリア性を付加された樹脂基板又はフィルム
であっても良く、この場合、ガスバリア性の付加は、酸
化珪素(SiOx )などを蒸着成膜して実現できる。な
お、封止部材は、必ずしも透明又は半透明である必要は
なく、有機電界発光素子の基板及び封止部材の少なくと
も一方が透明又は半透明であれば良い。
As the sealing member 17, a glass plate,
An acrylic substrate or film such as PMMA (polymethyl methacrylate), a polycarbonate substrate or film, a transparent or translucent resin substrate or film such as a polyolefin substrate or film, preferably a glass plate can be used. In case of 0.1 ~
It is about 2.0 mm. This sealing member may be a resin substrate or a film to which a gas barrier property against oxygen, water, or the like is added. In this case, the gas barrier property is realized by depositing silicon oxide (SiO x ) or the like. it can. Note that the sealing member does not necessarily need to be transparent or translucent, and it is sufficient that at least one of the substrate of the organic electroluminescent element and the sealing member is transparent or translucent.

【0033】シール剤16は一般に加圧されたシリンジ
から押し出されたものを順次塗布したり、マスクを介し
たスクリーン印刷法で塗布したりすることにより、基板
11の発光素子部15の周囲部分に付着される。
The sealing agent 16 is generally applied to the peripheral portion of the light emitting element portion 15 of the substrate 11 by sequentially applying a material extruded from a pressurized syringe or by applying a screen printing method through a mask. Is attached.

【0034】本発明においては、硬化後のシール剤16
の厚みtと幅wとの比が、1 ≧t/w≧0.0001、好ましく
は0.1 ≧ t/w≧ 0.001となるようにシール剤を塗布す
る。幅wが大きすぎると基板全体に占めるシール領域が
大きくなり実用的でなく、幅wが小さすぎると酸素や水
分の透過を防ぐ性能が十分には得られない。また、厚み
tが大きすぎると酸素や水分の透過する断面積が大きく
なり防水、防酸素の性能が十分には得られず、また厚み
tは発光素子部の厚み以下に小さくすることは困難であ
る。なお、発光素子部15とシール剤16の塗布部との
間隔sはシール剤の幅wに対して0.5〜20倍程度と
するのが好ましい。この間隔sが大きすぎると基板全体
に占める余剰領域が大きくなり実用的でなく、間隔sが
小さすぎると、シール剤と発光素子部とが近くなりす
ぎ、シール剤の硬化処理時に発光素子部に悪影響を及ぼ
し易い。なお、基板及び封止部材のシール面は図5に示
したように平らであっても良いし、規則的又は不規則な
凹凸があってもよい。
In the present invention, the cured sealant 16
The sealant is applied such that the ratio of the thickness t to the width w satisfies 1 ≧ t / w ≧ 0.0001, preferably 0.1 ≧ t / w ≧ 0.001. If the width w is too large, the sealing area occupying the entire substrate becomes large, which is not practical. If the width w is too small, the performance of preventing the permeation of oxygen and moisture cannot be sufficiently obtained. On the other hand, if the thickness t is too large, the cross-sectional area through which oxygen or moisture permeates becomes large, so that sufficient waterproof and oxygen-proof performance cannot be obtained. is there. It is preferable that the distance s between the light emitting element portion 15 and the application portion of the sealant 16 is about 0.5 to 20 times the width w of the sealant. If the interval s is too large, the surplus area occupying the entire substrate becomes large, which is not practical. If the interval s is too small, the sealant and the light emitting element portion become too close to each other, and the light emitting element portion is hardened during the curing treatment of the sealant. Easily affected. The sealing surfaces of the substrate and the sealing member may be flat as shown in FIG. 5, or may have regular or irregular irregularities.

【0035】図6は、規則的な凹凸を持ったシール部の
一例を示す断面図であり、基板11及び封止部材17の
シール面には規則的な矩形の凹凸11A,17Aが設け
られ、これらの凹凸11A,17Aがかみ合ってシール
剤16を挟んでシールしている。このような形状では、
基板全体に占めるシール領域を大きくすることなく実質
的なシール面積を大きくすることができシール強度の向
上に効果的である。
FIG. 6 is a sectional view showing an example of a seal portion having regular irregularities. Regular rectangular irregularities 11A and 17A are provided on the sealing surfaces of the substrate 11 and the sealing member 17. These irregularities 11A and 17A mesh with each other to seal with the sealant 16 therebetween. In such a shape,
The substantial sealing area can be increased without increasing the sealing area occupying the entire substrate, which is effective in improving the sealing strength.

【0036】また、図7は、不規則的な凹凸を持ったシ
ール部の一例を示す基板のシール部の平面図、図8はこ
の基板を用いたシール部を示す断面図である。基板11
及び封止部材17のシール面には略球面形の凸部11
B,17Bがそれぞれ不規則的に設けられており、これ
らが互いにかみ合ってシール剤16を挟んでシールして
いる。このような形状でも図6の場合と同様に良好なシ
ール効果が得られる。
FIG. 7 is a plan view of a seal portion of a substrate showing an example of a seal portion having irregular irregularities, and FIG. 8 is a sectional view showing a seal portion using this substrate. Substrate 11
And a substantially spherical projection 11 on the sealing surface of the sealing member 17.
B and 17B are provided irregularly, respectively, and mesh with each other to seal with the sealant 16 interposed therebetween. Even with such a shape, a good sealing effect can be obtained as in the case of FIG.

