JPH1166980A - Oxide superconducting cable - Google Patents

Oxide superconducting cable

Info

Publication number
JPH1166980A
JPH1166980A JP9219521A JP21952197A JPH1166980A JP H1166980 A JPH1166980 A JP H1166980A JP 9219521 A JP9219521 A JP 9219521A JP 21952197 A JP21952197 A JP 21952197A JP H1166980 A JPH1166980 A JP H1166980A
Authority
JP
Japan
Prior art keywords
superconducting
oxide superconducting
conductor
oxide
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9219521A
Other languages
Japanese (ja)
Other versions
JP3568744B2 (en
Inventor
Atsushi Kume
篤 久米
Naohiro Futaki
直洋 二木
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tatsuya Suematsu
達也 末松
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP21952197A priority Critical patent/JP3568744B2/en
Publication of JPH1166980A publication Critical patent/JPH1166980A/en
Application granted granted Critical
Publication of JP3568744B2 publication Critical patent/JP3568744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the capacity of an oxide superconducting cable by equalizing a current passing through respective superconductors and an effect of a self-magnetic field, restraining eddy current and increasing critical current density. SOLUTION: This oxide superconducting cable 10 is formed by insulating the element wires of a superconductor 20 formed by covering an oxide superconducting core with a sheath, and disposing a plurality of superconductors around a pipe-shaped former 40. Superconducting strand 30 with roughly retangular cross section consisting of a plurality of superconductor 20 with roughly rectangular cross section is formed into a block shape, and is wound around the former 40, thereby forming a superconducting strand layer 11. The respective superconductors 20 are stranded so as to be positioned on the front layer side and back layer side of the superconducting strand layer 11 alternately in order to equalize the effect of self-magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力輸送用、超電
導マグネット、電流リード、発電機、医療機器などとし
ての応用開発が進められている酸化物超電導体および酸
化物超電導ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor and an oxide superconducting cable which are being developed for use in power transmission, superconducting magnets, current leads, generators, medical equipment and the like.

【0002】[0002]

【従来の技術】従来、酸化物超電導ケーブルの一例とし
て、図4に示すように、超電導導体1を銅などからなる
パイプ2の周囲に螺旋状に巻回してなる超電導ケーブル
3が知られてる。この超電導導体1は、酸化物超電導コ
ア4が銀などからなるシース5により覆われて形成さ
れ、該超電導導体1をパイプ2に対して複数層巻回する
ことにより形成されている。このような超電導ケーブル
3にあっては、図4に示すように、パイプ2の表面に巻
回される超電導導体1の一層目6が、いわゆるSより
(右より)の方向に巻回され、かつ、該一層目6に巻回
される超電導導体1の二層目7が、いわゆるZより(左
より)の方向に巻回されるような、各層毎に逆方向に巻
回するS−Z方向のスパイラル巻きや、また、Sよりの
方向に重ねて巻回するようなS−S方向のスパイラル巻
き等が利用されて、複数の積層状態の超電導導体積層8
が形成されていた。
2. Description of the Related Art As an example of an oxide superconducting cable, a superconducting cable 3 in which a superconducting conductor 1 is spirally wound around a pipe 2 made of copper or the like as shown in FIG. The superconducting conductor 1 is formed by covering an oxide superconducting core 4 with a sheath 5 made of silver or the like, and winding the superconducting conductor 1 around the pipe 2 by a plurality of layers. In such a superconducting cable 3, as shown in FIG. 4, the first layer 6 of the superconducting conductor 1 wound on the surface of the pipe 2 is wound in the direction of so-called S (from the right), SZ wound in the opposite direction for each layer, such that the second layer 7 of the superconducting conductor 1 wound on the first layer 6 is wound in a direction from the so-called Z (from the left). The superconducting conductor stack 8 in a plurality of stacked states is utilized by using spiral winding in the direction of S, or spiral winding in the S-S direction, which is wound in a direction overlapping S.
Was formed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述のように
超電導導体が各層毎に巻かれるような層状構造を持つ酸
化物超電導ケーブルの場合、該酸化物超電導ケーブルの
自己磁場の影響から、ケーブル最外層の超電導導体に多
くの電流が流れ、内側層に向かって実際の電流は小さく
なる層間電流勾配が発生することがさけられず、臨界電
流密度が低下する傾向があるという問題があった。その
ため、多くの場合、各層の超電導導体に別々に電流を流
し込み、各層間の電流のバランスがとれるように層間に
抵抗もしくはコンデンサー、コイル等を介在することに
より上記問題の解決を図っていたが、これらの方法で
は、実質的に抵抗が0であるという超電導の特性を充分
に生かし切れないという問題があった。
However, as described above, in the case of an oxide superconducting cable having a layered structure in which the superconducting conductor is wound in each layer, the cable superconducting cable is affected by the self-magnetic field of the oxide superconducting cable. A large amount of current flows through the superconducting conductor in the outer layer, and an interlayer current gradient in which the actual current decreases toward the inner layer cannot be avoided, and there is a problem that the critical current density tends to decrease. Therefore, in many cases, the above-mentioned problem has been solved by separately supplying a current to the superconducting conductor of each layer and interposing a resistor or a capacitor, a coil, or the like between the layers so that the current between the layers can be balanced. In these methods, there is a problem that the superconductivity characteristic of substantially zero resistance cannot be fully utilized.

【0004】本発明は、上記の事情に鑑みてなされたも
ので、以下の目的を達成しようとするものである。 各超電導導体に流れる電流の値と自己磁場から受ける
影響との均等化を図り、超電導導体の層間電流勾配の解
消を図ること。 臨界電流密度の増大と交流通電時に発生する渦電流損
失の低減とを図り、酸化物超電導ケーブルの大容量化を
図ること。 簡単な構造の酸化物超電導ケーブルを提供すること。 製造コストを削減すること。
[0004] The present invention has been made in view of the above circumstances, and aims to achieve the following objects. To equalize the value of the current flowing in each superconducting conductor and the effect of the self-magnetic field, and eliminate the interlayer current gradient of the superconducting conductor. To increase the capacity of the oxide superconducting cable by increasing the critical current density and reducing the eddy current loss generated when AC is applied. To provide an oxide superconducting cable having a simple structure. Reduce manufacturing costs.

【0005】[0005]

【課題を解決するための手段】酸化物超電導コアをシー
スで覆って形成された超電導導体を素線絶縁し、それら
がパイプ状のフォーマの周囲に、複数配された酸化物超
電導ケーブルであって、前記超電導導体からなる超電導
撚線がフォーマに巻回されたことにより超電導撚線層が
形成され、各超電導導体が、自己磁場の影響を均等にす
るために前記超電導撚線層の表層側と内層側とに交互に
位置するよう撚り合わされる。超電導撚線が、略断面矩
形の超電導導体を複数撚り合わされて略断面矩形のブロ
ック状に形成され、該超電導撚線の幅方向が、フォーマ
の径方向に向けられて巻回される。ここで、撚り合わさ
れる超電導導体が奇数本とされることが好ましく、より
好ましくは9本とされる。超電導導体のコアがBi2
2Ca1Cu2x(Bi2212相),Bi2Sr 2Ca
2Cu3y(Bi2223相),Bi1.6Pb0.4Sr2
2Cu3x,Tl 2Ba2Ca2Cu3y ,などで示さ
れる組成を持つものとされ、特に、Bi系2223相ま
たはBi系2212相のBi系酸化物超電導材料が選択
されることが好ましい。シースがAg,Pt,Au等の
貴金属とされることが好ましい。超電導導体の撚りピッ
チが、該超電導導体の線径の400倍〜1000倍が好
ましく、より好ましくは、400倍に設定される。超電
導撚線がフォーマへ巻回される2次ピッチが、該超電導
導体の線径の500倍〜5000倍が好ましく、より好
ましくは、1000倍に設定される。フォーマの内部
は、液体窒素等の冷却媒体の流路とされ、超電導導体の
冷却が行われる。
Means for Solving the Problems An oxide superconducting core is sealed.
Insulate the superconducting conductor formed by covering
Are placed around the pipe-shaped former,
An electrically conductive cable, comprising a superconducting conductor comprising the superconducting conductor.
The superconducting stranded wire layer is formed by the stranded wire being wound around the former.
Formed so that each superconducting conductor equalizes the effect of its own magnetic field.
In order to alternate between the surface side and the inner layer side of the superconducting stranded wire layer
Twisted to be located. Superconducting stranded wire has a roughly rectangular cross section
A superconducting conductor with a rectangular cross section
The superconducting stranded wire is formed in a
And wound in the radial direction. Where they are twisted
It is preferable that the number of superconducting conductors
Preferably, the number is nine. The core of the superconducting conductor is BiTwoS
rTwoCa1CuTwoOx(Bi2212 phase), BiTwoSr TwoCa
TwoCuThreeOy(Bi2223 phase), Bi1.6Pb0.4SrTwoC
aTwoCuThreeOx, Tl TwoBaTwoCaTwoCuThreeOy, Etc.
In particular, Bi-based 2223 phase
Or Bi-based 2212 phase Bi-based oxide superconducting material selected
Is preferably performed. The sheath is made of Ag, Pt, Au, etc.
Preferably, it is a noble metal. Twist of superconducting conductor
Is preferably 400 to 1000 times the wire diameter of the superconducting conductor.
More preferably, it is set to 400 times. Super electric
The secondary pitch at which the stranded conductor is wound around the former is
It is preferably 500 to 5000 times the wire diameter of the conductor, more preferably
More preferably, it is set to 1000 times. Inside the former
Is a flow path for a cooling medium such as liquid nitrogen,
Cooling takes place.

【0006】[0006]

【発明の実施の形態】以下、本発明に係る酸化物超電導
ケーブルの一実施形態を、図面に基づいて説明する。図
1ないし図3において、符号10は酸化物超電導ケーブ
ル、20は超電導導体、30は超電導撚線、40はフォ
ーマである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an oxide superconducting cable according to the present invention will be described below with reference to the drawings. 1 to 3, reference numeral 10 denotes an oxide superconducting cable, 20 denotes a superconducting conductor, 30 denotes a superconducting stranded wire, and 40 denotes a former.

【0007】酸化物超電導ケーブル10は、図1に示す
ように、パイプ状のフォーマ40の周囲に、表面を素線
絶縁した超電導導体20が複数配されて例えば円筒状の
超電導撚線層11が形成される。超電導撚線層11は、
超電導導体20が撚り合わされた略断面矩形の超電導撚
線30により略断面矩形のブロック状に形成され、該超
電導撚線30がその幅方向をフォーマ40の径方向に向
けてフォーマ40に巻回されることにより形成される。
酸化物超電導ケーブル10の外側には、図示しない半導
体層、絶縁層およびまたは密閉層が形成される。
As shown in FIG. 1, an oxide superconducting cable 10 is provided with a plurality of superconducting conductors 20 whose surfaces are insulated around a pipe-shaped former 40 and a cylindrical superconducting twisted wire layer 11, for example. It is formed. The superconducting stranded wire layer 11
The superconducting conductor 20 is formed in a substantially rectangular block shape by a twisted superconducting stranded wire 30 having a substantially rectangular cross section, and the superconducting stranded wire 30 is wound around the former 40 with its width direction directed in the radial direction of the former 40. It is formed by doing.
Outside the oxide superconducting cable 10, a semiconductor layer, an insulating layer, and / or a sealing layer (not shown) are formed.

【0008】超電導導体20は、幅0.5〜2mm程
度、厚さ0.05〜0.7mm程度の範囲のものとさ
れ、例えば、幅1mm、厚さ0.7mmとされて、図1
ないし図3に示すように、酸化物超電導コア21をシー
ス22で覆って形成され、例えば厚さ1μm〜20μm
程度のエナメル層からなる絶縁層23で覆われている。
酸化物超電導コア21は、Bi2Sr2Ca1Cu2
x (Bi系2212相),Bi2Sr2Ca2Cu3
y (Bi系2223相),Bi1.6Pb0.4Sr2Ca2
3x,Tl2Ba2Ca2Cu3y ,などで示される組
成を持つものとされ、例えば、Bi系酸化物超電導物質
のうち、Bi系2223相またはBi系2212相によ
り形成される。シース22は、Ag,Pt,Au等の貴
金属あるいはそれらの合金とされ、例えば、銀シースと
される。
The superconducting conductor 20 has a width of about 0.5 to 2 mm and a thickness of about 0.05 to 0.7 mm. For example, the superconducting conductor 20 has a width of 1 mm and a thickness of 0.7 mm.
As shown in FIG. 3, the oxide superconducting core 21 is formed by covering it with a sheath 22 and has a thickness of, for example, 1 μm to 20 μm.
It is covered with an insulating layer 23 composed of a certain amount of enamel layer.
The oxide superconducting core 21 is made of Bi 2 Sr 2 Ca 1 Cu 2 O
x (Bi-based 2212 phase), Bi 2 Sr 2 Ca 2 Cu 3 O
y (Bi 2223 phase), Bi 1.6 Pb 0.4 Sr 2 Ca 2 C
It has a composition represented by u 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y , and the like. For example, it is formed of a Bi-based 2223 phase or a Bi-based 2212 phase among Bi-based oxide superconducting materials. You. The sheath 22 is made of a noble metal such as Ag, Pt, or Au or an alloy thereof, for example, a silver sheath.

【0009】超電導撚線30は、図1ないし図3に示す
ように、超電導撚線層11の厚さになるように、例えば
9本の超電導導体20を撚り合わせて略断面矩形に形成
される。このとき、超電導導体20の撚りピッチが、該
超電導導体20の線径(幅)の400倍〜1000倍、
好ましくは、400倍程度に設定され、例えば0.4m
とされる。超電導撚線30は、図1に示すように、その
略矩形とされた横断面における長辺方向(幅方向)をフ
ォーマ40の径方向に向け、前記横断面における短辺方
向(厚み方向)をフォーマ40の周方向に向けてフォー
マ40に巻回される。このとき、例えば70本の超電導
撚線30がフォーマ40の周囲にスパイラル巻き状に巻
回され、この際、超電導撚線30がフォーマ40の周囲
に巻回する際の2次ピッチが、超電導導体20の線径
(幅)の500倍〜5000倍、好ましくは、1000
倍程度に設定されて例えば1mとされる。
As shown in FIGS. 1 to 3, the superconducting stranded wire 30 is formed into a substantially rectangular cross section by twisting, for example, nine superconducting conductors 20 so as to have a thickness of the superconducting stranded wire layer 11. . At this time, the twist pitch of the superconducting conductor 20 is 400 to 1000 times the wire diameter (width) of the superconducting conductor 20,
Preferably, it is set to about 400 times, for example, 0.4 m
It is said. As shown in FIG. 1, the superconducting stranded wire 30 has a long side direction (width direction) in a substantially rectangular cross section directed in a radial direction of the former 40 and a short side direction (thickness direction) in the cross section. The former 40 is wound around the former 40 in the circumferential direction. At this time, for example, 70 superconducting stranded wires 30 are spirally wound around the former 40, and at this time, the secondary pitch when the superconducting stranded wire 30 is wound around the former 40 depends on the superconducting conductor. 500 times to 5000 times, preferably 1000 times, the wire diameter (width) of 20
It is set to about twice, for example, 1 m.

【0010】フォーマ40は、図1に示すようにパイプ
状とされ、例えば内径32mm、外径35mの寸法とさ
れる。フォーマ40の内部は、例えば液体窒素等の冷却
媒体の流路とされて、超電導導体20の冷却が行われれ
る。
The former 40 is formed in a pipe shape as shown in FIG. 1 and has, for example, an inner diameter of 32 mm and an outer diameter of 35 m. The inside of the former 40 is used as a flow path for a cooling medium such as liquid nitrogen, for example, to cool the superconductor 20.

【0011】上記のような構成であると、各超電導導体
20が撚り合わされて超電導撚線30とされ、かつ、該
超電導撚線30がフォーマ40に巻回されていることに
より、超電導導体20は、撚りピッチ毎に超電導撚線層
11の半径方向の位置が、最内側位置から最外側位置ま
で繰り返して経由しながら酸化物超電導ケーブル10の
軸線方向に延在することになる。したがって、酸化物超
電導ケーブル10に電流を流した場合には、該酸化物超
電導ケーブル10の半径方向に強さが異なる自己磁場が
発生するが、1本の超電導導体20がこの自己磁場から
受ける影響は、各撚りピッチ毎に酸化物超電導ケーブル
10の半径方向の位置変化に対応して変化して、超電導
撚線30ごとに相殺される。そのため、それぞれの超電
導導体20においては、酸化物超電導ケーブル10の軸
線方向に前記自己磁場から受ける影響が均等化する。そ
の結果、各々の超電導導体20には、等しい値の電流を
流すことが可能となり、超電導撚線層11の半径方向の
電流勾配が解消される。
With the above configuration, the superconducting conductors 20 are twisted to form a superconducting stranded wire 30, and the superconducting stranded wire 30 is wound around the former 40. For each twist pitch, the radial position of the superconducting stranded wire layer 11 extends in the axial direction of the oxide superconducting cable 10 while repeatedly passing from the innermost position to the outermost position. Therefore, when a current flows through the oxide superconducting cable 10, a self-magnetic field having a different strength in the radial direction of the oxide superconducting cable 10 is generated, but one superconducting conductor 20 is affected by the self-magnetic field. Is changed corresponding to the radial position change of the oxide superconducting cable 10 at each twist pitch, and is offset for each superconducting stranded wire 30. Therefore, in each superconducting conductor 20, the influence of the self-magnetic field in the axial direction of the oxide superconducting cable 10 is equalized. As a result, a current of the same value can flow through each superconducting conductor 20, and the current gradient in the radial direction of superconducting stranded layer 11 is eliminated.

【0012】また、各超電導撚線30の周囲に発生する
磁場が、図3においてBBで示すように、隣接する超電
導撚線30ごとに打ち消し合うために、その結果、交流
通電磁に発生する渦電流損失を低減することができる。
Further, as shown by BB in FIG. 3, the magnetic field generated around each superconducting stranded wire 30 cancels out for each adjacent superconducting stranded wire 30. As a result, the vortex generated in the alternating current electromagnetic field. Current loss can be reduced.

【0013】〔実施例〕Bi系2223相からなるBi
系酸化物超電導物質を酸化物超電導コアとして、該酸化
物超電導コア19心とし、Agをシース線材とし、厚さ
10μmのエナメルを絶縁層とした、幅1mm、厚さ
0.7mmの超電導導体9本により、撚りピッチを0.
4mとして超電導撚線を形成し、該超電導撚線70本
を、外径35mm、内径32mmのステンレス鋼製のフ
ォーマに1mの2次ピッチとして巻回し、酸化物超電導
ケーブルを作成した。この酸化物超電導ケーブルに以下
の条件で測定実験を行った。 外部磁場:0T 温度:77K 1本の超電導導体の臨界電流値:5A 1本の超電導撚線の臨界電流値:45A 酸化物超電導ケーブルの臨界電流値:3150A 1本の超電導導体の電流値:4.5A 1本の超電導撚線の電流値:40.5A 酸化物超電導ケーブルの電流値:2835A この結果、各超電導導体には、臨界電流値の90%程度
の電流が流れることが測定された。
[Embodiment] Bi-based Bi consisting of 2223 phases
A superconducting conductor 9 having a width of 1 mm and a thickness of 0.7 mm, comprising an oxide superconducting material as an oxide superconducting core, 19 cores of the oxide superconducting core, Ag as a sheath wire, and an enamel having a thickness of 10 μm as an insulating layer. According to the book, the twist pitch is set to 0.
A superconducting stranded wire was formed to have a length of 4 m, and 70 superconducting stranded wires were wound around a stainless steel former having an outer diameter of 35 mm and an inner diameter of 32 mm at a secondary pitch of 1 m to prepare an oxide superconducting cable. A measurement experiment was performed on the oxide superconducting cable under the following conditions. External magnetic field: 0T Temperature: 77K Critical current value of one superconducting conductor: 5A Critical current value of one superconducting stranded wire: 45A Critical current value of oxide superconducting cable: 3150A Current value of one superconducting conductor: 4 0.5A Current value of one superconducting twisted wire: 40.5A Current value of oxide superconducting cable: 2835A As a result, it was measured that a current of about 90% of the critical current value flows through each superconducting conductor.

【0014】また、上述の酸化物超電導ケーブルにおい
て、超電導導体の撚りピッチを変化させたものを作成
し、測定実験を行った。その結果を表1に示す。
Further, in the above-described oxide superconducting cable, a cable in which the twist pitch of the superconducting conductor was changed was prepared, and a measurement experiment was performed. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】この結果、超電導導体の撚りピッチLが、
超電導導体の線径(幅)の400倍〜4000倍、好ま
しくは、400倍程度に設定されることにより、流れる
電流値の向上が図られることが測定された。
As a result, the twist pitch L of the superconducting conductor becomes
It has been measured that the current value flowing can be improved by setting the wire diameter (width) of the superconducting conductor to 400 to 4000 times, preferably about 400 times.

【0017】[0017]

【発明の効果】本発明の酸化物超電導ケーブルによれ
ば、以下の効果を奏する。 (1)超電導導体により超電導撚線を形成して、超電導
撚線の幅方向を酸化物超電導ケーブルの径方向に向けた
ことにより、超電導導体が超電導撚線層の最内側と最外
側とに交互に位置するようにしたので、各超電導導体を
流れる電流の値と自己磁場から受ける影響との均等化を
図ることができる。 (2)各超電導導体において流れる電流と自己磁場から
受ける影響とが等しいため、超電導撚線層における電流
勾配を解消して、内側に位置する超電導導体にも電流を
流すとともに、臨界電流密度の増大と交流通電時に発生
ずる渦電流損失の低減とを図り、酸化物超電導ケーブル
の大容量化を図ることができる。 (3)、超電導導体の層毎に生じる電流勾配をコンデン
サ、抵抗等により均一化する必要がないため、各超電導
導体を流れる電流の値と自己磁場から受ける影響との均
等化を図ること、および、超電導撚線層における電流勾
配を解消して酸化物超電導ケーブルの大容量化を図るこ
とを維持したまま、簡単な構造の酸化物超電導ケーブル
を提供することができる。 (4)上記により製造コストを削減することができる。
According to the oxide superconducting cable of the present invention, the following effects can be obtained. (1) The superconducting stranded wire is formed by the superconducting conductor, and the width direction of the superconducting stranded wire is directed in the radial direction of the oxide superconducting cable, so that the superconducting conductor alternates between the innermost and outermost layers of the superconducting stranded wire layer. , It is possible to equalize the value of the current flowing through each superconducting conductor and the effect of the self-magnetic field. (2) Since the current flowing in each superconducting conductor and the influence of the self-magnetic field are equal, the current gradient in the superconducting twisted wire layer is eliminated, and the current flows through the superconducting conductor located inside and the critical current density increases. In addition, the eddy current loss generated when AC current is applied can be reduced, and the capacity of the oxide superconducting cable can be increased. (3) Since it is not necessary to equalize the current gradient generated in each layer of the superconducting conductor by a capacitor, a resistor, or the like, the value of the current flowing through each superconducting conductor and the effect of the self-magnetic field are equalized, and Further, it is possible to provide an oxide superconducting cable having a simple structure, while maintaining a large capacity of the oxide superconducting cable by eliminating a current gradient in the superconducting stranded wire layer. (4) The manufacturing cost can be reduced by the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る酸化物超電導ケーブルの一実施
形態を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of an oxide superconducting cable according to the present invention.

【図2】 図1の酸化物超電導ケーブルにおける超電導
撚線を示す拡大斜視図である。
FIG. 2 is an enlarged perspective view showing a superconducting stranded wire in the oxide superconducting cable of FIG.

【図3】 図1の超電導撚線層における渦電流損失低減
を示す模式断面図である。
FIG. 3 is a schematic sectional view showing a reduction in eddy current loss in the superconducting stranded wire layer of FIG.

【図4】 従来の酸化物超電導ケーブルを示す斜視図で
ある。
FIG. 4 is a perspective view showing a conventional oxide superconducting cable.

【符号の説明】[Explanation of symbols]

10…酸化物超電導ケーブル,11…超電導撚線層,2
0…超電導導体,21…酸化物超電導コア,22…シー
ス,23…絶縁層,30…超電導撚線,40…フォーマ
10: oxide superconducting cable, 11: superconducting stranded wire layer, 2
0: superconducting conductor, 21: oxide superconducting core, 22: sheath, 23: insulating layer, 30: superconducting stranded wire, 40: former

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定方 伸行 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 末松 達也 千葉県富津市新富42−1 株式会社フジク ラ富津工場内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuyuki Sadakata 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Takashi Saito 1-1-5-1 Kiba, Koto-ku, Tokyo Stock Inside Fujikura Corporation (72) Inventor Tatsuya Suematsu 42-1 Shintomi, Futtsu City, Chiba Prefecture Inside Fujikura Futtsu Plant (72) Inventor Shigeo Nagaya 20-1, Kitakanyama, Odaka-cho, Midori-ku, Nagoya City, Aichi Prefecture Chubu Electric Power Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導コアをシースで覆って形成
された超電導導体を素線絶縁し、それらがパイプ状のフ
ォーマの周囲に、複数配された酸化物超電導ケーブルで
あって、前記超電導導体からなる略断面矩形の超電導撚
線をフォーマに巻回して超電導撚線層が形成され、各超
電導導体が、自己磁場の影響を均等にするために前記超
電導撚線層の最外層側と最内層側とに交互に位置するよ
う撚り合わされたことを特徴とする酸化物超電導ケーブ
ル。
A superconducting conductor formed by covering an oxide superconducting core with a sheath is insulated by wires, and the superconducting conductor is a plurality of oxide superconducting cables arranged around a pipe-shaped former, wherein the superconducting conductor is provided. A superconducting stranded wire having a substantially rectangular cross section is wound around a former to form a superconducting stranded wire layer. An oxide superconducting cable characterized in that the cable is twisted so as to be alternately positioned on the side.
【請求項2】 超電導撚線の幅方向が、フォーマの径方
向に向けられてなることを特徴とする請求項1記載の酸
化物超電導ケーブル。
2. The oxide superconducting cable according to claim 1, wherein the width direction of the superconducting stranded wire is oriented in the radial direction of the former.
【請求項3】 超電導導体の撚りピッチが、該超電導導
体の線径の400倍〜1000倍に設定されたことを特
徴とする請求項1または2記載の酸化物超電導ケーブ
ル。
3. The oxide superconducting cable according to claim 1, wherein the twist pitch of the superconducting conductor is set to 400 to 1000 times the wire diameter of the superconducting conductor.
JP21952197A 1997-08-14 1997-08-14 Oxide superconducting cable Expired - Fee Related JP3568744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21952197A JP3568744B2 (en) 1997-08-14 1997-08-14 Oxide superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21952197A JP3568744B2 (en) 1997-08-14 1997-08-14 Oxide superconducting cable

Publications (2)

Publication Number Publication Date
JPH1166980A true JPH1166980A (en) 1999-03-09
JP3568744B2 JP3568744B2 (en) 2004-09-22

Family

ID=16736786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21952197A Expired - Fee Related JP3568744B2 (en) 1997-08-14 1997-08-14 Oxide superconducting cable

Country Status (1)

Country Link
JP (1) JP3568744B2 (en)

Also Published As

Publication number Publication date
JP3568744B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US5952614A (en) A.C. cable with stranded electrical conductors
US6750399B1 (en) Cable, a method of constructing a cable, and use of a cable
EP1667171A1 (en) Super-conductive cable
JP4174824B2 (en) Superconducting cable
JPH11506261A (en) AC cable with two concentric conductor arrangements of twisted individual conductors
JP3691692B2 (en) Superconducting cable
JP5397994B2 (en) Superconducting cable
JP5385746B2 (en) Superconducting cable
JP4947434B2 (en) Superconducting conductor
JP3568744B2 (en) Oxide superconducting cable
JP3568745B2 (en) Oxide superconducting cable
JP4135184B2 (en) Superconducting conductor
JP3805946B2 (en) Superconducting cable power transmission device and drift prevention method using the same
JPH08264039A (en) Superconducting cable
JPH0636329B2 (en) Superconducting conductor
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JPH11203960A (en) Oxide superconductive cable
JP3585719B2 (en) Oxide superconducting cable unit and oxide superconducting cable including the same
JP2001325837A (en) Superconducting cable
Saga et al. AC loss of transposed HTS cable conductors
JP2000149676A (en) Oxide superconductor stranded wire and cable conductor using the same
JP2004063225A (en) Dislocation superconductivity tape unit and superconductive cable
JP2561839B2 (en) Low AC resistance conductor
JPH01107421A (en) Superconductor and manufacture thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees