JPH1167133A - Environment control type scanning electron microscope - Google Patents

Environment control type scanning electron microscope

Info

Publication number
JPH1167133A
JPH1167133A JP9223231A JP22323197A JPH1167133A JP H1167133 A JPH1167133 A JP H1167133A JP 9223231 A JP9223231 A JP 9223231A JP 22323197 A JP22323197 A JP 22323197A JP H1167133 A JPH1167133 A JP H1167133A
Authority
JP
Japan
Prior art keywords
water
sample
sample chamber
supplied
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9223231A
Other languages
Japanese (ja)
Inventor
Hidenobu Matsui
秀信 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9223231A priority Critical patent/JPH1167133A/en
Publication of JPH1167133A publication Critical patent/JPH1167133A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a constant humidity environment inside a sample chamber for a long time by providing a circulating water pipeline for maintaining the inside of a sample chamber at a constant temperature, and dividing the water in the circulating water pipeline, and controlling the water so as to be supplied in a minute quantity into the sample chamber. SOLUTION: A circulating water pipeline 7, of which one end is arranged in a circulating pump 9 and of which the other end is arranged in a constant temperature over 10, supplied the water adjusted at the constant temperature. A bypass tube 2 divides the water flowing in the circulating water pipeline 7, and a needle valve 3 throttles the quantity of the water flowing in from the bypass tube 2, so as to adjust the quantity of the water to be supplied to a capillary tube 4 and obtain a predetermined low vacuum atmosphere inside a sample chamber 8. This flow adjustment may be manual or automatic. As the capillary tube 4, a capillary tube of stainless steel having flexibility is used so as to follow up the movement of a sample base 6, and a dedicated moving mechanism is not especially provided. With this structure, water-supplying speed is controlled at 0.1-10 μl per second over a long time, and supplying of water is unnecessary, and the structure of a device is simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境制御型走査型
電子顕微鏡(以下、ESEMと呼ぶ)に用いられる微量
注水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro-injection apparatus used for an environmentally controlled scanning electron microscope (hereinafter, referred to as ESEM).

【0002】[0002]

【従来の技術】近年種々の物質を様々な環境制御下で観
察したいという要求が高まっている。とりわけ、試料に
微量の水を長時間一定の量供給を行い、その反応を数時
間にわって観察したいという要求がある。これに対し、
従来、図3に示すような微量の液体を試料に供給する装
置が使用されていた。
2. Description of the Related Art In recent years, there has been an increasing demand for observing various substances under various environmental controls. In particular, there is a demand that a constant amount of water be supplied to a sample for a long time and that the reaction be observed over several hours. In contrast,
Conventionally, an apparatus for supplying a small amount of liquid to a sample as shown in FIG. 3 has been used.

【0003】図3は、ESEM用の従来の微量注水装置
の構成を示す上面図である。微量注水装置本体21は試
料室に取り付けられ、外部からの操作により、試料へ水
などの液体を供給するとともに、その注入位置を決める
ことができるようになっている。注射筒22の中に収納
された液体は、シリンダを押し込むことによって、導入
パイプ24、注入針25を経て試料台27上の試料26
に供給される。注入針25の先端は、試料に接していな
いので、液滴の滴下によって液体が供給されることにな
る。
FIG. 3 is a top view showing the configuration of a conventional micro water injection device for ESEM. The micro-water injection device main body 21 is attached to the sample chamber, and can supply a liquid such as water to the sample and determine the injection position thereof by an external operation. The liquid stored in the syringe 22 is pushed into the cylinder, and the sample 26 on the sample table 27 is passed through the introduction pipe 24 and the injection needle 25.
Supplied to Since the tip of the injection needle 25 is not in contact with the sample, the liquid is supplied by dropping the droplet.

【0004】注入針25は、微量注入装置本体21に設
けられた移動機構23によって3次元方向に移動でき、
注入針25先端の位置決めができるようになっている。
導入パイプ24と注入針25は、導入パイプ24の液体
入口側で試料室の壁を通して移動機構23に固定された
片持ち梁の形態をなしている。
[0004] The injection needle 25 can be moved in a three-dimensional direction by a moving mechanism 23 provided on the micro-injection device main body 21.
The tip of the injection needle 25 can be positioned.
The introduction pipe 24 and the injection needle 25 are in the form of a cantilever fixed to the moving mechanism 23 through the wall of the sample chamber on the liquid inlet side of the introduction pipe 24.

【0005】[0005]

【発明が解決しようとする課題】上記の従来技術におい
ては、試料上の任意の場所に、液体を供給するだけなら
ば可能であったが、試料の観察面全体に一定量の液体を
長時間供給することは極めて困難であった。なぜなら
ば、注入針25の先端から供給される液体が、表面張力
により大きな液滴となり、試料に一度に滴下されること
になるからである。
In the above-mentioned prior art, it was possible to supply the liquid to an arbitrary place on the sample, but a certain amount of liquid was applied to the entire observation surface of the sample for a long time. It was extremely difficult to supply. This is because the liquid supplied from the tip of the injection needle 25 becomes a large droplet due to surface tension and is dropped on the sample at one time.

【0006】また、注射筒22の中の液体の量には、当
然ながら限りがあるので、液体を長時間供給し続けるに
は、注射筒22の中に液体を時々補充しなければなら
ず、オペレータにとっては面倒な作業であった。また、
図3に示した微量注水装置では、移動機構23を設けな
ければならず、装置自体が複雑な構造であり、さらに、
試料26又は試料台27の移動に伴い注入針25の位置
決めをする必要があった。
Since the amount of liquid in the syringe 22 is naturally limited, in order to continue supplying the liquid for a long time, the liquid must be replenished into the syringe 22 from time to time. It was a cumbersome operation for the operator. Also,
In the micro water injection device shown in FIG. 3, the moving mechanism 23 must be provided, and the device itself has a complicated structure.
With the movement of the sample 26 or the sample table 27, it was necessary to position the injection needle 25.

【0007】本発明は、微量の水を高精度に制御して試
料へ供給でき、長時間一定の雰囲気に試料室内を保つこ
とができるESEMを提供することを目的とする。
An object of the present invention is to provide an ESEM which can supply a small amount of water to a sample while controlling it with high precision and can keep the sample chamber in a constant atmosphere for a long time.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に、本発明のESEMは、試料室内を一定温度に保持す
るための循環水配管と、この循環水配管中の水を分岐し
て試料室内に微量供給し、試料室内を低真空雰囲気に保
持するための微量注水装置と、を備えている。
In order to solve the above-mentioned problems, an ESEM of the present invention comprises a circulating water pipe for maintaining the inside of a sample chamber at a constant temperature, and a method for branching the water in the circulating water pipe so as to sample the sample. A micro-injection device for supplying a small amount into the chamber and maintaining the sample chamber in a low vacuum atmosphere.

【0009】[0009]

【発明の実施の形態】本発明のESEMによれば、試料
に一定の量の水をしかも長時間安定して供給し続けるこ
とが可能である。供給する水は、試料室内を一定の温度
に保持するための循環水配管中の水である。微量注水装
置は、試料室の壁でも扉でも取り付けることができるの
で、試料室内部の検出器やその他の構造物の形状、寸法
に適するように取り付け場所を選択できる。
According to the ESEM of the present invention, a constant amount of water can be stably supplied to a sample for a long time. The supplied water is water in a circulating water pipe for maintaining a constant temperature in the sample chamber. Since the micro-injection device can be mounted on the wall or the door of the sample chamber, the mounting location can be selected so as to be suitable for the shape and size of the detector and other structures inside the sample chamber.

【0010】以下、本発明によるESEMにつき、図
1、2を参照して説明する。図1は、本発明によるES
EMの微量注水装置の構成を示すための上面図である。
微量注入装置1は、循環水配管7中を流れる水を分岐し
て流すバイパス管2と、バイパス管2に連結され出水量
を制御するニードルバルブ3と、ニードルバルブ3に連
結され試料台6に制御された水を供給する細管4とから
構成されている。すなわち、循環水配管7中の水は、バ
イパス管2、ニードルバルブ3、細管4を順次経由して
試料台6に供給され、最終的に、試料台6に保持された
試料5を所定の低真空雰囲気に保つのである。
Hereinafter, an ESEM according to the present invention will be described with reference to FIGS. FIG. 1 shows an ES according to the present invention.
It is a top view for showing the composition of the micro water injection device of EM.
The micro-injection apparatus 1 includes a bypass pipe 2 for branching and flowing water flowing in a circulating water pipe 7, a needle valve 3 connected to the bypass pipe 2 for controlling water output, and a sample table 6 connected to the needle valve 3. And a thin tube 4 for supplying controlled water. That is, the water in the circulating water pipe 7 is supplied to the sample table 6 via the bypass pipe 2, the needle valve 3, and the thin tube 4 in order, and finally, the sample 5 held on the sample table 6 is lowered to a predetermined low level. Keep in a vacuum atmosphere.

【0011】循環水配管7は、その一端が循環ポンプ9
に配設され他の一端が恒温槽10に配設され、循環水配
管7の出口側には常に一定温度に調節された水が供給さ
れる。循環水配管7は、図1では試料室8の内側に取り
付けられているが、これのみに限られず、試料室の外側
に取り付けられたものでも、試料台6を載置するステー
ジ(不図示)に取り付けられたものでもよい。ステージ
には、水を低真空の試料室内に導入したときに起こる断
熱膨張によって試料温度が低下するのを防止するための
保温ステージや、試料の観察位置を変えるためのX−Y
ステージなどがあり、これらに取り付けられた循環水配
管も本発明の対象になる。
One end of the circulating water pipe 7 has a circulating pump 9.
The other end of the circulating water pipe 7 is supplied with water adjusted to a constant temperature at the outlet side of the circulating water pipe 7. The circulating water pipe 7 is mounted inside the sample chamber 8 in FIG. 1, but is not limited to this, and a stage (not shown) on which the sample table 6 is mounted may be mounted outside the sample chamber. It may be attached to. The stage includes a heat-retention stage for preventing a decrease in the sample temperature due to adiabatic expansion that occurs when water is introduced into a low-vacuum sample chamber, and an XY for changing the observation position of the sample.
There are stages and the like, and circulating water piping attached to these stages is also an object of the present invention.

【0012】バイパス管2は、循環水配管7中を流れる
水を微量分岐させるので、その内径は循環水配管7の内
径よりも小さくする方がよい。また、水を分岐させる場
所は、循環水配管7のいずれの場所でも構わないが、水
温が一定に保たれている循環ポンプ9の近傍の方が望ま
しい。ニードルバルブ3は、バイパス管2から入ってく
る水量を絞って細管4に供給する水量を調節する。つま
り、ニードルバルブ3の入口側の水圧変動を考慮して試
料室8の内部が所定の低真空雰囲気になるように調節す
る。この水量調節は、マニュアルでもオートでもよい。
オートの場合は、ニードルバルブ3に連結されたモータ
(不図示)と、モータの駆動制御を行うパラメータ入力
器(不図示)が用いられる。
Since the bypass pipe 2 branches a small amount of water flowing through the circulating water pipe 7, it is preferable that the inner diameter of the bypass pipe 2 is smaller than the inner diameter of the circulating water pipe 7. Further, the branch of the water may be at any place of the circulating water pipe 7, but it is more preferable to be near the circulating pump 9 where the water temperature is kept constant. The needle valve 3 regulates the amount of water supplied to the thin tube 4 by narrowing the amount of water entering from the bypass tube 2. That is, the inside of the sample chamber 8 is adjusted to a predetermined low vacuum atmosphere in consideration of the fluctuation of the water pressure on the inlet side of the needle valve 3. This water amount adjustment may be manual or automatic.
In the case of auto, a motor (not shown) connected to the needle valve 3 and a parameter input device (not shown) for controlling the driving of the motor are used.

【0013】細管4は、水量調節された水を最終的に試
料台6へ導く。細管4は、試料台6の移動に追随するよ
うに、柔軟性を有する。例えば、外径0.3mm 、内径 0.1
5mmのステンレス鋼が用いられる。従って、移動機構を
設ける必要はない。以上の構成による微量注水装置を用
い、ニードルバルブ3をマニュアルあるいはオートで制
御することにより、水供給速度を毎秒 0.1〜10μl で制
御することができた。
The thin tube 4 finally guides the water whose amount has been adjusted to the sample stage 6. The thin tube 4 has flexibility so as to follow the movement of the sample stage 6. For example, outer diameter 0.3mm, inner diameter 0.1
5 mm stainless steel is used. Therefore, there is no need to provide a moving mechanism. By controlling the needle valve 3 manually or automatically using the micro water injection device having the above configuration, the water supply rate could be controlled at 0.1 to 10 μl per second.

【0014】図2は、本発明のESEMに付属の試料台
の構造を示すための断面図である。試料台6は、スリー
ブ11、吸湿材12を内在している容器であり、細管4
の先端部が挿入されており、吸湿材12に水を供給す
る。細管4から供給された水は、吸湿材12に吸収され
る。吸湿材12としては、液体を吸収しやすいものであ
ればよく、例えば濾紙、極細のポリマー繊維から成る織
物や不織布が用いられる。
FIG. 2 is a sectional view showing the structure of a sample table attached to the ESEM of the present invention. The sample table 6 is a container in which the sleeve 11 and the hygroscopic material 12 are contained,
Is supplied to supply water to the hygroscopic material 12. The water supplied from the thin tube 4 is absorbed by the hygroscopic material 12. Any material may be used as the hygroscopic material 12 as long as it can easily absorb liquid, and for example, a filter paper, a woven or nonwoven fabric made of ultrafine polymer fibers is used.

【0015】スリーブ11は、例えば、外径4mm、内径
3mm、長さ5mmのステンレス鋼である。スリーブ11の
中には、観察対象となる試料5が詰め込まれており、そ
の上面には電子線が照射され、下面には吸湿材12が接
している。吸湿材12によって一度吸収された水は、蒸
発により試料台7の内部に拡散していく。試料13が粉
末状、繊維状あるいは多孔質である場合は、水は、試料
台6の内部に拡散する以外に、毛管現象によって試料内
部を通過し、試料の観察面(上面)に到る。水が内部を
通過できないような試料の場合は、水は、試料13とス
リーブ11との隙間を毛管現象によって上昇して試料の
観察面に到達し得る。
The sleeve 11 is, for example, stainless steel having an outer diameter of 4 mm, an inner diameter of 3 mm, and a length of 5 mm. A sample 5 to be observed is packed in the sleeve 11, an upper surface thereof is irradiated with an electron beam, and a lower surface thereof is in contact with a hygroscopic material 12. The water once absorbed by the hygroscopic material 12 is diffused into the sample stage 7 by evaporation. In the case where the sample 13 is powdery, fibrous, or porous, water diffuses inside the sample stage 6 and also passes through the inside of the sample due to capillary action and reaches the observation surface (top surface) of the sample. In the case of a sample in which water cannot pass through the inside, the water may rise through a gap between the sample 13 and the sleeve 11 by capillary action and reach the observation surface of the sample.

【0016】いずれにしろ、蒸発や毛管現象によって吸
湿材12から失われる液量と吸湿材12へ供給する液量
とをバランスさせて、常に一定の湿度雰囲気にすること
が重要である。
In any case, it is important that the amount of liquid lost from the moisture absorbent 12 due to evaporation or capillary action and the amount of liquid supplied to the moisture absorbent 12 are balanced so that a constant humidity atmosphere is always maintained.

【0017】[0017]

【発明の効果】以上の通り、本発明のESEMによれ
ば、微量注水装置によって、循環水配管を分岐して微量
の水を取り出し、これを高精度に制御して長時間安定し
て試料に供給できる。水は循環水配管から取り出すの
で、補給する必要はない。また、微量注水装置に移動機
構を設ける必要がないので、装置の構造を簡略化でき
る。
As described above, according to the ESEM of the present invention, the circulating water pipe is branched out by the micro-injection device, and a small amount of water is taken out. Can supply. Water is removed from the circulating water piping and does not need to be replenished. Further, since there is no need to provide a moving mechanism in the micro water injection device, the structure of the device can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るESEMの微量注水
装置の構成を示す平面図である。
FIG. 1 is a plan view showing a configuration of a micro water injection device of an ESEM according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るESEMの試料台の
構造を示す断面図である。
FIG. 2 is a cross-sectional view showing a structure of a sample stage of the ESEM according to the embodiment of the present invention.

【図3】従来のESEMの微量注入装置の構成を示す平
面図である。
FIG. 3 is a plan view showing the configuration of a conventional ESEM micro-injection apparatus.

【符号の説明】[Explanation of symbols]

1・・・・・・・・微量注水装置 2・・・・・・・・バイパス管 3・・・・・・・・ニードルバルブ 4・・・・・・・・細管 5・・・・・・・・試料 6・・・・・・・・試料台 7・・・・・・・・循環水配管 8・・・・・・・・試料室 9・・・・・・・・循環ポンプ 10・・・・・・・恒温槽 11・・・・・・・スリーブ 12・・・・・・・吸湿材 21・・・・・・・微量注入装置本体 22・・・・・・・注射筒 23・・・・・・・移動機構 1 ············································································································ ... Sample 6 ... Sample table 7 ... Circulating water piping 8 ... Sample chamber 9 ... Circulating pump 10 ······························································································ 23 ····· Moving mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子線源から射出された電子線の通路を
形成する真空室と、前記真空室に圧力制限開口を挟んで
連結され、一定温度に保持されると共に水が供給されて
低真空雰囲気に保持される試料室と、前記電子線を前記
圧力制限開口を通して前記試料上に集束し走査する電子
光学系と、試料から発生しガス増幅された2次電子を検
出する2次電子検出器と、を有する環境制御型走査型電
子顕微鏡において、前記試料室内を一定温度に保持する
ための循環水配管と、前記循環水配管中の水を分岐し前
記試料室内に微量供給することによって前記試料室内を
低真空雰囲気に保持するための微量注水装置と、を備え
たことを特徴とする環境制御型走査型顕微鏡。
1. A vacuum chamber forming a passage for an electron beam emitted from an electron beam source, connected to the vacuum chamber via a pressure limiting opening, and maintained at a constant temperature and supplied with water to provide a low vacuum. A sample chamber held in an atmosphere, an electron optical system for focusing and scanning the electron beam on the sample through the pressure limiting opening, and a secondary electron detector for detecting gas-amplified secondary electrons generated from the sample A circulating water pipe for maintaining the inside of the sample chamber at a constant temperature, and branching the water in the circulating water pipe and supplying a small amount of water into the sample chamber. An environment-controlled scanning microscope, comprising: a small amount water injection device for maintaining a room in a low vacuum atmosphere.
JP9223231A 1997-08-20 1997-08-20 Environment control type scanning electron microscope Pending JPH1167133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9223231A JPH1167133A (en) 1997-08-20 1997-08-20 Environment control type scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9223231A JPH1167133A (en) 1997-08-20 1997-08-20 Environment control type scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH1167133A true JPH1167133A (en) 1999-03-09

Family

ID=16794858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9223231A Pending JPH1167133A (en) 1997-08-20 1997-08-20 Environment control type scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH1167133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526871A (en) * 1998-05-22 2003-09-09 ユーロ−セルティーク,エス.エイ. Environmental scanning electron microscope melting stage
EP1509941A2 (en) * 2002-06-05 2005-03-02 YEDA RESEARCH AND DEVELOPMENT Co. LTD. Low-pressure chamber for scanning electron microscopy in a wet environment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526871A (en) * 1998-05-22 2003-09-09 ユーロ−セルティーク,エス.エイ. Environmental scanning electron microscope melting stage
EP1509941A2 (en) * 2002-06-05 2005-03-02 YEDA RESEARCH AND DEVELOPMENT Co. LTD. Low-pressure chamber for scanning electron microscopy in a wet environment
EP1509941A4 (en) * 2002-06-05 2007-12-12 Yeda Res & Dev Low-pressure chamber for scanning electron microscopy in a wet environment

Similar Documents

Publication Publication Date Title
JP6447653B2 (en) Immersion lithography apparatus and immersion lithography method
US9362083B2 (en) Charged particle beam apparatus and sample observation method
US4497550A (en) Device for preventing the observing objective lens window of an endoscope from collecting moisture
KR101589400B1 (en) Specimen observation method
KR20130135341A (en) Charged particle beam apparatus
JP2007506147A (en) Microscope environment room
JP2017191228A (en) Light sheet microscope and sample observation method
US4222261A (en) Device for measuring the water content of a moving gas
JPH1167133A (en) Environment control type scanning electron microscope
JP4723414B2 (en) Scanning electron microscope
AU755545B2 (en) Dissolution stage for an environmental scanning electron microscope
JPH10241620A (en) Environment control type scanning-type electronic microscope
US9353346B2 (en) Incubator device and method
JPH08201267A (en) Particle analyzer
JP2005062687A (en) Liquid discharging device and liquid supplying and discharging device for immersion objective lens
US20080020451A1 (en) Material sucking or discharging apparatus and method
JP2009133721A (en) Scanning probe microscope
JP4734904B2 (en) Humidifier
JP4854461B2 (en) Low concentration alcohol gas generator
CN117233948A (en) Microscope objective attachment and device for introducing and/or removing immersion liquid
CN109985674A (en) Media-resistant friction test liquid-drop machine and test method
JPH0777502A (en) Pulp fiber observation equipment
JPH07333627A (en) Jig for injecting liquid crystal material
JPH10246673A (en) Wet-bulb wick-water holding apparatus
JPH06254415A (en) Vapor generation device