【0037】なお、シール面にこのような凹凸を設ける
場合、そのJIS B0601による10点平均粗さR
zが0.1〜20μm程度とするのが好ましい。この表
面粗さが0.1μm未満では、凹凸を形成したことによ
るシール効果の向上効果は十分ではなく、100μmを
超えると表面が粗くなりすぎ、シール性が低下する場合
がある。このようにシール面に凹凸を設けた場合におい
ても、この表面粗さを加味したシール剤の厚さtと幅w
との比t/w が前記範囲となるようにする。
When such irregularities are provided on the sealing surface, the ten-point average roughness R according to JIS B0601 is used.
It is preferable that z is about 0.1 to 20 μm. If the surface roughness is less than 0.1 μm, the effect of improving the sealing effect due to the formation of the unevenness is not sufficient. If the surface roughness exceeds 100 μm, the surface becomes too rough and the sealing performance may be reduced. Even when the seal surface is provided with irregularities, the thickness t and the width w of the sealant taking this surface roughness into account.
So that the ratio t / w to the above range is in the above range.

【0038】次に、シール剤として光硬化性樹脂を用い
封止部材としてガラス板を用いて、本発明方法によりシ
ールを行う方法について説明する。
Next, a method of sealing by the method of the present invention using a photocurable resin as a sealant and a glass plate as a sealing member will be described.

【0039】図9は光ファイバーを用いるシール方法を
示す模式的断面図であり、図10は光レンズとミラーを
用いるシール方法を示す模式的断面図である。図9,1
0において、20は光源、21は光ファイバー、22は
レンズ系、23は光路、24はレンズ、25はミラーを
表す。
FIG. 9 is a schematic sectional view showing a sealing method using an optical fiber, and FIG. 10 is a schematic sectional view showing a sealing method using an optical lens and a mirror. Figures 9 and 1
At 0, 20 denotes a light source, 21 denotes an optical fiber, 22 denotes a lens system, 23 denotes an optical path, 24 denotes a lens, and 25 denotes a mirror.

【0040】図9に示す方法では、光源20から発せら
れた光は導波用の光ファイバー21を通って集光用のレ
ンズ系22を通過する。レンズ系22から出た光は、光
硬化性樹脂よりなるシール剤16の部分で、シール剤1
6の幅と同程度に集光され照射される。光ファイバー2
1の先端部分は基板11に対して水平方向に移動可能に
なっており、シール剤16の塗布領域のみを正確に光照
射していくことができる。また、照射光量や移動スピー
ドは任意に設定でき、シール剤の光硬化性樹脂の硬化条
件に合った制御が可能である。
In the method shown in FIG. 9, the light emitted from the light source 20 passes through the optical fiber 21 for waveguide and the lens system 22 for light collection. Light emitted from the lens system 22 is applied to the sealant 16 made of a photocurable resin,
The light is condensed and irradiated to the same extent as the width of 6. Optical fiber 2
The front end portion 1 is movable in the horizontal direction with respect to the substrate 11, so that only the application region of the sealant 16 can be accurately irradiated with light. In addition, the irradiation light amount and the moving speed can be arbitrarily set, and control can be performed in accordance with the curing conditions of the photocurable resin of the sealant.

【0041】図10に示す方法では、光源20から発せ
られた光はレンズ24で集光されミラー25に反射して
シール剤16に達する。ここで光源20から出た光は、
レンズ24によりシール剤16の幅と同程度に集光され
る。ミラー25は光の反射角度を自由に変えられるよう
に設計されており、これによりシール剤の塗布領域のみ
を正確に光照射することができる。また、照射光量やミ
ラーの移動スピードは任意に設定でき、光硬化性樹脂の
硬化条件に合わせて制御可能である。
In the method shown in FIG. 10, the light emitted from the light source 20 is condensed by the lens 24 and reflected by the mirror 25 to reach the sealant 16. Here, the light emitted from the light source 20 is
The light is condensed by the lens 24 to the same extent as the width of the sealant 16. The mirror 25 is designed so that the reflection angle of light can be freely changed, and thereby, it is possible to accurately irradiate light only to the application region of the sealant. Further, the irradiation light amount and the moving speed of the mirror can be arbitrarily set, and can be controlled according to the curing conditions of the photocurable resin.

【0042】なお、シール部に照射する光は、照射位置
において、そのスポットの直径がシール剤の幅wに対し
て1〜10倍の大きさに集光されていることが好まし
い。
It is preferable that the light irradiated to the seal portion is focused at the irradiation position so that the diameter of the spot is 1 to 10 times the width w of the sealant.

【0043】また、シール剤としての光硬化性樹脂を前
記t/w 比となるような塗布量で容易に塗付する観点か
ら、このシール剤の硬化前の粘度は1 〜10000 Pa・sであ
ることが好ましい。
Further, from the viewpoint of easily applying the photocurable resin as a sealant at an application amount that satisfies the above-mentioned t / w ratio, the viscosity of the sealant before curing is 1 to 10,000 Pa · s. Preferably, there is.

【0044】本発明においては、シール作業中の発光素
子の水分や酸素による劣化を防止するために、シール剤
の塗布から硬化までの一連のシール作業を水分量10000p
pm以下、特に1ppm 以下の乾燥雰囲気下で行うのが好ま
しく、実用的には、窒素、アルゴン等の不活性ガスで満
たされたドライボックス内でシール作業を行うのが好ま
しい。
In the present invention, in order to prevent the light emitting element from being deteriorated by moisture or oxygen during the sealing operation, a series of sealing operations from application of the sealing agent to curing are performed with a water content of 10,000 p.m.
The sealing is preferably performed in a dry atmosphere of pm or less, particularly 1 ppm or less, and practically, the sealing operation is preferably performed in a dry box filled with an inert gas such as nitrogen or argon.

【0045】なお、図1〜10に示す有機電界発光素子
及びそのシール方法は本発明の一例であって、何ら本発
明を制限するものではない。シール部の形状や硬化に用
いる装置としても他の様々な態様を採用することができ
る。
The organic electroluminescent device shown in FIGS. 1 to 10 and the sealing method thereof are examples of the present invention, and do not limit the present invention. Various other aspects can also be adopted as a device used for the shape and curing of the seal portion.

【0046】[0046]

【実施例】次に、実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0047】実施例1 まず、図3に示す構造を有する有機電界発光素子を以下
の方法で作製した。
Example 1 First, an organic electroluminescent device having the structure shown in FIG. 3 was manufactured by the following method.

【0048】ガラス基板11として厚さ1.1mm のコーニ
ング社製1737ガラスを用い、その上に陽極12としてI
TO透明導電膜を120nm 堆積(ジオマテック社製;電子
ビーム成膜品;シート抵抗20Ω)し、ITO膜付きガラ
ス基板を得た。この際、ガラス基板の表面はシール部も
含めて平坦なもの(Rz<10nm; Rz:10 点平均粗さ(JISB0
601) )を採用した。
A Corning 1737 glass having a thickness of 1.1 mm was used as the glass substrate 11, and an I
A TO transparent conductive film was deposited to a thickness of 120 nm (manufactured by Geomatic Corporation; electron beam film-formed product; sheet resistance: 20Ω) to obtain a glass substrate with an ITO film. At this time, the surface of the glass substrate is flat including the sealing portion (Rz <10 nm; Rz: 10-point average roughness (JISB0
601)) was adopted.

【0049】ガラス基板11上に堆積されたITO透明
導電膜を通常のフォトリソグラフィ技術と塩酸エッチン
グを用いて線幅が2mmのストライプを形成し陽極12
とした。パターン形成したITO基板を、アセトンによ
る超音波洗浄、純水による水洗、イソプロピルアルコー
ルによる超音波洗浄の順で洗浄後、窒素ブローで乾燥さ
せ、紫外線/オゾン洗浄を10分間行った後、真空蒸着
槽内に設置し、クライオポンプを用いて1.1 ×10-6Torr
(約1.5 ×10-4Pa)まで真空引きした。
The ITO transparent conductive film deposited on the glass substrate 11 is formed into a stripe having a line width of 2 mm by using a usual photolithography technique and hydrochloric acid etching.
And The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and subjected to ultraviolet / ozone cleaning for 10 minutes. 1.1 × 10 -6 Torr using a cryopump
(About 1.5 × 10 −4 Pa).

【0050】次に、真空蒸着槽内に配置されたモリブデ
ンボートに入れた以下に示す銅フタロシアニン(H1)
(結晶形はβ型)を加熱して蒸着を行った。真空度1.1
×10-6Torr(約1.5 ×10-4Pa)、蒸着時間1分で蒸着を
行ない、膜厚20nmの正孔注入層13cを得た。
Next, the following copper phthalocyanine (H1) was placed in a molybdenum boat placed in a vacuum evaporation tank.
(The crystal form was β-form) was heated to perform vapor deposition. Vacuum degree 1.1
Vapor deposition was performed at × 10 −6 Torr (about 1.5 × 10 −4 Pa) for a deposition time of 1 minute to obtain a hole injection layer 13c having a thickness of 20 nm.

【0051】[0051]

【化1】 Embedded image

【0052】次に、同じく真空蒸着槽内に配置されたセ
ラミックるつぼに入れた、以下に示す、4,4'- ビス[N-
(1- ナフチル)-N-フェニルアミノ]ビフェニル(H2)
をるつぼの周囲のタンタル線ヒーターで加熱して正孔注
入層13cの上に積層した。この時のるつぼの温度は、
230 〜240 ℃の範囲で制御した。蒸着時の真空度8 ×10
-7Torr(約1.1 ×10-4Pa)、蒸着時間1 分50秒で膜厚60
nmの正孔輸送層13aを得た。
Next, the following 4,4′-bis [N-butane] was placed in a ceramic crucible similarly arranged in a vacuum evaporation tank.
(1-Naphthyl) -N-phenylamino] biphenyl (H2)
Was heated with a tantalum wire heater around the crucible and laminated on the hole injection layer 13c. The temperature of the crucible at this time is
The temperature was controlled in the range of 230 to 240 ° C. Vacuum degree during evaporation 8 x 10
-7 Torr (approximately 1.1 × 10 -4 Pa), deposition time 1 minute 50 seconds and film thickness 60
A hole transport layer 13a having a thickness of nm was obtained.

【0053】[0053]

【化2】 Embedded image

【0054】次に、発光機能を有する電子輸送層13b
の材料として、以下の構造式に示すアルミニウムの8-ヒ
ドロキシキノリン錯体Al(C9 6 NO)3 (E1)
を上記正孔輸送層13aの上に同様にして蒸着を行っ
た。この時のるつぼの温度は310〜320℃の範囲で
制御した。蒸着時の真空度は9 ×10-7Torr(約1.2 ×10
-4Pa)、蒸着時間は2 分40秒で、蒸着された電子輸送層
13bの膜厚は75nmであった。
Next, the electron transport layer 13b having a light emitting function
As a material of the compound, aluminum 8-hydroxyquinoline complex represented by the following structural formula Al (C 9 H 6 NO) 3 (E1)
Was similarly deposited on the hole transport layer 13a. At this time, the temperature of the crucible was controlled in the range of 310 to 320 ° C. The degree of vacuum during vapor deposition is 9 × 10 −7 Torr (about 1.2 × 10
-4 Pa), the deposition time was 2 minutes and 40 seconds, and the thickness of the deposited electron transport layer 13b was 75 nm.

【0055】[0055]

【化3】 Embedded image

【0056】上記の正孔注入層13c、正孔輸送層13
a及び電子輸送層13bを真空蒸着する時の基板温度は
室温に保持した。
The above-described hole injection layer 13c and hole transport layer 13
The substrate temperature when vacuum-depositing the electron transport layer 13a and the electron transport layer 13b was kept at room temperature.

【0057】次に、真空槽内で、幅2mm のストライプ状
の孔を持つシャドウマスクを、その孔の長手方向がパタ
ーン加工された陽極12の線と直交するように有機層が
蒸着された基板の前に配置した。その後、陰極14とし
て、マグネシウムと銀の合金電極を2元同時蒸着法によ
って膜厚100nm となるように蒸着した。蒸着はモリブデ
ンボートを用いて、真空度1 ×10-5Torr(約1.3 ×10-3
Pa)、蒸着時間3 分10秒で行った。また、マグネシウム
と銀の原子比は10:1.2とした。更に続いて、真空蒸着槽
内において、アルミニウムをモリブデンボートを用いて
100nm の膜厚でマグネシウム・銀合金膜の上に積層して
陰極14を完成させた。アルミニウム蒸着時の真空度は
2.3 ×10-5Torr(約3.1 ×10-3Paa)、蒸着時間は1 分
40秒であった。以上のマグネシウム・銀合金とアルミニ
ウムの2層型陰極の蒸着時の基板温度は室温に保持し
た。
Next, in a vacuum chamber, a shadow mask having a stripe-shaped hole having a width of 2 mm was placed on a substrate on which an organic layer was deposited so that the longitudinal direction of the hole was perpendicular to the line of the patterned anode 12. Placed before. Thereafter, as a cathode 14, an alloy electrode of magnesium and silver was deposited by a dual simultaneous evaporation method so as to have a thickness of 100 nm. Vapor deposition was performed using a molybdenum boat and the degree of vacuum was 1 × 10 −5 Torr (about 1.3 × 10 −3 Torr).
Pa) with a deposition time of 3 minutes and 10 seconds. The atomic ratio of magnesium to silver was 10: 1.2. Then, in a vacuum evaporation tank, aluminum was
The cathode 14 was completed by laminating on a magnesium-silver alloy film with a thickness of 100 nm. The degree of vacuum during aluminum deposition
2.3 × 10 -5 Torr (about 3.1 × 10 -3 Paa), deposition time is 1 minute
40 seconds. The substrate temperature at the time of vapor deposition of the two-layered cathode of magnesium / silver alloy and aluminum was kept at room temperature.

【0058】次に、陰極まで形成し終えた基板を窒素ガ
スで満たされたドライボックス(水分量1ppm )内に移
動し、シール作業を行った。まず、図4に示す如く、素
子の発光素子部15の周囲にエポキシ系の光硬化性樹脂
(粘度:45Pa・s 、硬化条件:4000mJ/cm2)を2mmの間
隔(図5においてs=2mm)をあけて幅1mm (図5にお
いてw=1mm )で塗布した。ここで陽極及び陰極の電極
取り出し部分はシールの外側となるようにした。次に、
図5に示す如く、封止部材として厚さ0.7mm のガラス板
を載せ、その後図9に示す如く、出力200Wの高圧水銀ラ
ンプからガラスファイバーにより導かれた紫外光を直径
5mm のスポットに集光して封止部材越しに光硬化性樹脂
のシール剤に照射し、毎秒2cm の速度でシール部を一周
した。この照射により光硬化性樹脂は完全に硬化した。
Next, the substrate having been formed up to the cathode was moved into a dry box (water content: 1 ppm) filled with nitrogen gas to perform a sealing operation. First, as shown in FIG. 4, an epoxy-based photocurable resin (viscosity: 45 Pa · s, curing condition: 4000 mJ / cm 2 ) is provided around the light emitting element portion 15 of the element at a distance of 2 mm (s = 2 mm in FIG. 5). ) And a width of 1 mm (w = 1 mm in FIG. 5). Here, the electrode extraction portions of the anode and the cathode were arranged outside the seal. next,
As shown in FIG. 5, a glass plate having a thickness of 0.7 mm is placed as a sealing member, and then, as shown in FIG.
The light was condensed on a spot of 5 mm and irradiated onto the sealing material of the photocurable resin through the sealing member, and the sealing part was rotated at a speed of 2 cm per second. This irradiation completely cured the photocurable resin.

【0059】その後、ドライボックスから素子を取り出
し、2mm ×2mm サイズの有機電界発光素子を得た。この
ときのシール部の厚みは20μm であり、シール部の厚み
t と幅W の比t/w は0.02であった。
Then, the device was taken out of the dry box to obtain an organic electroluminescent device having a size of 2 mm × 2 mm. At this time, the thickness of the seal portion is 20 μm, and the thickness of the seal portion is
The ratio t / w between t and width W was 0.02.

【0060】この素子に陽極12にプラス、陰極14に
マイナスを接続し、15mA/cm2の直流電流を通電したとこ
ろ、電圧は8.5V、発光輝度は1250cd/m2 であった。ま
た、同条件で素子を駆動し続けたところ輝度が半分にな
るのに2780時間かかった。
When a positive electrode was connected to the anode 12 and a negative electrode was connected to the cathode 14 and a direct current of 15 mA / cm 2 was applied to the device, the voltage was 8.5 V and the light emission luminance was 1250 cd / m 2 . When the device was continuously driven under the same conditions, it took 2780 hours for the luminance to be reduced to half.

【0061】実施例2 基板11及び封止部材17のシール部分を事前に粗くし
ておき、その他は実施例1と同様の方法で素子を作製し
た。基板11及び封止部材17のシール部分の平坦性は
共にRz値で1.2 μm であった。
Example 2 An element was manufactured in the same manner as in Example 1 except that the sealing portions of the substrate 11 and the sealing member 17 were roughened in advance. The flatness of the sealing portions of the substrate 11 and the sealing member 17 was both 1.2 μm in Rz value.

【0062】この素子のシール部の見かけの幅は1mm 、
見かけの厚みは20μm であり実施例1と同様あった。し
かしながらシール部の微細な凹凸の影響から、実質的な
シール部の厚みと幅の比t/w は0.02より小さいと推察さ
れる。表面粗さRzの値から見積もった実効的なt/w 比は
0.005 であった。
The apparent width of the sealing portion of this element is 1 mm,
The apparent thickness was 20 μm, which was the same as in Example 1. However, from the influence of the fine irregularities of the seal portion, it is estimated that the substantial thickness / width ratio t / w of the seal portion is smaller than 0.02. The effective t / w ratio estimated from the value of the surface roughness Rz is
It was 0.005.

【0063】この素子に実施例1と同様の方法で15mA/c
m2の直流電流を通電したところ、電圧は8.4V、発光輝度
は1230cd/m2 と実施例1とほぼ同様の結果であった。次
に、同条件で素子を駆動し続けたところ輝度が半分にな
る時間は3360時間と実施例1より長時間にであった。
This device was charged with 15 mA / c in the same manner as in Example 1.
When a DC current of m 2 was applied, the voltage was 8.4 V and the light emission luminance was 1230 cd / m 2 , almost the same results as in Example 1. Next, when the device was continuously driven under the same conditions, the time during which the luminance was reduced to half was 3360 hours, which was longer than in Example 1.

【0064】実施例3 陰極14までは実施例1と同様の方法で作製し、その後
以下の方法でシールを行った。
Example 3 Up to the cathode 14, the same method as in Example 1 was used, and then sealing was performed in the following manner.

【0065】まず、陰極まで形成し終えた基板を窒素ガ
スで満たされたドライボックス(水分量1ppm )内に移
動し、発光素子部の周囲に実施例1と同様のエポキシ系
の光硬化性樹脂を2mmの間隔をあけて幅0.2mm で塗布し
た。塗布時には厚みを増すために塗布速度を実施例1に
比較し遅くして行った。その後は実施例1と同様に封止
部材を載せ、光硬化性樹脂のシール剤部分のみに光照射
してシール剤を完全に硬化させた。
First, the substrate on which the formation of the cathode was completed was moved into a dry box (water content: 1 ppm) filled with nitrogen gas, and an epoxy-based photocurable resin similar to that of Example 1 was placed around the light emitting element portion. Was applied with a width of 0.2 mm at an interval of 2 mm. At the time of coating, in order to increase the thickness, the coating speed was lower than that in Example 1. Thereafter, the sealing member was placed in the same manner as in Example 1, and only the sealing agent portion of the photocurable resin was irradiated with light to completely cure the sealing agent.

【0066】その後、ドライボックスから素子を取り出
し、2mm ×2mm サイズの有機電界発光素子を得た。この
ときのシール部の厚みと幅の比t/w は0.2 あった。
Thereafter, the device was taken out of the dry box to obtain an organic electroluminescent device having a size of 2 mm × 2 mm. At this time, the ratio t / w between the thickness and the width of the seal portion was 0.2.

【0067】この素子に実施例1と同様の方法で15mA/c
m2の直流電流を通電したところ、電圧は8.4V、発光輝度
は1220cd/m2 と実施例1とほぼ同様の良好な結果が得ら
れた。次に、同条件で素子を駆動し続けたところ輝度が
半分になる時間は2540時間であった。
This device was charged with 15 mA / c in the same manner as in Example 1.
When a DC current of m 2 was applied, the voltage was 8.4 V, the light emission luminance was 1220 cd / m 2 , and almost the same good results as in Example 1 were obtained. Next, when the device was continuously driven under the same conditions, the time when the luminance was reduced to half was 2540 hours.

【0068】比較例1 シール部の厚みと幅の比t/w が2.0 となるようにしたこ
と以外は実施例3と同様にして有機電界発光素子を製造
した。
Comparative Example 1 An organic electroluminescent device was manufactured in the same manner as in Example 3 except that the ratio t / w of the thickness and the width of the seal portion was set to 2.0.

【0069】この素子に実施例1と同様の方法で15mA/c
m2の直流電流を通電したところ、電圧は8.6V、発光輝度
は1190cd/m2 と実施例1とほぼ同様の良好な結果が得ら
れたが、同条件で素子を駆動し続けたところ輝度が半分
になる時間は1140時間と著しく劣るものであった。
This device was charged with 15 mA / c in the same manner as in Example 1.
When a DC current of m 2 was applied, the voltage was 8.6 V, and the emission luminance was 1190 cd / m 2 , which was almost the same good result as in Example 1. However, when the element was continuously driven under the same conditions, the luminance was increased. The time to halve was significantly inferior to 1140 hours.

【0070】比較例2,3 比較のため、陰極14までは実施例1と同様の方法で作
製し、その後以下の方法でシールを行った。
Comparative Examples 2 and 3 For comparison, up to the cathode 14, the same method as in Example 1 was used, and then sealing was performed by the following method.

【0071】まず、陰極まで形成し終えた基板を窒素ガ
スで満たされたドライボックス内に移動し、発光素子部
の周囲に実施例1と同様のエポキシ系の光硬化性樹脂を
2mmの間隔をあけて幅0.2mm で塗布した。次に実施例1
と同様の封止部材を固着した後、コンベア式の紫外光照
射機を用い、封止部材側より光硬化性樹脂部を含む素子
全面に光照射してシール剤を完全に硬化させた。このと
きの照射光量は実施例1と同様とした。
First, the substrate on which the formation up to the cathode was completed was moved into a dry box filled with nitrogen gas, and the same epoxy-based photocurable resin as in Example 1 was applied around the light emitting element portion.
It was applied at a width of 0.2 mm with an interval of 2 mm. Next, Example 1
After the same sealing member was fixed, the entire surface of the element including the photocurable resin portion was irradiated with light from the sealing member side using a conveyor-type ultraviolet light irradiator to completely cure the sealant. The irradiation light amount at this time was the same as in Example 1.

【0072】その後、ドライボックスから素子を取り出
し、2mm ×2mm サイズの有機電界発光素子が得られた。
このときのシール部の厚みと幅の比t/w は0.02(比較例
2)又は2.0 (比較例3)あった。
Thereafter, the device was taken out of the dry box, and an organic electroluminescent device having a size of 2 mm × 2 mm was obtained.
At this time, the ratio t / w between the thickness and the width of the seal portion was 0.02 (Comparative Example 2) or 2.0 (Comparative Example 3).

【0073】この素子に実施例1と同様の方法で15mA/c
m2の直流電流を通電したところ、電圧は12.3V と高電圧
化し、発光輝度は580 又は565cd/m2と低かった。次に、
同条件で素子を駆動し続けたところ輝度が半分になる時
間は1870又は730 時間と短かった。
This device was charged with 15 mA / c in the same manner as in Example 1.
When a DC current of m 2 was applied, the voltage was increased to 12.3 V, and the emission luminance was as low as 580 or 565 cd / m 2 . next,
When the device was continuously driven under the same conditions, the time when the luminance was reduced to half was as short as 1870 or 730 hours.

【0074】表1に実施例1〜3及び比較例1〜3の発
光発光特性の結果をまとめて示す。なお、上記比較例1
及び比較例3では、t/w =2.0 とするために、光硬化性
樹脂の塗布時には塗布速度を実施例1の場合よりも遅く
して、塗布厚みを400 μm と厚くした。
Table 1 shows the results of the emission characteristics of Examples 1 to 3 and Comparative Examples 1 to 3. Note that the above comparative example 1
In Comparative Example 3, in order to set t / w = 2.0, the application speed was slower than that in Example 1 when applying the photocurable resin, and the application thickness was increased to 400 μm.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【発明の効果】以上詳述した通り、本発明によれば、有
機電界発光素子のシール剤の厚みと幅との比t/W を1 〜
0.0001とすることにより、素子の性能劣化の原因の1つ
である水分と酸素の進入を効率的に抑制することができ
る。更に、シール剤に光硬化性樹脂を用いシール部のみ
に光照射してシール剤を硬化させることにより、紫外光
照射による素子の性能劣化も防ぐことができる。
As described above in detail, according to the present invention, the ratio t / W of the thickness and the width of the sealant of the organic electroluminescent device is set to 1 to
By setting the value to 0.0001, it is possible to efficiently suppress the entry of moisture and oxygen, which is one of the causes of performance degradation of the element. Furthermore, by using a photocurable resin as the sealant and irradiating only the seal portion with light to cure the sealant, deterioration of the performance of the element due to ultraviolet light irradiation can be prevented.

【0077】従って、本発明による有機電界発光素子は
高性能のフラットパネル・ディスプレイ(例えばOAコ
ンピュータ用、携帯型端末用、薄型テレビなど)として
の応用が考えられ、その技術的価値は大きいものであ
る。
Therefore, the organic electroluminescent device according to the present invention can be applied to a high-performance flat panel display (for example, for an OA computer, a portable terminal, a flat-screen television, etc.), and its technical value is large. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機電界発光素子の層構成の一例を示した模式
的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a layer configuration of an organic electroluminescent device.

【図2】有機電界発光素子の別の層構成の例を示した模
式的断面図である。
FIG. 2 is a schematic cross-sectional view showing another example of the layer configuration of the organic electroluminescent element.

【図3】有機電界発光素子の更に別の層構成の例を示し
た模式的断面図である。
FIG. 3 is a schematic cross-sectional view showing another example of the layer configuration of the organic electroluminescent element.

【図4】発光素子部の周囲のシール剤の塗布方法を示す
模式的斜視図である。
FIG. 4 is a schematic perspective view showing a method of applying a sealant around a light emitting element unit.

【図5】基板と封止部材に挟まれたシール部を示した模
式的断面図である。
FIG. 5 is a schematic cross-sectional view showing a seal portion sandwiched between a substrate and a sealing member.

【図6】シール部の他の例を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing another example of the seal portion.

【図7】基板のシール面を示す模式的平面図である。FIG. 7 is a schematic plan view showing a sealing surface of a substrate.

【図8】シール部の別の例を示す模式的断面図である。FIG. 8 is a schematic cross-sectional view showing another example of the seal portion.

【図9】光照射方法の一例を示す模式的断面図である。FIG. 9 is a schematic sectional view showing an example of a light irradiation method.

【図10】光照射方法の別の例を示す模式的断面図であ
る。
FIG. 10 is a schematic sectional view showing another example of the light irradiation method.

【符号の説明】[Explanation of symbols]

11 基板 12 陽極 13 有機発光層 13a 正孔輸送層 13b 電子輸送層 13c 正孔注入層 14 陰極 15 発光素子部 16 シール剤 17 封止部材 20 光源 21 光ファイバー 22 レンズ系 23 光路 24 レンズ 25 ミラー DESCRIPTION OF SYMBOLS 11 Substrate 12 Anode 13 Organic light emitting layer 13a Hole transport layer 13b Electron transport layer 13c Hole injection layer 14 Cathode 15 Light emitting element part 16 Sealant 17 Sealing member 20 Light source 21 Optical fiber 22 Lens system 23 Optical path 24 Lens 25 Mirror

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板とプレート状の封止部材との間に発
光素子部が配置され、該発光素子部の周囲部分におい
て、該基板と封止部材が光硬化性樹脂を含むシール剤で
シールされた有機電界発光素子において、 該シール剤の厚みtと幅wとの比が、1 ≧t/w ≧0.0001
であり、該シール剤は、該シール剤によるシール部及び
その近傍のみに集光した光を照射して硬化されているこ
とを特徴とする有機電界発光素子。
1. A light emitting element portion is disposed between a substrate and a plate-shaped sealing member, and the substrate and the sealing member are sealed with a sealant containing a photocurable resin in a peripheral portion of the light emitting element portion. In the manufactured organic electroluminescent device, the ratio of the thickness t to the width w of the sealant is 1 ≧ t / w ≧ 0.0001
An organic electroluminescent device, wherein the sealing agent is cured by irradiating light condensed only on the sealing portion and the vicinity of the sealing portion with the sealing agent.
【請求項2】 基板とプレート状の封止部材との間に発
光素子部が配置され、該発光素子部の周囲部分におい
て、該基板と封止部材が光硬化性樹脂を含むシール剤で
シールされた有機電界発光素子を製造する方法におい
て、 該基板と封止部材との少なくとも一方に光硬化性樹脂を
含むシール剤を付着させた後、該シール剤に光を照射し
て硬化させる工程を有する有機電界発光素子の製造方法
において、 該シール剤を、硬化後の厚みtと幅wとの比が、1 ≧t/
w ≧0.0001となるように付着させ、該シール剤の付着部
及びその近傍のみに集光した光を照射してシール剤を硬
化させることを特徴とする有機電界発光素子の製造方
法。
2. A light emitting element portion is disposed between a substrate and a plate-shaped sealing member, and the substrate and the sealing member are sealed with a sealant containing a photocurable resin in a peripheral portion of the light emitting element portion. In a method of manufacturing the organic electroluminescent device, a step of attaching a sealant containing a photocurable resin to at least one of the substrate and the sealing member, and then irradiating the sealant with light to cure the sealant. In the method for producing an organic electroluminescent device, the ratio of the thickness t to the width w after curing of the sealant is 1 ≧ t /
A method for manufacturing an organic electroluminescent device, comprising: attaching the sealing agent so as to satisfy w ≧ 0.0001, and irradiating the condensed light only to the portion where the sealing agent is attached and the vicinity thereof to cure the sealing agent.
【請求項3】 請求項2の方法において、光ファイバー
を用いて光を照射することを特徴とする有機電界発光素
子の製造方法。
3. The method according to claim 2, wherein light is irradiated using an optical fiber.
【請求項4】 請求項2の方法において、光レンズ及び
ミラーを用いて光を照射することを特徴とする有機電界
発光素子の製造方法。
4. The method according to claim 2, wherein light is irradiated using an optical lens and a mirror.
【請求項5】 請求項2ないし4のいずれか1項の方法
において、該シール剤の付着及び光の照射を水分量1000
0ppm以下の乾燥雰囲気下で行うことを特徴とする有機電
界発光素子の製造方法。
5. The method according to claim 2, wherein the adhesion of the sealant and the irradiation of light are performed with a water content of 1000.
A method for producing an organic electroluminescent device, which is performed in a dry atmosphere of 0 ppm or less.
JP22497197A 1997-08-21 1997-08-21 Organic electroluminescent device and manufacturing method thereof Expired - Fee Related JP3755252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22497197A JP3755252B2 (en) 1997-08-21 1997-08-21 Organic electroluminescent device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22497197A JP3755252B2 (en) 1997-08-21 1997-08-21 Organic electroluminescent device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1167446A true JPH1167446A (en) 1999-03-09
JP3755252B2 JP3755252B2 (en) 2006-03-15

Family

ID=16822086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22497197A Expired - Fee Related JP3755252B2 (en) 1997-08-21 1997-08-21 Organic electroluminescent device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3755252B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971564A2 (en) * 1998-07-09 2000-01-12 Eastman Kodak Company Organic electroluminescent display panel having a cover with radiationcured perimeter seal
JP2002329576A (en) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
JP2003066868A (en) * 2001-08-24 2003-03-05 Matsushita Electric Ind Co Ltd Display panel and information display device using the same
JP2003229250A (en) * 2001-11-16 2003-08-15 Semiconductor Energy Lab Co Ltd Light emitting device
JP2004006337A (en) * 2002-04-25 2004-01-08 Lg Phillips Lcd Co Ltd Organic electroluminescent element
GB2407436B (en) * 2002-08-17 2006-07-05 Cambridge Display Tech Ltd Organic optoelectronic device encapsulation package
JP2006236880A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Organic electroluminescent device, its manufacturing method and electronic apparatus
US7598672B2 (en) 2005-03-07 2009-10-06 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing organic electroluminescent device, and electronic apparatus
KR100926116B1 (en) 2003-03-06 2009-11-11 엘지디스플레이 주식회사 Encapsulation cap
US7629617B2 (en) 2001-11-16 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2009545113A (en) * 2006-07-28 2009-12-17 サン−ゴバン グラス フランス Encapsulated light emitting device
EP1814185A3 (en) * 2006-01-27 2011-07-27 Samsung Mobile Display Co., Ltd. Organic light emitting display and method of fabricating the same
JP2013015760A (en) * 2011-07-06 2013-01-24 Shibaura Mechatronics Corp Adhesive supply device and adhesive supply method
KR101244290B1 (en) * 2011-07-13 2013-03-18 주식회사 엘티에스 Apparatus for sealing frit using laser
WO2013146350A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Light emitting apparatus and method for manufacturing light emitting apparatus
JP2015193004A (en) * 2015-05-19 2015-11-05 芝浦メカトロニクス株式会社 Manufacturing apparatus and manufacturing method of component constituting display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971564A2 (en) * 1998-07-09 2000-01-12 Eastman Kodak Company Organic electroluminescent display panel having a cover with radiationcured perimeter seal
EP0971564A3 (en) * 1998-07-09 2000-08-09 Eastman Kodak Company Organic electroluminescent display panel having a cover with radiationcured perimeter seal
JP2002329576A (en) * 2001-04-27 2002-11-15 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
JP2003066868A (en) * 2001-08-24 2003-03-05 Matsushita Electric Ind Co Ltd Display panel and information display device using the same
JP2003229250A (en) * 2001-11-16 2003-08-15 Semiconductor Energy Lab Co Ltd Light emitting device
JP4515022B2 (en) * 2001-11-16 2010-07-28 株式会社半導体エネルギー研究所 Light emitting device
US7629617B2 (en) 2001-11-16 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2004006337A (en) * 2002-04-25 2004-01-08 Lg Phillips Lcd Co Ltd Organic electroluminescent element
US7279715B2 (en) * 2002-04-25 2007-10-09 Lg.Philips Lcd Co., Ltd. Organic electroluminescent display device
GB2407436B (en) * 2002-08-17 2006-07-05 Cambridge Display Tech Ltd Organic optoelectronic device encapsulation package
KR100926116B1 (en) 2003-03-06 2009-11-11 엘지디스플레이 주식회사 Encapsulation cap
JP2006236880A (en) * 2005-02-28 2006-09-07 Seiko Epson Corp Organic electroluminescent device, its manufacturing method and electronic apparatus
US7598672B2 (en) 2005-03-07 2009-10-06 Seiko Epson Corporation Organic electroluminescent device, method of manufacturing organic electroluminescent device, and electronic apparatus
EP1814185A3 (en) * 2006-01-27 2011-07-27 Samsung Mobile Display Co., Ltd. Organic light emitting display and method of fabricating the same
JP2009545113A (en) * 2006-07-28 2009-12-17 サン−ゴバン グラス フランス Encapsulated light emitting device
US8395319B2 (en) 2006-07-28 2013-03-12 Saint-Gobain Glass France Encapsulated light-emmitting device
JP2013015760A (en) * 2011-07-06 2013-01-24 Shibaura Mechatronics Corp Adhesive supply device and adhesive supply method
KR101244290B1 (en) * 2011-07-13 2013-03-18 주식회사 엘티에스 Apparatus for sealing frit using laser
WO2013146350A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Light emitting apparatus and method for manufacturing light emitting apparatus
JP2015193004A (en) * 2015-05-19 2015-11-05 芝浦メカトロニクス株式会社 Manufacturing apparatus and manufacturing method of component constituting display device

Also Published As

Publication number Publication date
JP3755252B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP3755252B2 (en) Organic electroluminescent device and manufacturing method thereof
JP3290375B2 (en) Organic electroluminescent device
US6602790B2 (en) Method for patterning a multilayered conductor/substrate structure
US7547564B2 (en) Method of manufacturing device having flexible substrate and device having flexible substrate manufactured using the same
TWI300314B (en) Electroluminescence device
US6689626B2 (en) Flexible substrate
JP4499672B2 (en) Organic EL device and manufacturing method thereof
JP4842470B2 (en) Organic electroluminescent device
JPH10125463A (en) Organic electroluminescent element, crystal lighting system, display device, and manufacture of organic electroluminescent element
US20090200938A2 (en) Flexible organic light emitting devices
JPH11195487A (en) Organic el element
TW200906210A (en) Organic EL panel and method for producing the same
JP2001085158A (en) Organic electroluminescent element
WO2005122644A1 (en) Organic semiconductor element
WO2012053451A1 (en) Organic el panel and process for production thereof
JPH11185956A (en) Manufacture of organic el element and organic el element
JPH11224781A (en) Organic el display and its manufacture
JP2003332042A (en) Organic electronic device element
JP2006253097A (en) Spontaneous light-emitting panel and its manufacturing method
JPH10214683A (en) Organic electroluminescent element
JP2008084599A (en) Organic electroluminescent device and manufacturing method of organic electroluminescent device
JP2000030857A (en) Organic el element and its manufacture
JP2002237382A (en) Organic led element and its manufacturing method
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2003109748A (en) Manufacturing method of electronic device or plastic board for organic el element, and electronic device or plastic board for organic el element or organic el element manufactured in same method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees