JPH1166651A - Magneto-optical recording medium and its reproducing method - Google Patents

Magneto-optical recording medium and its reproducing method

Info

Publication number
JPH1166651A
JPH1166651A JP21733897A JP21733897A JPH1166651A JP H1166651 A JPH1166651 A JP H1166651A JP 21733897 A JP21733897 A JP 21733897A JP 21733897 A JP21733897 A JP 21733897A JP H1166651 A JPH1166651 A JP H1166651A
Authority
JP
Japan
Prior art keywords
magnetic film
film
reproducing
magnetic
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21733897A
Other languages
Japanese (ja)
Inventor
Katsusuke Shimazaki
勝輔 島崎
Yoshitane Tsuburaya
欣胤 円谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP21733897A priority Critical patent/JPH1166651A/en
Publication of JPH1166651A publication Critical patent/JPH1166651A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable to obtain a reproduced signal indicating a high SN ratio in high density recording performed in a minute magnetic section by expanding, transcribing and reproducing a recorded magnetic section signal of a magneto-optical recording film in a part of a reproduction layer magnetic film laminated in a area in which an auxiliary magnetic film consisting of an anti-ferroelectric material is heated to a Neel temperature by a reproduced light and magnetized always. SOLUTION: A recording magnetic section recorded in a magneto-optical recording film 10 is transcribed on a reproduction layer magnetic film 24, expanded, and reading reproduction is performed by detecting a polarization Kerr rotation angle of a laser beam for reproduction obtained from a transcription recording magnetic section of the expanded reproduction layer magnetic film 24. Then. as it is limited to a recording magnetic section signal magnetic field from the magneto-optical recording layer 10 being infinitely pure, other noise magnetic field is shut out, and an anti-ferroelectric auxiliary magnetic layer 30 is used as a means performing efficient noise shield and cutting off. Thereby, reproduction of a super-minute recording magnetic section signal which earn be recorded but has been hard to reproduced hitherto can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光磁気記録媒体及
びその再生方法に関し、更に詳しくは、再生光スポット
よりも極めて小さい微小記録磁区を拡大して、且つC/N
の高い、再生信号を得ることができる高密度記録に適し
た光磁気記録媒体及びその再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium and a reproducing method therefor, and more particularly to a magnetic recording medium in which a minute recording magnetic domain extremely smaller than a reproducing light spot is enlarged and a C / N ratio is increased.
The present invention relates to a magneto-optical recording medium suitable for high-density recording capable of obtaining a reproduced signal having a high recording density and a reproducing method thereof.

【0002】[0002]

【従来の技術】光磁気記録媒体及びレーザビームを利用
する磁気ハードデイスクは記録情報の書き換えが可能で
あり、記憶容量が大きく、しかも信頼性が高い記録媒体
であるため、コンピュータメモリ等として実用化され始
めている。しかし、情報量の増大と装置のコンパクト化
が高スピードで進展しており、より一層の高密度記録再
生技術が要請されている。光磁気記録媒体に情報を記録
するには、レーザー光を記録媒体に照射しながら、記録
磁区信号に応じた極性の磁界を昇温した部分に印加する
磁界変調法が用いられている。この方法は、オーバーラ
イト記録が可能であり、しかも、高密度な記録、例え
ば、0.15μmの最短マーク長での記録が達成されて
いる。また、一定の印加磁界の下で記録信号に応じてパ
ワー変調した光を照射して記録する光変調記録方式も実
用化されている。
2. Description of the Related Art A magneto-optical recording medium and a magnetic hard disk using a laser beam are rewritable recording information, have a large storage capacity, and have high reliability. Has begun. However, an increase in the amount of information and a reduction in the size of the device are progressing at a high speed, and further higher-density recording / reproducing technology is required. In order to record information on a magneto-optical recording medium, a magnetic field modulation method of applying a magnetic field having a polarity corresponding to a recording magnetic domain signal to a heated portion while irradiating the recording medium with a laser beam is used. This method enables overwrite recording and achieves high-density recording, for example, recording with the shortest mark length of 0.15 μm. Further, an optical modulation recording system for recording by irradiating light whose power has been modulated according to a recording signal under a constant applied magnetic field has also been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】ところで、光磁気記録
媒体の高密度記録においては、硬度微細な磁区の記録を
行うことは容易であるが、記録された微細な磁区、或い
は微細な記録マークを再生するために、再生光ビームの
スポット径によって決まる光学的再生分解能が問題とな
る。例えば、スポット径が1μmの再生光を用いて磁区
長0.15μmの微小マークを識別して再生することは
不可能である。このような再生光の光学的スポット径に
よる再生分解能の制約をなくすためのの1つのアプロー
チとして、例えば、Journal of Magnetic Society of J
apan, Vol. 17 Supplement No. S1,pp. 201 (1993) に
記載されているような磁気超解像技術(MSR)が提案
されている。これは、光磁気記録媒体に再生光が照射さ
れた時に再生光スポット内部の磁性膜に温度分布が生じ
ることを利用して、スポット内に磁気的マスクを発生さ
せ、信号の再生に寄与する実効的なスポット径を縮小さ
せたものである。この技術を用いれば、実際の再生光ス
ポット径を縮小させずに、再生分解能を向上させること
ができる。しかし、この手法では、磁気的マスクにより
実効的なスポット径を小さくする為、再生出力に寄与す
る光量が低下し、その分、再生C/Nが低下してしま
う。この結果、充分なC/Nを得ることは困難となる。
By the way, in high-density recording of a magneto-optical recording medium, it is easy to record a magnetic domain having a fine hardness. For reproduction, the optical reproduction resolution determined by the spot diameter of the reproduction light beam becomes a problem. For example, it is impossible to identify and reproduce a minute mark having a magnetic domain length of 0.15 μm using reproduction light having a spot diameter of 1 μm. As one approach for eliminating the restriction on the reproduction resolution due to the optical spot diameter of the reproduction light, for example, the Journal of Magnetic Society of J
The magnetic super-resolution technique (MSR) as described in apan, Vol. 17 Supplement No. S1, pp. 201 (1993) has been proposed. This utilizes the fact that a temperature distribution is generated in the magnetic film inside the reproduction light spot when the reproduction light is irradiated to the magneto-optical recording medium, and a magnetic mask is generated in the spot, thereby contributing to the reproduction of the signal. In this case, the typical spot diameter is reduced. If this technique is used, the reproduction resolution can be improved without reducing the actual reproduction light spot diameter. However, in this method, since the effective spot diameter is reduced by the magnetic mask, the amount of light that contributes to the reproduction output decreases, and the reproduction C / N decreases accordingly. As a result, it is difficult to obtain a sufficient C / N.

【0004】特開平1−143041号公報には、室温
で互いに磁気的に結合した第1磁性膜、第2磁性膜及び
第3磁性膜を有し、第1,第2及び第3磁性膜のキュリ
ー温度をTC1,TC2及びTC3とするとき、TC2>室温で且
つTC2<TC1,TC3とされ、第1磁性膜の保磁力HC1は第
2磁性膜のキュリー温度TC2近傍で充分小さく、第3磁
性膜の保磁力HC3は室温からTC2より高い所要の温度TP
Bまでの温度範囲で所要の磁場よりも充分大きい光磁気
記録媒体を用いて、第1磁性膜の記録磁区を拡大させて
再生を行う光磁気記録媒体の再生方法が開示されてい
る。この方法は、再生光照射時の媒体の温度上昇を利用
し、第1及び第3磁性膜の磁気的結合を遮断させ、その
状態で記録磁区に働く反磁界と外部印加磁界とにより第
1磁性膜の磁区を拡大させている。なお、この技術で
は、再生時の読み出し部の温度よりも低くキュリー温度
を設定した第2磁性膜を用いている。
Japanese Patent Application Laid-Open No. 1-143041 has a first magnetic film, a second magnetic film, and a third magnetic film which are magnetically coupled to each other at room temperature. When the Curie temperatures are TC1, TC2 and TC3, TC2> room temperature and TC2 <TC1, TC3, the coercive force HC1 of the first magnetic film is sufficiently small near the Curie temperature TC2 of the second magnetic film, and the third magnetic The coercive force HC3 of the film is the required temperature TP higher than room temperature to TC2.
A reproducing method for a magneto-optical recording medium in which a magneto-optical recording medium that is sufficiently larger than a required magnetic field in a temperature range up to B and which reproduces data by enlarging a recording magnetic domain of a first magnetic film is disclosed. In this method, the magnetic coupling between the first and third magnetic films is interrupted by utilizing the temperature rise of the medium during the irradiation of the reproduction light, and the first magnetic field is applied by the demagnetizing field acting on the recording magnetic domain and the externally applied magnetic field in that state. The domain of the film is enlarged. In this technique, the second magnetic film whose Curie temperature is set lower than the temperature of the read section during reproduction is used.

【0005】上記のような方法、及びそのような磁気特
性の磁性膜を用いることは、本発明の対象ではない。
[0005] The method described above and the use of a magnetic film having such magnetic properties are not objects of the present invention.

【0006】次に、特開平6−295479号は、基板
上に再生層と記録層とを有し、再生層には室温で面内磁
化を示すが、再生光の照射によって再生温度まで加熱さ
れると垂直磁化へ転移する磁性膜をもちいて、記録信号
の磁区を記録層から再生層へ転写拡大して再生する光磁
気記録媒体について開示している。この光磁気記録媒体
を再生する際に、再生層には転写磁区の磁壁が発生する
ことによって転写磁区の拡大を行わせている。
Japanese Patent Application Laid-Open No. 6-295479 has a reproducing layer and a recording layer on a substrate, and the reproducing layer shows in-plane magnetization at room temperature. A magneto-optical recording medium that reproduces a magnetic domain of a recording signal by transferring and expanding the magnetic domain of the recording signal from a recording layer to a reproducing layer using a magnetic film that changes to perpendicular magnetization is disclosed. When reproducing the magneto-optical recording medium, a magnetic domain wall of the transfer magnetic domain is generated in the read layer, thereby enlarging the transfer magnetic domain.

【0007】特開平8−7350号は、基板上に再生層
と記録層とを有し、再生時に記録層の磁区を拡大して再
生することができる光磁気記録媒体を開示している。こ
の光磁気記録媒体を再生する際に、再生磁界として交番
磁界を用い、磁区を拡大する方向の磁界と逆方向の磁界
とを交互に印加することによって各磁区で磁区拡大及び
縮小を行わせている。
Japanese Patent Application Laid-Open No. Hei 8-7350 discloses a magneto-optical recording medium having a reproducing layer and a recording layer on a substrate and capable of reproducing by enlarging the magnetic domain of the recording layer during reproduction. When reproducing the magneto-optical recording medium, an alternating magnetic field is used as a reproducing magnetic field, and a magnetic field in a direction for expanding the magnetic domain and a magnetic field in the opposite direction are alternately applied to cause the magnetic domain to expand and contract in each magnetic domain. I have.

【0008】上記、特開平1−143041号、特開平
6−295479号、及び特開平8−7350号公報に
記載された方法では、記録磁気信号が再生層に転写され
る際に洩れ磁界等、再生用磁気信号以外のノイズが同時
に転写されて、再生層からの拡大再生信号はノイズが大
きく、従って拡大再生信号のC/Nが小さくなる問題が
あり、実用化を阻害している。本発明はこの問題を解決
するために、前記特開平1−143041号、特開平6
−295479号、及び特開平8−7350号公報等に
記載された記録再生層と異なる方法を提供し、従来技術
の問題点を解決しようとするものであり、その目的は、
微小磁区で記録する高密度記録において高いSN比を示
す記録再生の方法を提供すること、及び再生時に磁区拡
大が行われた場合であっても、記録磁区を再生した直後
に拡大された磁区を確実に消去することができる光磁気
記録媒体とその再生方法を提供することである。
According to the methods described in JP-A-1-143041, JP-A-6-295479, and JP-A-8-7350, when a recording magnetic signal is transferred to a reproducing layer, a leakage magnetic field or the like is generated. Noise other than the magnetic signal for reproduction is transferred at the same time, and the enlarged reproduction signal from the reproduction layer has a large noise. Therefore, there is a problem that the C / N of the enlarged reproduction signal is reduced, which hinders practical use. In order to solve this problem, the present invention is directed to Japanese Patent Application Laid-Open Nos.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method different from the recording / reproducing layer described in JP-A-295479 and JP-A-8-7350, and to solve the problems of the prior art.
To provide a recording / reproducing method showing a high SN ratio in high-density recording in which recording is performed in a minute magnetic domain. Even when a magnetic domain is enlarged at the time of reproduction, a magnetic domain enlarged immediately after reproducing a recording magnetic domain is provided. An object of the present invention is to provide a magneto-optical recording medium that can be securely erased and a method for reproducing the medium.

【0009】[0009]

【課題を解決するための手段】本発明は光磁気記録媒体
の記録層を構成する積層膜体に少なくとも光磁気記録膜
と再生用磁性膜と反強磁性材料からなる補助磁性膜とが
用いられるものに関する。本発明の光磁気記録媒体は、
図1の(a)及び(b)に示すように、基板1或いは透明保護
膜3上に少なくとも垂直磁化を有する光磁気記録膜10
と、室温で面内磁化性、或いは垂直磁化性の反強磁性材
料からなる補助磁性膜30と、室温で面内磁化、或いは
垂直磁化の補助磁性膜(再生層磁性膜と略す)24とを
備えるものである。再生層磁性膜24に用いる室温で面
内磁化を示す材料は、再生光によって加熱されて臨界温
度Tcr2を超えると垂直磁化に転移する磁性材料でなけ
ればならない。反強磁性材料からなる補助磁性膜30に
は、室温では面内磁化の反強磁性化或いは垂直磁化の反
強磁性化の状態にあって補助磁性膜30に積層する再生
用磁性膜24の垂直磁化或いは面内磁化と交換結合を行
い、再生層磁性膜24の磁化向きを強固に固定する性質
を示す材料であって、再生用レーザ光が照射された部分
では積層された再生層磁性膜24との交換結合が解消さ
れて、再生層磁性膜24に記録磁区信号が良好に磁気転
写される磁性材料を用いる。
According to the present invention, at least a magneto-optical recording film, a reproducing magnetic film, and an auxiliary magnetic film made of an antiferromagnetic material are used as a laminated film constituting a recording layer of a magneto-optical recording medium. About things. The magneto-optical recording medium of the present invention,
As shown in FIGS. 1A and 1B, a magneto-optical recording film 10 having at least perpendicular magnetization is formed on a substrate 1 or a transparent protective film 3.
And an auxiliary magnetic film 30 made of an antiferromagnetic material having in-plane magnetism or perpendicular magnetization at room temperature, and an auxiliary magnetic film (abbreviated as reproducing layer magnetic film) 24 having in-plane magnetization or perpendicular magnetization at room temperature. It is provided. The material that exhibits in-plane magnetization at room temperature and that is used for the reproducing layer magnetic film 24 must be a magnetic material that is heated by the reproducing light and transitions to perpendicular magnetization when the temperature exceeds the critical temperature Tcr2. At room temperature, the auxiliary magnetic film 30 made of an antiferromagnetic material has an in-plane magnetization antiferromagnetization or a perpendicular magnetization antiferromagnetization at room temperature. It is a material exhibiting a property of performing exchange coupling with magnetization or in-plane magnetization to firmly fix the magnetization direction of the reproducing layer magnetic film 24, and in the portion irradiated with the reproducing laser light, the reproducing layer magnetic film 24 is laminated. A magnetic material is used in which the exchange coupling with the magnetic layer is canceled and the recording magnetic domain signal is magnetically transferred to the reproducing layer magnetic film 24 satisfactorily.

【0010】本発明の第1では、反強磁性材料からなる
補助磁性膜30が再生光によってネール温度以上に加熱
されて常磁性化されたエリアに積層される再生層磁性膜
24の部分に、記録磁区信号が転写、拡大されて再生さ
れることに特徴がある。
According to the first aspect of the present invention, the auxiliary magnetic film 30 made of an antiferromagnetic material is heated to a Neel temperature or higher by the reproduction light to form a portion of the reproduction layer magnetic film 24 that is laminated on the paramagnetic area. It is characterized in that the recorded magnetic domain signal is transferred, enlarged and reproduced.

【0011】本発明の第2に係る光磁気記録媒体は、少
なくとも、光磁気記録層10と、再生層磁性膜24と、
室温では垂直磁化であるが臨界温度Tcr1以上で面内
磁化に転移する補助磁化層128と、室温では面内磁化
の反強磁性を示しネール温度Tn或いはブロッキング温
度Tbを越えて常磁性化或いは非磁性化へ転移する補助
磁性膜30とが用いられる。本発明は、光磁気記録媒体
の再生用レーザ光の入射側から、再生層磁性膜24、室
温では面内磁化の反強磁性の補助磁性膜30、補助磁化
層128、光磁気記録層10の順に構成され、特に再生
層磁性膜24と室温では面内磁化の反強磁性の補助磁性
膜30とは直接接触して積層される。再生層磁性膜2
4、補助磁化層128、垂直磁化の反強磁性の補助磁性
膜30等の材料には、ネール温度Tnと臨界温度Tcr
1と臨界温度Tcr2との間でTcr2≦TnまたはT
b<Tcr1の関係になるような材料を選択して用い
る。
The magneto-optical recording medium according to the second embodiment of the present invention comprises at least a magneto-optical recording layer 10, a reproducing layer magnetic film 24,
An auxiliary magnetic layer 128 which is perpendicular magnetization at room temperature but transitions to in-plane magnetization at or above the critical temperature Tcr1, and exhibits anti-ferromagnetism at in-plane magnetization at room temperature and becomes paramagnetic or non-paramagnetic beyond the Neel temperature Tn or blocking temperature Tb. An auxiliary magnetic film 30 that changes to a magnetized state is used. According to the present invention, the reproducing layer magnetic film 24, the antiferromagnetic auxiliary magnetic film 30 having in-plane magnetization at room temperature, the auxiliary magnetic layer 128, and the magneto-optical recording layer 10 are formed from the incident side of the reproducing laser beam of the magneto-optical recording medium. In particular, the reproducing layer magnetic film 24 and the antiferromagnetic auxiliary magnetic film 30 having in-plane magnetization at room temperature are in direct contact with each other and are laminated. Reproducing layer magnetic film 2
4. Materials such as the auxiliary magnetization layer 128 and the perpendicular magnetization antiferromagnetic auxiliary magnetic film 30 include a Neel temperature Tn and a critical temperature Tcr.
1 and the critical temperature Tcr2, Tcr2 ≦ Tn or Tcr2
A material that satisfies the relationship of b <Tcr1 is selected and used.

【0012】本発明の光磁気記録媒体の記録磁区信号を
再生させる方法としては、再生光の照射によってまず光
磁気記録層10の磁界よりも保持力は小さいが、再生光
照射温度時の記録磁区信号の転写磁界強度を高める補助
磁化層128を作動させ、ついで、再生層磁性膜24の
温度がTcr2になり面内磁化から垂直磁化に転移でき
る温度に達する。ついで反強磁性材料からなる補助磁性
膜30がネール温度Tn或いはブロッキング温度Tbを
越えて常磁性化へ至らしめ、そして再生層磁性膜24と
反強磁性材料からなる補助磁性膜30との積層間に働い
ていた面内磁化についての強い交換結合力を解消させな
がら再生層磁性膜24の上記再生レーザ光を受けて光磁
気記録層10の磁界よりも小さな保持力になった部分か
ら光磁気記録層10の記録磁区磁界信号が転写される。
ついで上記再生光の照射によって補助磁化層128が臨
界温度Tcr1を越えて面内磁化に転移する段階に達する
と記録磁区磁界信号は遮断され、再生層磁性膜24の転
写磁区の拡大がピークに達して記録磁区の転写信号が再
生される。この方法では、比較的パワーの低い再生レー
ザ光を用いて記録磁区の転写拡大再生が可能になる特徴
がある。
As a method of reproducing a recording magnetic domain signal of the magneto-optical recording medium of the present invention, first, although the coercive force is smaller than the magnetic field of the magneto-optical recording layer 10 by irradiation of the reproducing light, The auxiliary magnetic layer 128 for increasing the transfer magnetic field strength of the signal is operated, and then the temperature of the reproducing layer magnetic film 24 becomes Tcr2, and reaches a temperature at which transition from in-plane magnetization to perpendicular magnetization is possible. Then, the auxiliary magnetic film 30 made of the antiferromagnetic material exceeds the Neel temperature Tn or the blocking temperature Tb, and becomes paramagnetized. While the strong exchange coupling force in the in-plane magnetization that had been acting on the recording medium was eliminated, the portion of the reproducing layer magnetic film 24 receiving the reproduction laser beam and having a coercive force smaller than the magnetic field of the magneto-optical recording layer 10 was subjected to magneto-optical recording. The recording domain signal of the layer 10 is transferred.
Then, when the auxiliary magnetic layer 128 reaches the stage where the temperature of the auxiliary magnetic layer 128 exceeds the critical temperature Tcr1 and transitions to in-plane magnetization by the irradiation of the reproducing light, the recording magnetic domain magnetic field signal is cut off, and the expansion of the transfer magnetic domain of the reproducing layer magnetic film 24 reaches a peak. Thus, the transfer signal of the recording magnetic domain is reproduced. This method is characterized in that transfer enlarged reproduction of a recording magnetic domain can be performed using a reproduction laser beam having relatively low power.

【0013】本発明の第3は、少なくとも、光磁気記録
層10と、再生層磁性膜24と、室温では垂直磁化であ
るが臨界温度Tcr1以上で面内磁化に転移する補助磁
化層128と、室温では垂直磁化の反強磁性を示しネー
ル温度Tn或いはブロッキング温度Tbを越えて常磁性
化或いは非磁性化へ転移する補助磁性膜30とが用いら
れる。本発明は、光磁気記録媒体の再生用レーザ光の入
射側から、再生層磁性膜24、補助磁化層128、垂直
磁化の反強磁性の補助磁性膜30、光磁気記録層10の
順に構成され、特に補助磁化層128と垂直磁化の反強
磁性の補助磁性膜30とは直接接触して積層される。再
生層磁性膜24、補助磁化層128、垂直磁化の反強磁
性の補助磁性膜30等の材料には、ネール温度Tnと臨
界温度Tcr1と臨界温度Tcr2との間でTnまたは
Tb≦Tcr2<Tcr1の関係になるような材料を選
択して用いる。この方法では、光磁気記録媒体の反強磁
性材料からなる補助磁性膜30を再生レーザ光の照射に
よってネール温度Tn或いはブロッキング温度Tbを越
えて常磁性化へ至らしめ、そして補助磁化層128と反
強磁性材料からなる補助磁性膜30との接触積層間に働
いていた面内磁化についての強い交換結合力を解消させ
る。ついで、前記再生用レーザ光によって加熱され臨界
温度Tcr1に達した補助磁化層128に光磁気記録層
10の記録磁区信号を転写させ、拡大させる。ついで、
前記再生用レーザ光の照射を受けて既に臨界温度Tcr2
に達して補助磁化層28及び光磁気記録層10の磁界よ
り小さな保持力になっている再生層磁性膜24の部分
へ、補助磁化層128の記録磁区信号を再転写拡大させ
ることによってS/N比の高い記録磁区信号だけを再生
することに特徴がある。尚、再生層磁性膜24の材料に
は、転写拡大した記録磁区が前記再生レーザ光照射位置
の移動に伴い縮小消滅するに適する磁性材料を選択する
ことが好ましいが、縮小消滅されない材料では、次の再
生の際に上書きによって転写、拡大するに適する磁性材
料を選択して用いる必要がある。
A third aspect of the present invention is at least a magneto-optical recording layer 10, a reproducing layer magnetic film 24, and an auxiliary magnetic layer 128 which is perpendicular at room temperature but transitions to in-plane magnetization at or above the critical temperature Tcr1. At room temperature, an auxiliary magnetic film 30 is used, which exhibits antiferromagnetism of perpendicular magnetization and transitions to paramagnetism or nonmagnetism exceeding the Neel temperature Tn or blocking temperature Tb. In the present invention, the reproducing layer magnetic film 24, the auxiliary magnetic layer 128, the perpendicular magnetization antiferromagnetic auxiliary magnetic film 30, and the magneto-optical recording layer 10 are arranged in this order from the side of the magneto-optical recording medium where the reproducing laser beam is incident. In particular, the auxiliary magnetization layer 128 and the perpendicular magnetization antiferromagnetic auxiliary magnetic film 30 are stacked in direct contact. Materials such as the reproducing layer magnetic film 24, the auxiliary magnetic layer 128, and the perpendicular magnetization antiferromagnetic auxiliary magnetic film 30 include Tn or Tb ≦ Tcr2 <Tcr1 between the Neel temperature Tn and the critical temperature Tcr1 and the critical temperature Tcr2. Is selected and used. In this method, the auxiliary magnetic film 30 made of an antiferromagnetic material of the magneto-optical recording medium is made paramagnetic by irradiation of the reproducing laser beam to exceed the Neel temperature Tn or the blocking temperature Tb, and then to the antimagnetic layer 128. The strong exchange coupling force in the in-plane magnetization that has been acting during the contact lamination with the auxiliary magnetic film 30 made of a ferromagnetic material is eliminated. Next, the recording magnetic domain signal of the magneto-optical recording layer 10 is transferred to the auxiliary magnetic layer 128 which has been heated by the reproducing laser beam and has reached the critical temperature Tcr1, and is enlarged. Then
After receiving the laser beam for reproduction, the critical temperature Tcr2
S / N by re-transferring and expanding the recording magnetic domain signal of the auxiliary magnetic layer 128 to the portion of the reproducing layer magnetic film 24 having a coercive force smaller than the magnetic field of the auxiliary magnetic layer 28 and the magneto-optical recording layer 10 It is characterized in that only a magnetic domain signal having a high ratio is reproduced. As a material of the reproducing layer magnetic film 24, it is preferable to select a magnetic material suitable for the transferred and expanded recording magnetic domain to be reduced and disappeared with the movement of the reproducing laser beam irradiation position. It is necessary to select and use a magnetic material suitable for transferring and enlarging by overwriting when reproducing.

【0014】本発明の第4は、少なくとも、光磁気記録
層10と、再生層磁性膜24と、室温では面内磁化であ
るが臨界温度Tcr1以上で垂直磁化に転移する補助磁
化層128と、室温では面内磁化の反強磁性を示しネー
ル温度Tn或いはブロッキング温度Tbを越えて常磁性
化へ転移する補助磁性膜30とが用いられる。本発明
は、光磁気記録媒体の再生用レーザ光の入射側から、再
生層磁性膜24、補助磁化層128、面内磁化の反強磁
性の補助磁性膜30、光磁気記録層10の順に構成さ
れ、特に補助磁化層128と面内磁化の反強磁性の補助
磁性膜30とは直接接触して積層される。再生層磁性膜
24、補助磁化層128、面内磁化の反強磁性の補助磁
性膜30等の材料には、ネール温度Tnと臨界温度Tc
r1と臨界温度Tcr2との間でTcr2<Tcr1≦
TnまたはTbの関係になるように材料を選択して用い
る。再生用レーザ光の照射を受けて光磁気記録媒体の再
生層磁性膜24が臨界温度Tcr2に達し、補助磁化層2
8及び光磁気記録層10の磁界より小さな保持力になっ
た再生層磁性膜24の部分が形成される。ついで補助磁
化層28の臨界温度Tcr1に達し、光磁気記録層10の
磁界より小さな保持力になった部分が形成される。反強
磁性材料からなる補助磁性膜30が前記再生レーザ光の
照射によってネール温度Tn或いはブロッキング温度T
bを越えて常磁性化する温度の近傍で、光磁気記録層1
0の記録磁区信号が補助磁化層28に転写させ拡大され
る時点では、上記再生層磁性膜24の部分に再転写され
拡大されて再生することができることに特徴がある。上
記以外は本発明の第3と同じである。
A fourth aspect of the present invention is at least a magneto-optical recording layer 10, a reproducing layer magnetic film 24, and an auxiliary magnetic layer 128 which has in-plane magnetization at room temperature but transitions to perpendicular magnetization at or above the critical temperature Tcr1. At room temperature, an auxiliary magnetic film 30 is used which exhibits antiferromagnetism of in-plane magnetization and transitions to paramagnetism beyond the Neel temperature Tn or blocking temperature Tb. The present invention comprises a reproducing layer magnetic film 24, an auxiliary magnetic layer 128, an in-plane magnetization antiferromagnetic auxiliary magnetic film 30, and a magneto-optical recording layer 10 in this order from the side of the reproducing laser beam of the magneto-optical recording medium. In particular, the auxiliary magnetic layer 128 and the antiferromagnetic auxiliary magnetic film 30 having in-plane magnetization are stacked in direct contact. Materials such as the reproducing layer magnetic film 24, the auxiliary magnetic layer 128, and the in-plane magnetization antiferromagnetic auxiliary magnetic film 30 include a Neel temperature Tn and a critical temperature Tc.
Tcr2 <Tcr1 ≦ between r1 and critical temperature Tcr2
Materials are selected and used so as to satisfy the relationship of Tn or Tb. Upon receiving the laser beam for reproduction, the reproducing layer magnetic film 24 of the magneto-optical recording medium reaches the critical temperature Tcr2,
8 and a portion of the reproducing layer magnetic film 24 having a coercive force smaller than the magnetic field of the magneto-optical recording layer 10 is formed. Then, the temperature reaches the critical temperature Tcr1 of the auxiliary magnetic layer 28, and a portion having a coercive force smaller than the magnetic field of the magneto-optical recording layer 10 is formed. When the auxiliary magnetic film 30 made of an antiferromagnetic material is irradiated with the reproducing laser beam, the auxiliary magnetic film 30 has a nail temperature Tn or a blocking temperature T
b, near the temperature at which paramagnetization occurs, the magneto-optical recording layer 1
When the recording magnetic domain signal of 0 is transferred to the auxiliary magnetic layer 28 and expanded, it is characterized in that it can be re-transferred to the portion of the reproducing layer magnetic film 24 and expanded and reproduced. Except for the above, it is the same as the third embodiment of the present invention.

【0015】本発明の第5は、基板1上に少なくとも再
生用磁化膜24と記録用磁化膜10を備える光磁気記録
媒体おいて、前記再生用磁化膜24は、再生用レーザ光
によって面内磁化から垂直磁化へ転移して記録磁区信号
の転写を受けて拡大する行程を機能して、前記記録磁区
信号が再生されると共に、前記再生用磁化膜24に記録
磁区信号が転写された後は、前記再生用磁化膜24への
洩れ磁界等ノイズ、外部磁界、及び前記記録磁区信号磁
界等について遮断することと前記記録磁区信号の磁界の
遮断を解消することを交互に連続して行う機能を備える
反強磁性材料からなる補助磁性膜30を、上記記録用磁
化膜10と上記再生用磁化膜24との間に備えるもの
で、この補助磁性膜30の材料に面内磁化の反強磁性材
料を用いることに特徴がある。
A fifth aspect of the present invention is a magneto-optical recording medium having at least a reproducing magnetic film 24 and a recording magnetic film 10 on a substrate 1, wherein the reproducing magnetic film 24 is in-plane by a reproducing laser beam. The process of transitioning from magnetization to perpendicular magnetization and receiving and expanding the recording magnetic domain signal functions to reproduce the recording magnetic domain signal and, after the recording magnetic domain signal is transferred to the reproducing magnetic film 24, A function of alternately and continuously cutting off noise such as a leakage magnetic field to the reproducing magnetic film 24, an external magnetic field, and the recording magnetic domain signal magnetic field, and canceling the interruption of the magnetic field of the recording magnetic domain signal. An auxiliary magnetic film 30 made of an antiferromagnetic material is provided between the recording magnetic film 10 and the reproducing magnetic film 24, and the material of the auxiliary magnetic film 30 has an in-plane magnetization antiferromagnetic material. Specially to use There is.

【0016】本発明の第6は、基板上に少なくとも再生
用磁化膜24と補助磁性膜28と記録用磁化膜10とを
備える磁気記録媒体おいて、常温で面内磁化で臨界温度
Tcr2以上の温度で垂直磁化に転移する再生用磁化膜2
4の該臨界温度Tcr2よりも低い臨界温度Tcr1で、面内
磁化から垂直磁化へ転移する補助磁性膜28を、前記記
録用磁化膜10と前記再生用磁化膜24との間に形成す
ると共に、補助磁性膜28と再生用磁化膜24との間に
再生用磁化膜24の臨界温度Tcr2よりも高いネール温
度Tnで、反強磁性から常磁性化へ転移する面内磁化の
反強磁性補助磁性膜30を再生用磁化膜24と接触させ
て形成することに特徴がある。
A sixth aspect of the present invention is a magnetic recording medium having at least a reproducing magnetic film 24, an auxiliary magnetic film 28, and a recording magnetic film 10 on a substrate, and has an in-plane magnetization at room temperature and a critical temperature Tcr2 or higher. Reproduced magnetic film 2 which changes to perpendicular magnetization at temperature
At the critical temperature Tcr1 lower than the critical temperature Tcr2 of No. 4, an auxiliary magnetic film 28 that transitions from in-plane magnetization to perpendicular magnetization is formed between the recording magnetic film 10 and the reproducing magnetic film 24, At a Neel temperature Tn higher than the critical temperature Tcr2 of the reproducing magnetic film 24 between the auxiliary magnetic film 28 and the reproducing magnetic film 24, the antiferromagnetic auxiliary magnetism of the in-plane magnetization that transitions from antiferromagnetic to paramagnetizing The feature is that the film 30 is formed in contact with the reproducing magnetic film 24.

【0017】本発明の第7は、基板上に少なくとも記録
用磁化膜と再生用磁化膜を備え、再生光を光磁気記録媒
体に照射することによって再生する光磁気記録媒体おい
て、記録用磁化膜と再生用磁化膜との間に反強磁性材料
からなる補助磁性膜が介在して構成される積層膜を用い
る光磁気記録媒体あることに特徴がある。
According to a seventh aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. It is characterized in that it is a magneto-optical recording medium using a laminated film in which an auxiliary magnetic film made of an antiferromagnetic material is interposed between the film and the reproducing magnetic film.

【0018】本発明の第8は、基板上に少なくとも記録
用磁化膜と再生用磁化膜を備え、再生光を光磁気記録媒
体に照射することによって再生する光磁気記録媒体おい
て、前記記録用磁化膜と再生用磁化膜との間に垂直磁化
の反強磁性材料からなる補助磁性膜が介在して構成され
る積層膜を用いる光磁気記録媒体あることに特徴があ
る。
According to an eighth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the magneto-optical recording medium. It is characterized in that it is a magneto-optical recording medium using a laminated film in which an auxiliary magnetic film made of a perpendicular magnetization antiferromagnetic material is interposed between a magnetic film and a reproducing magnetic film.

【0019】本発明の第9は、基板上に少なくとも記録
用磁化膜と再生用磁化膜を備え、再生光を光磁気記録媒
体に照射することによって再生する光磁気記録媒体おい
て、前記記録用磁化膜と再生用磁化膜との間に面内磁化
の反強磁性材料からなる補助磁性膜が介在して構成され
る積層膜を用いる光磁気記録媒体あることに特徴があ
る。
According to a ninth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the magneto-optical recording medium. It is characterized in that it is a magneto-optical recording medium using a laminated film in which an auxiliary magnetic film made of an in-plane magnetization antiferromagnetic material is interposed between a magnetic film and a reproducing magnetic film.

【0020】上記、記録用磁化膜と反強磁性材料からな
る補助磁性膜と再生用磁化膜の内、少なくとも反強磁性
材料からなる補助磁性膜と再生用磁化膜とが直接接触し
て積層化されることが好ましい。
Among the recording magnetic film, the auxiliary magnetic film made of an antiferromagnetic material, and the reproducing magnetic film, at least the auxiliary magnetic film made of an antiferromagnetic material and the reproducing magnetic film are in direct contact and laminated. Is preferably performed.

【0021】さらに、上記反強磁性材料からなる補助磁
性膜と再生用磁化膜とは、垂直磁化磁性膜と垂直磁化磁
性膜との組み合わせ、及び面内磁化磁性膜と面内磁化磁
性膜との組み合わせから選択される組み合わせで構成さ
れるされることが好ましい。
Further, the auxiliary magnetic film and the reproducing magnetic film made of the above-mentioned antiferromagnetic material include a combination of a perpendicular magnetic magnetic film and a perpendicular magnetic magnetic film, and a combination of an in-plane magnetic magnetic film and an in-plane magnetic magnetic film. It is preferable to be configured with a combination selected from the combinations.

【0022】さらにまた、記録用磁化膜と反強磁性材料
からなる補助磁性膜との間に非磁性材料からなる膜を介
在させて積層構成してもよい。
Furthermore, a laminated structure may be formed by interposing a film made of a nonmagnetic material between the recording magnetic film and the auxiliary magnetic film made of an antiferromagnetic material.

【0023】さらにまた、記録用磁化膜と反強磁性材料
からなる補助磁性膜との間に、磁性材料からなる膜と非
磁性材料からなる膜の積層体を介在させて積層構成して
もよい。
Further, a laminated structure of a film made of a magnetic material and a film made of a nonmagnetic material may be interposed between the recording magnetic film and the auxiliary magnetic film made of an antiferromagnetic material. .

【0024】さらにまた、非磁性材料からなる膜は光磁
気記録媒体の光反射膜、断熱性膜、誘電体膜、透明保護
膜、基板材料等に用いられる材料から選択される材料で
構成してもよい。
Further, the film made of a non-magnetic material is made of a material selected from materials used for a light reflection film, a heat insulating film, a dielectric film, a transparent protective film, a substrate material and the like of a magneto-optical recording medium. Is also good.

【0025】本発明の第10は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、非磁性材料膜、室温では面内
磁化で臨界温度以上で垂直磁化に転移する第1の補助磁
性膜、非磁性材料膜、反強磁性材料からなる補助磁性
膜、室温では面内磁化で臨界温度以上で垂直磁化に転移
する再生用磁化膜として機能する第2の補助磁性膜等の
膜層を備えると共に、この順に積層構成される光磁気記
録媒体あることに特徴がある。
According to a tenth aspect of the present invention, in a magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a magneto-optical recording medium with reproducing light, Magnetized film, non-magnetic material film, first auxiliary magnetic film that transitions to perpendicular magnetization at critical temperature or higher at in-plane magnetization at room temperature, non-magnetic material film, auxiliary magnetic film made of antiferromagnetic material, in-plane magnetization at room temperature The magnetic recording medium is characterized in that it has a film layer such as a second auxiliary magnetic film that functions as a reproducing magnetic film that transitions to perpendicular magnetization at a critical temperature or higher, and is stacked in this order.

【0026】本発明の第11は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、非磁性材料膜、室温では面内
磁化で臨界温度以上で垂直磁化に転移する第1の補助磁
性膜、非磁性材料膜、面内磁化の反強磁性材料からなる
補助磁性膜、室温では面内磁化で臨界温度以上で垂直磁
化に転移する再生用磁化膜として機能する第2の補助磁
性膜等の膜層を備えると共に、この順に積層構成される
光磁気記録媒体あることに特徴がある。
According to an eleventh aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. Magnetized film, non-magnetic material film, first auxiliary magnetic film which transitions to perpendicular magnetization at critical temperature or higher at in-plane magnetization at room temperature, non-magnetic material film, auxiliary magnetic film made of anti-ferromagnetic material with in-plane magnetization, room temperature Is characterized in that it has a film layer such as a second auxiliary magnetic film functioning as a reproducing magnetic film that transitions to perpendicular magnetization at a critical temperature or higher by in-plane magnetization, and is a magneto-optical recording medium laminated in this order. is there.

【0027】本発明の第12は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、非磁性材料膜、室温では面内
磁化で臨界温度以上で垂直磁化に転移する補助磁性膜、
非磁性材料膜、垂直磁化の反強磁性材料からなる補助磁
性膜、垂直磁化の再生用磁化膜等の膜層を備えると共
に、この順に積層構成される光磁気記録媒体あることに
特徴がある。
According to a twelfth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. Magnetized film, non-magnetic material film, auxiliary magnetic film which changes to perpendicular magnetization at critical temperature or higher due to in-plane magnetization at room temperature,
It is characterized in that it is provided with a film layer such as a nonmagnetic material film, an auxiliary magnetic film made of a perpendicularly magnetized antiferromagnetic material, a perpendicularly magnetized reproducing magnetic film, and the like, and is a magneto-optical recording medium laminated in this order.

【0028】本発明の第13は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、非磁性膜、室温では垂直磁化
で臨界温度以上では面内磁化に転移する補助磁性膜、反
強磁性材料からなる補助磁性膜、再生用磁化膜等の膜層
を備えると共に、この順に積層構成される光磁気記録媒
体あることに特徴がある。
According to a thirteenth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the magneto-optical recording medium. A magnetic film, a non-magnetic film, an auxiliary magnetic film which is perpendicularly magnetized at room temperature and transitions to an in-plane magnetization at a temperature higher than the critical temperature, an auxiliary magnetic film made of an antiferromagnetic material, and a reproducing magnetic film are provided. It is characterized in that it is a magneto-optical recording medium having a laminated structure.

【0029】本発明の第14は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、面内磁化の反強磁性材料から
なる補助磁性膜、室温では面内磁化で臨界温度以上で垂
直磁化に転移する再生用磁化膜等の膜層を備えると共
に、この順に積層構成される光磁気記録媒体あることに
特徴がある。
According to a fourteenth aspect of the present invention, there is provided a magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. A magnetic film, an auxiliary magnetic film made of an antiferromagnetic material with in-plane magnetization, a film layer such as a reproducing magnetic film that transitions to perpendicular magnetization at a temperature above a critical temperature due to in-plane magnetization at room temperature, and is laminated in this order. It is characterized by being a magneto-optical recording medium.

【0030】本発明の第15は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、面内磁化の反強磁性材料から
なる補助磁性膜、室温では面内磁化で臨界温度以上で垂
直磁化に転移する第1の補助磁性膜、室温では面内磁化
で臨界温度以上で垂直磁化に転移する再生用磁化膜とし
て機能する第2の補助磁性膜等の膜層を備えると共に、
この順に積層構成される光磁気記録媒体あることに特徴
がある。
According to a fifteenth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. Magnetized film, auxiliary magnetic film made of antiferromagnetic material with in-plane magnetization, first auxiliary magnetic film that transitions to perpendicular magnetization at room temperature above critical temperature due to in-plane magnetization, perpendicular at room temperature above critical temperature due to in-plane magnetization at room temperature A film layer such as a second auxiliary magnetic film that functions as a reproducing magnetic film that changes to magnetization,
It is characterized by a magneto-optical recording medium laminated in this order.

【0031】本発明の第16は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、面内磁化の反強磁性材料から
なる補助磁性膜、室温では面内磁化で臨界温度以上で垂
直磁化に転移する補助磁性膜、垂直磁化再生用膜等の膜
層を備えると共に、この順に積層構成される光磁気記録
媒体あることに特徴がある。
According to a sixteenth aspect of the present invention, there is provided a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. In addition to a film layer such as a magnetized film, an auxiliary magnetic film made of an antiferromagnetic material having in-plane magnetization, an auxiliary magnetic film which transitions to perpendicular magnetization at a temperature above a critical temperature due to in-plane magnetization at room temperature, and a film for perpendicular magnetization reproduction, It is characterized in that it is a magneto-optical recording medium that is sequentially laminated.

【0032】本発明の第17は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、室温では面内磁化で臨界温度
以上で垂直磁化に転移する第1の補助磁性膜、非磁性材
料膜、面内磁化の反強磁性材料からなる補助磁性膜、及
び室温では面内磁化で臨界温度以上で垂直磁化に転移す
る再生用磁化膜として機能する第2の補助磁性膜等の膜
層を備えると共に、この順に積層構成される光磁気記録
媒体あることに特徴がある。
A seventeenth aspect of the present invention is a magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating the magneto-optical recording medium with reproducing light. A magnetized film, a first auxiliary magnetic film that transitions to perpendicular magnetization at a temperature higher than a critical temperature at in-plane magnetization at room temperature, a non-magnetic material film, an auxiliary magnetic film made of an antiferromagnetic material having in-plane magnetization, and an in-plane magnetization at room temperature The magnetic recording medium is characterized in that it has a film layer such as a second auxiliary magnetic film that functions as a reproducing magnetic film that transitions to perpendicular magnetization at a critical temperature or higher, and is stacked in this order.

【0033】本発明の第18は、基板上に少なくとも記
録用磁化膜と再生用磁化膜を備え、再生光を光磁気記録
媒体に照射することによって再生する光磁気記録媒体お
いて、前記記録用磁化膜、室温では面内磁化で臨界温度
以上で垂直磁化に転移する第1の補助磁性膜、室温では
面内磁化で臨界温度以上で垂直磁化に転移する第2の補
助磁性膜、垂直磁化の反強磁性材料からなる補助磁性
膜、及び垂直磁化の再生用磁化膜等の膜層を備えると共
に、この順に積層構成される光磁気記録媒体あることに
特徴がある。
According to an eighteenth aspect of the present invention, in a magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light onto the magneto-optical recording medium, A magnetized film, a first auxiliary magnetic film that transitions to perpendicular magnetization at a temperature above a critical temperature due to in-plane magnetization at room temperature, a second auxiliary magnetic film that transitions to perpendicular magnetization above a critical temperature due to in-plane magnetization at room temperature, It is characterized in that it is provided with a film layer such as an auxiliary magnetic film made of an antiferromagnetic material and a magnetic film for reproducing perpendicular magnetization, and is a magneto-optical recording medium laminated in this order.

【0034】上記反強磁性材料からなる補助磁性膜と再
生用磁化膜とは、垂直磁化磁性膜と垂直磁化磁性膜との
組み合わせ、及び面内磁化磁性膜と面内磁化磁性膜との
組み合わせから選択される組み合わせで構成することこ
とが好ましい。
The auxiliary magnetic film and the reproducing magnetic film made of the above-mentioned antiferromagnetic material are selected from a combination of a perpendicular magnetic film and a perpendicular magnetic film, and a combination of an in-plane magnetic film and an in-plane magnetic magnetic film. It is preferable to configure with a selected combination.

【0035】また、上記非磁性材料からなる膜は光磁気
記録媒体の光反射膜、断熱性膜、誘電体膜、透明保護
膜、基板材料等に用いられる材料から選択される材料で
構成してもよい。
Further, the film made of the non-magnetic material is made of a material selected from materials used for a light reflection film, a heat insulating film, a dielectric film, a transparent protective film, a substrate material and the like of a magneto-optical recording medium. Is also good.

【0036】次に、本発明の記録再生原理を説明する。
本発明の光磁気記録媒体に用いる垂直磁化の光磁気記録
膜10及び再生用磁性膜24は磁性膜の温度が上昇する
に伴って保持力Htが低下してキュリ−温度Tc以上で
保持力が零になる性質を有する。反強磁性材料からなる
補助磁性膜30はネール温度Tn或いはブロッキング温
度Tb以下の温度では積層される隣接の磁性層と交換結
合して、隣接の磁性層の磁化向きを強力に固定する。ネ
ール温度Tn或いはブロッキング温度Tbを越えると、
反強磁性材料からなる補助磁性膜30は常磁性化して、
隣接の磁性層との交換結合力が消失する。
Next, the principle of recording and reproducing according to the present invention will be described.
The coercive force Ht of the perpendicularly magnetized magneto-optical recording film 10 and the reproducing magnetic film 24 used in the magneto-optical recording medium of the present invention decreases as the temperature of the magnetic film increases, and the coercive force becomes higher than the Curie temperature Tc. It has the property of becoming zero. At a temperature lower than the Neel temperature Tn or the blocking temperature Tb, the auxiliary magnetic film 30 made of an antiferromagnetic material exchange-couples with the adjacent magnetic layer to be stacked, and strongly fixes the magnetization direction of the adjacent magnetic layer. When the temperature exceeds the Neel temperature Tn or the blocking temperature Tb,
The auxiliary magnetic film 30 made of an antiferromagnetic material becomes paramagnetic,
The exchange coupling force with the adjacent magnetic layer disappears.

【0037】本発明の光磁気記録媒体では、光磁気記録
層10に記録された記録磁区を再生する手段として、光
磁気記録媒体に積層形成される再生層磁性膜24に記録
磁区を転写させ、拡大させて、この拡大された再生用磁
性膜24の転写記録磁区から得られる再生用レーザ光の
偏光カー回転角を検出することによって読みとり再生す
る。ところで、S/N比の大きい再生信号を得るために
は、光磁気記録層10の記録磁区を光磁気記録層10か
ら再生用磁性膜24へ転写させ、さらに拡大させる段階
で、記録磁区信号磁界に記録磁区信号以外の外部磁化、
洩れ磁界等のノイズを限りく零に低減しなければならな
い。ノイズを低減し明瞭に転写拡大された記録磁区を得
るために、光磁気記録層10からの限りなく純粋な記録
磁区信号磁界に限定するために、他のノイズ磁界をシャ
ットアウトして、効率のよいノイズ遮蔽、或いはノイズ
遮断を行う手段として、本発明の反強磁性材料からなる
補助磁性膜を光磁気記録層の積層膜に用いることは極め
て有効である。
In the magneto-optical recording medium of the present invention, as a means for reproducing the recording magnetic domains recorded on the magneto-optical recording layer 10, the recording magnetic domains are transferred to the reproducing layer magnetic film 24 formed on the magneto-optical recording medium. The read-out reproduction is performed by detecting the polarization Kerr rotation angle of the reproduction laser light obtained from the transfer recording magnetic domain of the reproduction magnetic film 24 which has been enlarged. By the way, in order to obtain a reproduced signal having a large S / N ratio, the recording magnetic domain of the magneto-optical recording layer 10 is transferred from the magneto-optical recording layer 10 to the reproducing magnetic film 24, and at the stage of further expansion, the recording magnetic domain signal magnetic field is increased. External magnetization other than the recorded magnetic domain signal,
Noise such as a leakage magnetic field must be reduced to zero as much as possible. In order to reduce the noise and obtain a clearly transferred and enlarged recording magnetic domain, in order to limit the recording magnetic domain signal magnetic field from the magneto-optical recording layer 10 to an infinitely pure recording magnetic domain signal, another noise magnetic field is shut out to improve the efficiency. It is extremely effective to use the auxiliary magnetic film made of the antiferromagnetic material of the present invention as a laminated film of the magneto-optical recording layer as a means for good noise shielding or noise shielding.

【0038】反強磁性材料からなる補助磁性膜30は、
面内磁化の反強磁性材料を用いる場合補助磁性膜30に
隣接する面内磁化磁性膜の磁化向きをそのままに強力に
固定する。また垂直磁化の反強磁性材料では補助磁性膜
30に隣接する垂直磁化の磁性膜の磁化の向きを状態の
ままに強力に固定する。上記磁性膜に転写される記録磁
界信号ができるだけ純粋なものにするためには、再生用
磁性膜の保磁力以上転写磁界強度で、且つ限られた温度
範囲で微小時間に転写を済ませる必要があり、転写後は
外部磁界の影響なく拡大させる必要がある。
The auxiliary magnetic film 30 made of an antiferromagnetic material
When an in-plane magnetization antiferromagnetic material is used, the magnetization direction of the in-plane magnetization magnetic film adjacent to the auxiliary magnetic film 30 is strongly fixed as it is. In the case of a perpendicular magnetization antiferromagnetic material, the direction of magnetization of the perpendicular magnetization magnetic film adjacent to the auxiliary magnetic film 30 is strongly fixed in the state. In order to make the recording magnetic field signal transferred to the magnetic film as pure as possible, it is necessary to complete the transfer in a short time within a limited temperature range with a transfer magnetic field strength equal to or higher than the coercive force of the reproducing magnetic film. After the transfer, it is necessary to enlarge the image without being affected by an external magnetic field.

【0039】反強磁性材料からなる補助磁性膜30が保
持するネール温度Tn或いはブロッキング温度Tbは、
限られた温度の範囲で微小時間で転写を済ませるために
効果的なシャッターとして機能する。即ち、再生用レー
ザ光によって、再生用磁性膜と反強磁性材料からなる補
助磁性膜30との積層間に働く強い交換結合力を一時的
に弱めるか或いは解消して、磁化の向きが記録磁区の転
写磁界の方向に追随できるように機能させる。即ち反強
磁性材料からなる補助磁性膜30によってあたかも純粋
な記録磁区の磁界だけを透過させて再生層磁性膜24へ
加えることができるようにすること、及び記録磁区が再
生層磁性膜24に転写される瞬間だけ交換結合力を弱め
るか或いは反強磁性材料の補助磁性膜30を常磁性化す
ること、等が反強磁性材料を用いた補助磁性膜30の重
要な機能である。
The Neel temperature Tn or the blocking temperature Tb held by the auxiliary magnetic film 30 made of an antiferromagnetic material is:
It functions as an effective shutter to complete transfer in a very short time within a limited temperature range. That is, the strong exchange coupling force acting between the lamination of the reproducing magnetic film and the auxiliary magnetic film 30 made of the antiferromagnetic material is temporarily weakened or eliminated by the reproducing laser light, and the magnetization direction is changed to the recording magnetic domain. In order to follow the direction of the transfer magnetic field. That is, the auxiliary magnetic film 30 made of an antiferromagnetic material allows only the magnetic field of a pure recording magnetic domain to pass therethrough and be applied to the reproducing layer magnetic film 24, and the recording magnetic domain is transferred to the reproducing layer magnetic film 24. An important function of the auxiliary magnetic film 30 using an antiferromagnetic material is to weaken the exchange coupling force or to make the auxiliary magnetic film 30 made of an antiferromagnetic material paramagnetic at the moment of the change.

【0040】再生層磁性膜24の材料は臨界温度Tcr2
近傍の温度で光磁気記録層10の記録磁区の転写磁界よ
りも小さい保磁力になる材料を用いることが好ましい。
再生層磁性膜24に転写した記録磁区のカ−回転角が再
生レーザ光によって読みとられ、記録情報が再生され
る。このようにしてS/N比の高い再生信号が得られ
る。本発明では、再生用磁性膜24及び補助磁性膜30
は臨界温度TCR2とネール温度Tn或いはブロッキング
温度Tbが、 TCR2<Tn或いはTb となるように再
生用磁性膜24及び補助磁性膜30の材料を選定して用
いるため、図19の媒体内の温度プロファイルに示すよ
うに、再生層磁性膜24の垂直磁化状態となりうる領域
は、再生光が照射された再生光スポット領域内の温度が
TCR2以上に達した領域である。即ち再生層磁性膜24
の臨界温度TCR2以上に達した領域内では、面内磁区で
存在することができないので、この臨界温度TCR2以上
に達した領域では転写された記録磁区の拡大が進行す
る。
The material of the reproducing layer magnetic film 24 is a critical temperature Tcr2.
It is preferable to use a material having a coercive force smaller than the transfer magnetic field of the recording magnetic domain of the magneto-optical recording layer 10 at a temperature in the vicinity.
The car rotation angle of the recording magnetic domain transferred to the reproducing layer magnetic film 24 is read by the reproducing laser beam, and the recorded information is reproduced. In this way, a reproduced signal having a high S / N ratio can be obtained. In the present invention, the reproducing magnetic film 24 and the auxiliary magnetic film 30
Since the materials for the reproducing magnetic film 24 and the auxiliary magnetic film 30 are selected and used so that the critical temperature TCR2 and the Neel temperature Tn or the blocking temperature Tb satisfy TCR2 <Tn or Tb, the temperature profile in the medium shown in FIG. As shown in FIG. 7, the region of the reproducing layer magnetic film 24 which can be in the perpendicular magnetization state is a region where the temperature in the reproducing light spot region irradiated with the reproducing light has reached TCR2 or higher. That is, the reproducing layer magnetic film 24
In the region where the temperature reaches or exceeds the critical temperature TCR2, the in-plane magnetic domain cannot exist, and in the region where the temperature reaches or exceeds the critical temperature TCR2, the expansion of the transferred recording magnetic domain proceeds.

【0041】この光磁気記録媒体に、磁性膜の加熱温度
の最高温度が所望の温度になるように、適当なパワーの
再生光を照射すると、再生層磁性膜24中にTCR2以上
となり垂直磁化状態となりうる領域が発生する。その温
度の領域が光磁気記録膜10に記録されている記録磁区
Mの径以上、好ましくは再生光スポット径以上となるよ
うな臨界温度TCR2を保持する磁性材料を選択して再生
層磁性膜24に用いるか、或いは再生光のパワーを設定
して用いる。また、再生層磁性膜24は、その保磁力
が、TCR2以上の領域内の温度分布に対応して図2、図
5、及び図9に示すような分布をし、最高到達温度とな
る領域及びその近傍でその値が充分小さくなるような磁
気特性を有している。光磁気記録媒体に、再生レーザ光
を照射して再生層磁性膜24中に、TCR2以上となり垂
直磁化状態が発生した時点において再生層補助磁性膜2
4の転写磁区(ドメイン)は拡大するが、再生光が読み
取れる大きさ、例えば再生光スポットの径よりも大きく
拡大する。再生層磁性膜24にはGduFevCow合金
について元素比u v wの最適な値の材料を選択して用い
る。
When this magneto-optical recording medium is irradiated with reproducing light of appropriate power so that the maximum heating temperature of the magnetic film becomes a desired temperature, the temperature of the reproducing layer magnetic film 24 becomes TCR2 or more and the perpendicular magnetization state becomes higher. There is a region that can be By selecting a magnetic material having a critical temperature TCR2 such that the temperature region is equal to or greater than the diameter of the recording magnetic domain M recorded in the magneto-optical recording film 10, and preferably equal to or greater than the reproducing light spot diameter, the reproducing layer magnetic film 24 is selected. Or the power of the reproduction light is set and used. The reproducing layer magnetic film 24 has a coercive force corresponding to the temperature distribution in the region of TCR2 or more, as shown in FIGS.
5, and has magnetic properties such that the value becomes sufficiently small in and near the region where the maximum temperature is reached. When the magneto-optical recording medium is irradiated with a reproducing laser beam, the reproducing layer auxiliary magnetic film 2 is formed in the reproducing layer magnetic film 24 when the perpendicular magnetization state becomes TCR2 or more.
Although the transfer magnetic domain (domain) of No. 4 expands, the transfer magnetic domain expands to a size at which the reproduction light can be read, for example, larger than the diameter of the reproduction light spot. For the reproducing layer magnetic film 24, a material having an optimum value of the element ratio uvw for the GduFevCow alloy is selected and used.

【0042】光磁気記録膜10はTCR2以上の領域内の
温度分布に対応する磁化の分布を有し、最高到達温度と
なる領域及びその近傍でその値が充分大きくなるような
磁気特性を有している。各磁性膜の磁気特性を上記のよ
うに設定したため、光磁気記録膜10中の温度が高く且
つ磁化が充分大きい領域の磁区Mのみが、磁区Mの領域
で作用する光磁気記録膜10と補助磁性膜28間の交換
結合力、及び光磁気記録膜10或いは補助磁性膜28と
再生層磁性膜24間の大きな静磁結合力によって、再生
層磁性膜24中の温度が高く且つ保磁力が充分小さい領
域に転写される。これにより、まず充分な再生分解能が
得られる。
The magneto-optical recording film 10 has a magnetization distribution corresponding to a temperature distribution in a region of TCR2 or more, and has a magnetic property such that its value becomes sufficiently large in a region where the maximum temperature is reached and in the vicinity thereof. ing. Since the magnetic characteristics of each magnetic film are set as described above, only the magnetic domain M in the region where the temperature is high and the magnetization is sufficiently large in the magneto-optical recording film 10 is different from the magneto-optical recording film 10 acting in the region of the magnetic domain M and the auxiliary domain. Due to the exchange coupling force between the magnetic films 28 and the large magnetostatic coupling force between the magneto-optical recording film 10 or the auxiliary magnetic film 28 and the reproducing layer magnetic film 24, the temperature in the reproducing layer magnetic film 24 is high and the coercive force is sufficient. It is transferred to a small area. Thereby, a sufficient reproduction resolution can be obtained first.

【0043】次いで、再生層磁性膜24に転写された磁
区は、TCR2以上の領域内の垂直磁気異方性と転写され
た磁区からの交換結合力により、図10(c)に示した
ように拡大すると考えられる。再生後、即ち再生レーザ
ー光が移動した後、読み出し部はTCR2以下に冷却さ
れ、再生層磁性膜24は面内磁化膜となり、図10
(a)の状態に戻る。
Next, the magnetic domain transferred to the reproducing layer magnetic film 24 is changed due to the perpendicular magnetic anisotropy in the region of TCR2 or more and the exchange coupling force from the transferred magnetic domain as shown in FIG. It is thought to expand. After reproduction, that is, after the reproduction laser beam has moved, the read section is cooled to TCR2 or less, and the reproduction layer magnetic film 24 becomes an in-plane magnetized film.
Return to the state of (a).

【0044】再生層磁性膜24の磁区拡大の効果は、再
生層磁性膜24中の転写磁区が再生光スポット径以上に
拡大されたときに最大になる。この状態では、光磁気記
録膜6中に記録された磁区の大きさや形状に関係しな
い、再生層磁性膜24の性能指数と再生ビーム光のみに
よって決まる極めて大きい再生出力が得られる。以上の
ような再生動作時の温度においても、光磁気記録膜10
の保磁力は充分大きいために、磁化として記録された情
報は完全に保持されている。
The effect of the magnetic domain expansion of the reproducing layer magnetic film 24 is maximized when the transfer magnetic domain in the reproducing layer magnetic film 24 is expanded to a diameter larger than the reproducing light spot diameter. In this state, an extremely large reproduction output determined only by the figure of merit of the reproduction layer magnetic film 24 and the reproduction beam light, regardless of the size or shape of the magnetic domain recorded in the magneto-optical recording film 6, is obtained. Even at the temperature at the time of the reproducing operation as described above, the magneto-optical recording film 10
Has a sufficiently large coercive force, so that information recorded as magnetization is completely retained.

【0045】図10(a)は光変調記録方式等により光
磁気記録膜10に記録磁区を書き込んだ後、再生前の各
層の磁化状態を示す。次に、補助磁性膜28中の温度が
臨界温度Tcr1 以上Tcr2以下となった領域に、光磁気
記録膜10の垂直磁化記録信号が転写される(図10
(b)参照)。次に図10(c)に示したように、再生
光が照射されて発生した媒体内の温度プロファイルを考
慮すると、光磁気記録膜10の垂直磁化記録磁区信号と
同じ大きさかまたはそれより小さい磁区が再生層磁性膜
24に転写されるように、反強磁性の補助磁性膜30の
ネール温度Tn或いはブロッキング温度Tbと、再生層
磁性膜24の臨界温度 Tcr2と、再生光スポットのパワ
ーとを予め設定する。
FIG. 10 (a) shows the magnetization state of each layer before the reproduction after writing the recording magnetic domain on the magneto-optical recording film 10 by the optical modulation recording method or the like. Next, the perpendicular magnetization recording signal of the magneto-optical recording film 10 is transferred to an area where the temperature in the auxiliary magnetic film 28 is not less than the critical temperature Tcr1 and not more than Tcr2 (FIG. 10).
(B)). Next, as shown in FIG. 10C, when a temperature profile in the medium generated by the irradiation of the reproduction light is taken into consideration, a magnetic domain having the same magnitude as or smaller than the perpendicular magnetization recording domain signal of the magneto-optical recording film 10 is obtained. Are transferred to the reproducing layer magnetic film 24, the Neel temperature Tn or the blocking temperature Tb of the antiferromagnetic auxiliary magnetic film 30, the critical temperature Tcr2 of the reproducing layer magnetic film 24, and the power of the reproducing light spot are set in advance. Set.

【0046】補助磁性膜28に転写された磁区は再生層
磁性膜24に転写される。本発明では、補助磁性膜28
及び再生層磁性膜24はそれぞれの臨界温度がTcr1 >
Tcr2 となるように設定されているため、図19の媒体
内の温度プロファイルに示すように、再生層磁性膜24
中の垂直磁化状態となりうる領域は、補助磁性膜28中
のそれよりも径が大きくなる。このため、図10(c)
に示すように、再生層磁性膜24中の転写磁区231は
再生層磁性膜24中の垂直磁化状態となりうる領域内の
垂直磁気異方性と補助磁性膜28中の垂直磁化からの静
磁結合力とによって拡大される。
The magnetic domain transferred to the auxiliary magnetic film 28 is transferred to the reproducing layer magnetic film 24. In the present invention, the auxiliary magnetic film 28
And the reproducing layer magnetic film 24 has a critical temperature Tcr1>
Since it is set to be Tcr2, as shown in the temperature profile in the medium of FIG.
The region in the middle perpendicular magnetization state has a larger diameter than that in the auxiliary magnetic film 28. For this reason, FIG.
As shown in FIG. 7, the transfer magnetic domain 231 in the reproducing layer magnetic film 24 is magnetostatically coupled from the perpendicular magnetic anisotropy in the region of the reproducing layer magnetic film 24 where the perpendicular magnetization can be obtained and the perpendicular magnetization in the auxiliary magnetic film 28. Expanded with power.

【0047】この磁区拡大は、再生層磁性膜24の領域
の面内磁化が、図10(a)の光磁気記録膜10の記録
磁区信号22から再生層磁性膜24への静磁結合力を弱
めていることからも促進されているといえる。上記磁区
拡大により、面内磁化の磁気的マスクによる再生出力に
寄与する光量の低下を低減している。
This magnetic domain expansion is based on the fact that the in-plane magnetization of the region of the reproducing layer magnetic film 24 causes the magnetostatic coupling force from the recording magnetic domain signal 22 of the magneto-optical recording film 10 shown in FIG. It can be said that it is being promoted because it is weakening. Due to the magnetic domain expansion, a decrease in the amount of light contributing to the reproduction output by the magnetic mask of the in-plane magnetization is reduced.

【0048】図2の磁気温度曲線Bは、再生用磁化膜2
4の垂直磁化を有する状態における垂直方向の保磁力の
温度変化を示す。この保磁力には、純粋な垂直方向の再
生用磁化膜24の磁区の保磁力Hrに再生用磁化膜24
の磁壁(magnetic wall )の生成によって印加されると
みなす仮想的磁界に相当する磁界Hw(別な言い方する
と、再生層の面内方向の交換結合磁界)を含めてHr+
Hwとして表すものとする。すなわち、Hr+Hwは再
生用磁化膜24の膜面に垂直な方向における磁化反転を
行うに必要な磁界を示すことになる。すなわち、光磁気
記録層10に記録されている磁化が↓向き(記録方向)
である場合、Hex+Htで表される転写磁界は、Hr
+Hwまたは−(Hr+Hw)よりも大きくなるように
しなければならない(磁区転写要件)。また、記録層に
記録されている磁化が↑向き(消去方向)である場合、
Hex−Htで表される負の転写磁界は、再生層の垂直
方向の保磁力Hr+Hwまたは−(Hr+Hw)よりも
小さくなるようにしなければならない(磁区転写要
件)。
The magnetic temperature curve B in FIG.
4 shows the temperature change of the coercive force in the vertical direction in the state having the perpendicular magnetization of No. 4. This coercive force is applied to the coercive force Hr of the magnetic domain of the pure magnetic film 24 for reproduction in the vertical direction.
The magnetic field Hw (in other words, the exchange coupling magnetic field in the in-plane direction of the reproducing layer) corresponding to the virtual magnetic field which is considered to be applied by the generation of the magnetic wall of Hr +
Hw. That is, Hr + Hw indicates a magnetic field necessary for performing magnetization reversal in a direction perpendicular to the film surface of the reproducing magnetic film 24. That is, the magnetization recorded on the magneto-optical recording layer 10 is directed in the direction ↓ (recording direction).
, The transfer magnetic field represented by Hex + Ht is Hr
Must be greater than + Hw or-(Hr + Hw) (magnetic domain transfer requirement). When the magnetization recorded in the recording layer is in the ↑ direction (erasing direction),
The negative transfer magnetic field represented by Hex-Ht must be smaller than the perpendicular coercive force Hr + Hw or-(Hr + Hw) of the reproducing layer (magnetic domain transfer requirement).

【0049】[0049]

【発明の実施の形態】以下、本発明の光磁気記録媒体及
びその再生方法の実施の形態及び実施例を図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of a magneto-optical recording medium and a reproducing method of the present invention will be described below with reference to the drawings.

【0050】[0050]

【実施例1】本発明の光磁気記録媒体の第1は、図1
(a)に記載するように、光磁気記録膜10上に反射膜
8、非磁性膜29、反強磁性材料補助磁性膜30、再生
に用いられる再生用補助磁性膜24がこの順に積層され
た構造を有し、光磁気記録膜10の外側を紫外線硬化性
樹脂、酸化珪素(SiO2),窒化珪素(Si3N4)
等を用いて保護膜で覆い、再生用補助磁性膜24の外表
面に窒化珪素(Si3N4)、酸化アルミ(Al2O
3)、窒化アルミ(AlN)等等の材料から選択される
誘電体膜3とポリカーボネイト樹脂等からなる基板1と
を形成する。基板1の片面にはプリフオマッテイング2
を形成し、このプリフオマッテイング2形成面側に誘電
体膜3、再生用補助磁性膜24を配置し形成する。光磁
気記録膜10にはTbFeCoの合金、或いは必要なら
ばTbFeCoの合金にNb,Cr等を添加した合金が
用いられる。反射膜8にはAl金属、AlTi合金等を
用い、非磁性膜29には窒化珪素(Si3N4)、酸化
アルミ(Al2O3)、窒化アルミ(AlN)等の伝導
熱制御材を用いる。再生用補助磁性膜24にはGdTb
FeCo、GdFeCo等の合金から選択して用いる。
反強磁性材料補助磁性膜30にはMnO、Cr2O3、
FeS、FeCl2、MnAs、Tb、Dy、Ho、E
r、Tm、Tb合金、Dy合金、Ho合金、Er合金、
Tm合金、等の化合物、元素、或いは合金から選択して
用いる。反強磁性材料補助磁性膜30は結晶の隣り合っ
た磁性原子の磁気モーメントが負の交換相互作用をもつ
ために磁性が反平行に並んで打ち消し合う。反強磁性材
料補助磁性膜30の温度が上昇すると磁化率上昇する
が、ネール温度Tnでは常磁性或いは非磁性化する。
Embodiment 1 A first embodiment of the magneto-optical recording medium of the present invention is shown in FIG.
As shown in (a), a reflective film 8, a nonmagnetic film 29, an antiferromagnetic material auxiliary magnetic film 30, and a reproduction auxiliary magnetic film 24 used for reproduction are stacked on the magneto-optical recording film 10 in this order. UV-curable resin, silicon oxide (SiO2), silicon nitride (Si3N4)
The auxiliary magnetic film for reproduction 24 is covered with silicon nitride (Si3N4), aluminum oxide (Al2O
3) A dielectric film 3 selected from a material such as aluminum nitride (AlN) or the like and a substrate 1 made of a polycarbonate resin or the like are formed. One side of the substrate 1 has a pre-forming 2
Is formed, and the dielectric film 3 and the auxiliary magnetic film for reproduction 24 are arranged and formed on the side of the pre-forming 2 side. For the magneto-optical recording film 10, an alloy of TbFeCo or, if necessary, an alloy of TbFeCo with addition of Nb, Cr or the like is used. The reflective film 8 is made of Al metal, an AlTi alloy, or the like, and the nonmagnetic film 29 is made of a conductive heat control material such as silicon nitride (Si3N4), aluminum oxide (Al2O3), or aluminum nitride (AlN). GdTb is used for the auxiliary magnetic film 24 for reproduction.
An alloy such as FeCo or GdFeCo is selected and used.
MnO, Cr 2 O 3,
FeS, FeCl2, MnAs, Tb, Dy, Ho, E
r, Tm, Tb alloy, Dy alloy, Ho alloy, Er alloy,
It is used by selecting from a compound such as a Tm alloy, an element, or an alloy. In the antiferromagnetic material auxiliary magnetic film 30, the magnetic moments of the magnetic atoms adjacent to each other in the crystal have a negative exchange interaction, so that the magnetisms are arranged in antiparallel and cancel each other out. When the temperature of the antiferromagnetic material auxiliary magnetic film 30 increases, the magnetic susceptibility increases, but becomes paramagnetic or non-magnetic at the Neel temperature Tn.

【0051】本発明の光磁気記録媒体は規格化されてい
る全てに適用可能であるが、特に外径が120mm以下
の大きさのもので、記録媒体の厚みが0.6mm,0.
4mm,0.8mm等1.0mmよりも薄いもので1G
B(ギガバイト)/平方インチ(スケアインチ)以上の
高密度記録を行うものに好適である。
The magneto-optical recording medium of the present invention can be applied to all standardized media. In particular, the magneto-optical recording medium has an outer diameter of 120 mm or less, and has a thickness of 0.6 mm and a thickness of 0.6 mm.
1G thinner than 1.0mm such as 4mm, 0.8mm
It is suitable for high-density recording of B (gigabyte) / square inch (scare inch) or more.

【0052】図1(a)に記載する本発明の光磁気記録
媒体の積層体構造は、通常の対物レンズ301を保持す
る光ヘッドを用いた記録再生装置よって記録再生が行わ
れる。しかし、対物レンズ301とSIL(別名:個体
浸漬レンズ、個体イマージョンレンズ、ソリッドイマー
ジョンレンズ等)302とを併用する光ヘッドが用いら
れる記録再生装置に対しては図1(b)の積層膜構造の
光磁気デイスクを用いなければならない。図1(b)の
光磁気デイスクは再生用レーザ光の入射側には薄膜の透
明な保護膜、薄膜の透明な誘電体膜3、或いは薄膜の透
明な保護膜と誘電体膜との積層膜等を再生層磁性膜24
の外表面に被覆形成し、プリフオマッチング2を行った
基板1は光磁気記録膜10の外表面に保護膜として形成
して用いる。
In the laminated structure of the magneto-optical recording medium of the present invention shown in FIG. 1A, recording and reproduction are performed by a recording and reproducing apparatus using an ordinary optical head holding an objective lens 301. However, for a recording / reproducing apparatus using an optical head that uses both an objective lens 301 and an SIL (also known as a solid immersion lens, solid immersion lens, solid immersion lens, etc.) 302, the laminated film structure shown in FIG. Magneto-optical disks must be used. The magneto-optical disk shown in FIG. 1B has a thin transparent protective film, a thin transparent dielectric film 3, or a laminated film of a thin transparent protective film and a dielectric film on the side where the reproducing laser beam is incident. Reproducing layer magnetic film 24
The substrate 1 coated on the outer surface of the substrate 1 and subjected to the pre-matching 2 is used as a protective film on the outer surface of the magneto-optical recording film 10.

【0053】図2は磁性膜層の保持力の温度特性図であ
り、曲線Aは光磁気記録膜10、曲線Bは再生層磁性膜
24の保持力の温度特性を示す。再生層磁性膜24は臨
界温度Tcr2までは面内磁化であり、Tcr2以上で
垂直磁化へ転移する。光磁気記録膜10の記録磁区はT
cr2以上の温度で再生層磁性膜24に転写させて再生
する。光磁気記録膜10のキュリー温度Tc0は再生層
磁性膜24のキュリー温度Tc1より低いので、再生レ
ーザ光の照射によって記録磁区を転写させる温度はT1
以下に設定することが好ましい。再生後の記録磁区は再
生層磁性膜24の温度がTcr2以下になると消滅す
る。
FIG. 2 is a temperature characteristic diagram of the coercive force of the magnetic film layer. Curve A shows the temperature characteristic of the coercive force of the magneto-optical recording film 10 and curve B shows the temperature characteristic of the coercive force of the reproducing layer magnetic film 24. The reproducing layer magnetic film 24 has in-plane magnetization up to the critical temperature Tcr2, and transitions to perpendicular magnetization above Tcr2. The recording magnetic domain of the magneto-optical recording film 10 is T
The image is transferred to the reproducing layer magnetic film 24 at a temperature of at least cr2 and reproduced. Since the Curie temperature Tc0 of the magneto-optical recording film 10 is lower than the Curie temperature Tc1 of the reproducing layer magnetic film 24, the temperature at which the recording magnetic domain is transferred by the irradiation of the reproducing laser beam is T1.
It is preferable to set the following. The recorded magnetic domain after reproduction disappears when the temperature of the reproduction layer magnetic film 24 becomes Tcr2 or lower.

【0054】図1(a)、図1(b)の光磁気デイスク
に記録した情報の記録磁区22を再生する行程は、図3
に示す。図3(a)は記録磁区22の状態であり、基板
1側から再生レーザ光を照射されると、図3(b)に示
すような面内磁化の反強磁性材料補助磁性膜30の再生
レーザ光照射部分にネールポイントを越えて常磁性化し
て、再生層磁性膜24との交換結合が解かれた、斜線で
示す部分が発生し、その部分に積層する再生層磁性膜2
4に記録磁区の転写23が形成される。ついで再生層磁
性膜24の記録磁区転写23は、図3(c)の231、
及び図3(d)の232のように拡大する。反強磁性材
料補助磁性膜30の再生レーザ光による加熱温度の状態
が高く、ネールポイントを越える部分の広がりが拡大す
る場合には図3(c)のように反強磁性材料補助磁性膜
30の斜線部分が拡大し、再生レーザ光ビームが微細で
パワーが低い場合では図3(d)に示す反強磁性材料補
助磁性膜30の斜線部分の状態である。
The process of reproducing the recording magnetic domain 22 of the information recorded on the magneto-optical disk shown in FIGS. 1A and 1B is as shown in FIG.
Shown in FIG. 3A shows a state of the recording magnetic domains 22. When the reproducing laser beam is irradiated from the substrate 1 side, the reproducing of the antiferromagnetic material auxiliary magnetic film 30 having the in-plane magnetization as shown in FIG. The portion irradiated with the laser beam becomes paramagnetic beyond the nail point, and exchanged coupling with the reproducing layer magnetic film 24 is broken, thereby generating a hatched portion.
4, a transfer 23 of the recording magnetic domain is formed. Next, the recording magnetic domain transfer 23 of the reproducing layer magnetic film 24 is denoted by 231 in FIG.
And it enlarges like 232 of FIG.3 (d). When the heating temperature of the antiferromagnetic material auxiliary magnetic film 30 by the reproduction laser beam is high and the extent of the portion beyond the nail point is expanded, as shown in FIG. When the hatched portion is enlarged and the reproducing laser beam is fine and the power is low, the state of the hatched portion of the antiferromagnetic material auxiliary magnetic film 30 shown in FIG.

【0055】図3の臨界温度Tcr2とネールポイント
TnはTcr2<Tnの関係にある。
The critical temperature Tcr2 and the nail point Tn in FIG. 3 have a relationship of Tcr2 <Tn.

【0056】[0056]

【実施例2】本発明の実施例2で用いる光磁気デイスク
の積層膜構成を図4に示す。この積層膜構成は実施例1
の媒体の光磁気記録層10と光反射層8の間に第1補助
磁性膜128を挿入し、非磁性層29を除いて構成した
ものである。その他は図1(a)と同じである。図4の
第1補助磁性膜128は室温では垂直磁化であるが臨界
温度Tcr1で面内磁性に転移して、臨界温度Tcr1
以上では面内磁性を示す。図5の曲線Dに第1補助磁性
膜128の温度と垂直磁化保持力との関係を示す。即ち
第1補助磁性膜128には臨界温度Tcr1が、曲線C
で示す再生層磁性膜24の臨界温度Tcr2よりも高く
設定できる材料を用いる。第1補助磁性膜128にはT
cr1以下の温度で光磁気記録層10の記録磁区信号を
転写する機能有するものが好ましい。反強磁性材料補助
磁性膜30はネールポイントTnが,図5に示す温度T
cr2とTcr1の間の温度に相当する値の材料が用い
られる。
[Embodiment 2] FIG. 4 shows a laminated film configuration of a magneto-optical disk used in Embodiment 2 of the present invention. This laminated film configuration is described in Example 1.
The first auxiliary magnetic film 128 is inserted between the magneto-optical recording layer 10 and the light reflection layer 8 of the medium, and the non-magnetic layer 29 is removed. Others are the same as FIG. 1 (a). The first auxiliary magnetic film 128 shown in FIG. 4 has perpendicular magnetization at room temperature, but transitions to in-plane magnetism at the critical temperature Tcr1, and becomes critical temperature Tcr1.
The above shows in-plane magnetism. A curve D in FIG. 5 shows the relationship between the temperature of the first auxiliary magnetic film 128 and the perpendicular magnetization coercive force. That is, the first auxiliary magnetic film 128 has the critical temperature Tcr1 and the curve C
A material that can be set to be higher than the critical temperature Tcr2 of the reproducing layer magnetic film 24 shown in FIG. The first auxiliary magnetic film 128 has T
It is preferable to use one having a function of transferring a recording magnetic domain signal of the magneto-optical recording layer 10 at a temperature of cr1 or lower. The anti-ferromagnetic material auxiliary magnetic film 30 has a nail point Tn at a temperature T shown in FIG.
A material having a value corresponding to the temperature between cr2 and Tcr1 is used.

【0057】図6(a)は光磁気記録層10に記録磁区
22が記録された光磁気デイスクの各磁性膜の磁化の状
態である。再生レーザ光が照射され第1補助磁性膜12
8に記録磁区が転写する時点では、図6(b)で示すよ
うに、記録磁区信号磁界は反強磁性材料補助磁性膜30
及び再生層磁性膜24にも及んでいる。再生層磁性膜2
4の面内磁区は反強磁性材料補助磁性膜30と交換結合
されており、少なくとも再生層磁性膜24の臨界温度T
cr2までは再生層磁性膜24に転写されない。再生レ
ーザ光による温度が、再生層磁性膜24の臨界温度Tc
r2と反強磁性材料補助磁性膜30のネールポイントT
nとの間程度の温度に達すると再生層磁性膜24の部分
に上記記録磁区信号の転写が開始されるが、図6(b)
に示すように反強磁性材料補助磁性膜30にネールポイ
ントTn以上の温度が及ぶと、再生層磁性膜24への記
録磁区信号の転写は明瞭になる。ついで、第1補助磁性
膜128の再生レーザ光照射部分の温度が臨界温度Tc
r1以上になると第1補助磁性膜128は面内磁化に転
移するために、再生層磁性膜24への記録磁区信号磁界
は遮断され、外部磁界、洩れ磁界等のノイズも遮断され
る。従って図6(c),図6(d)のようにTnとTc
r1の温度間で再生層磁性膜24へ転写した記録磁区
は、231、及び232で示すように再生層磁性膜24
上の熱拡散に伴う臨界温度Tcr2の進行領域へ拡大す
る。この際反強磁性材料補助磁性膜30の再生レーザ光
による加熱温度の状態が高く、ネールポイントを越える
部分の広がりが拡大する場合には図6(c)のように反
強磁性材料補助磁性膜30の常磁性へ転移したエリア3
31が拡大し、再生レーザ光ビームが微細でパワーが低
い場合では図6(d)に示すような反強磁性材料補助磁
性膜30の常磁性へ転移したエリア332の状態になる
と想定される。
FIG. 6A shows a state of magnetization of each magnetic film of the magneto-optical disk in which the recording magnetic domains 22 are recorded on the magneto-optical recording layer 10. The first auxiliary magnetic film 12 is irradiated with a reproduction laser beam.
8, when the recording magnetic domain is transferred, the recording magnetic domain signal magnetic field is changed to the antiferromagnetic material auxiliary magnetic film 30 as shown in FIG.
And the reproducing layer magnetic film 24. Reproducing layer magnetic film 2
4 is exchange-coupled with the antiferromagnetic material auxiliary magnetic film 30, and at least the critical temperature T of the reproducing layer magnetic film 24.
The data up to cr2 is not transferred to the reproducing layer magnetic film 24. The temperature due to the reproducing laser beam is the critical temperature Tc of the reproducing layer magnetic film 24.
r2 and the Neel point T of the antiferromagnetic material auxiliary magnetic film 30
When the temperature reaches about n, the transfer of the recording magnetic domain signal to the portion of the reproducing layer magnetic film 24 is started.
When the temperature of the anti-ferromagnetic material auxiliary magnetic film 30 is higher than the nail point Tn, the transfer of the recording magnetic domain signal to the reproducing layer magnetic film 24 becomes clear as shown in FIG. Next, the temperature of the portion of the first auxiliary magnetic film 128 irradiated with the reproducing laser beam is changed to the critical temperature Tc.
At r1 or more, the first auxiliary magnetic film 128 transitions to in-plane magnetization, so that the recording magnetic domain signal magnetic field to the reproducing layer magnetic film 24 is cut off, and noise such as an external magnetic field and a leakage magnetic field is also cut off. Therefore, as shown in FIGS. 6C and 6D, Tn and Tc
The recording magnetic domain transferred to the reproducing layer magnetic film 24 at the temperature of r1 is represented by 231 and 232 as shown in FIG.
It expands to the region where the critical temperature Tcr2 accompanying the thermal diffusion proceeds. At this time, when the state of the heating temperature of the antiferromagnetic material auxiliary magnetic film 30 by the reproduction laser beam is high and the spread beyond the nail point is widened, as shown in FIG. Area 3 with transition to 30 paramagnetism
When the reproduction laser beam is small and the power is low, it is assumed that the area 332 of the antiferromagnetic material auxiliary magnetic film 30 transitions to paramagnetism as shown in FIG. 6D.

【0058】図6の臨界温度Tcr1とTcr2とネー
ルポイントTnはTcr2<Tn<Tcr1の関係にあ
る。
The critical temperatures Tcr1 and Tcr2 and the nail point Tn in FIG. 6 have a relationship of Tcr2 <Tn <Tcr1.

【0059】[0059]

【実施例3】光磁気デイスクの記録層の積層膜構成につ
いて、実施例2で用いた光磁気デイスクの第1補助磁性
膜128を反強磁性材料補助磁性膜30と再生層磁性膜
24との間に移して、さらに反強磁性材料補助磁性膜3
0の材料に垂直磁化の反強磁性材料130を用いて、積
層膜構成が図17に示すように作製した。この光磁気デ
イスクに記録された記録磁区を再生レーザ光の照射によ
って再生する場合、光磁気記録層10の記録磁区信号が
第1補助磁性膜128に転写するのは、室温で垂直磁化
であり臨界温度Tcr1で面内磁化に転移する第1補助
磁性膜128の材料に、垂直磁化の反強磁性材料補助磁
性膜130のネールポイントTnより高い臨界温度Tc
r1を保持するものを用いた場合である。この場合垂直
磁化の反強磁性材料補助磁性膜130の温度がネールポ
イントTn付近に達した場合に、図18(b)に示すよ
うに、記録磁区信号が第1補助磁性膜128に転写す
る。再生層磁性膜24には臨界温度Tcr2が第1補助
磁性膜128の臨界温度Tcr1より低く、且つ垂直磁
化の反強磁性材料補助磁性膜130のネールポイントT
nよりも低い磁性材料を用いれば、図18(b)で示す
ように、記録磁区信号の転写、拡大記録磁区233が得
られる。その他は実施例2と同じである。
Embodiment 3 Regarding the laminated film configuration of the recording layer of the magneto-optical disk, the first auxiliary magnetic film 128 of the magneto-optical disk used in Example 2 was replaced with the anti-ferromagnetic material auxiliary magnetic film 30 and the reproducing layer magnetic film 24. In between, the antiferromagnetic material auxiliary magnetic film 3
The laminated film configuration was manufactured as shown in FIG. 17 by using the perpendicularly magnetized antiferromagnetic material 130 as the material No. 0. When the recording magnetic domain recorded on the magneto-optical disk is reproduced by irradiating the reproducing laser beam, the recording magnetic domain signal of the magneto-optical recording layer 10 is transferred to the first auxiliary magnetic film 128 because of the perpendicular magnetization at room temperature and the critical magnetization. The material of the first auxiliary magnetic film 128 which changes to in-plane magnetization at the temperature Tcr1 has a critical temperature Tc higher than the nail point Tn of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130.
This is a case where a device that holds r1 is used. In this case, when the temperature of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 reaches the vicinity of the nail point Tn, the recording magnetic domain signal is transferred to the first auxiliary magnetic film 128 as shown in FIG. The critical temperature Tcr2 of the reproducing layer magnetic film 24 is lower than the critical temperature Tcr1 of the first auxiliary magnetic film 128, and the Neal point T of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130
If a magnetic material lower than n is used, the transfer of the recording magnetic domain signal and the enlarged recording magnetic domain 233 can be obtained as shown in FIG. Others are the same as the second embodiment.

【0060】[0060]

【実施例4】実施例3で用いた光磁気デイスクの記録層
の積層膜構成と同じ光磁気デイスクについて、反強磁性
材料補助磁性膜に面内磁化の反強磁性材料30を用い、
第1補助磁性膜に室温では面内磁化で臨界温度Tcr1
で垂直磁化に転移する材料28を用いた。この光磁気デ
イスクに記録された記録磁区を再生レーザ光の照射によ
って再生する場合、光磁気記録層10の記録磁区信号が
第1補助磁性膜28に転写するのは、垂直磁化に転移す
る臨界温度Tcr1になった場合である。即ち面内磁化
の反強磁性材料補助磁性膜30にはネールポイントTn
がTcr1近傍以上の温度値を保持するものであること
が好ましい。この場合面内磁化の反強磁性材料補助磁性
膜30の温度がネールポイントTn付近に達した場合
に、図18(a)に示すように、記録磁区信号が第1補
助磁性膜28に転写する。再生層磁性膜24には臨界温
度Tcr2が第1補助磁性膜28の臨界温度Tcr1よ
り低い磁性材料を用いることが好ましく、図18(a)
で示すように、記録磁区信号の転写、拡大記録磁区23
4が得られる。その他は実施例3と同じである。
Embodiment 4 With respect to a magneto-optical disk having the same laminated film configuration as the recording layer of the magneto-optical disk used in Embodiment 3, an anti-ferromagnetic material 30 having in-plane magnetization was used for the anti-ferromagnetic material auxiliary magnetic film.
At room temperature, the first auxiliary magnetic film has a critical temperature Tcr1 due to in-plane magnetization at room temperature.
The material 28 which changes to perpendicular magnetization at the time of was used. When the recording magnetic domain recorded on the magneto-optical disk is reproduced by irradiating the reproducing laser beam, the recording magnetic domain signal of the magneto-optical recording layer 10 is transferred to the first auxiliary magnetic film 28 because of the critical temperature at which the magnetization transitions to perpendicular magnetization. This is the case where Tcr1 has been reached. That is, the anti-ferromagnetic material auxiliary magnetic film 30 having in-plane magnetization has a nail point Tn.
Preferably maintain a temperature value equal to or higher than Tcr1. In this case, when the temperature of the antiferromagnetic material auxiliary magnetic film 30 of in-plane magnetization reaches near the nail point Tn, the recording magnetic domain signal is transferred to the first auxiliary magnetic film 28 as shown in FIG. . For the reproducing layer magnetic film 24, it is preferable to use a magnetic material whose critical temperature Tcr2 is lower than the critical temperature Tcr1 of the first auxiliary magnetic film 28, as shown in FIG.
As shown by, transfer of the recording magnetic domain signal, the enlarged recording magnetic domain 23
4 is obtained. Others are the same as the third embodiment.

【0061】[0061]

【実施例5】本発明の実施例5で用いる光磁気デイスク
の積層膜構成を図8に示す。この積層膜の構成は図4と
同じであるが、補助磁性膜28には室温で面内磁化であ
り臨界温度Tcr1で垂直磁化に転移する磁性材料を用
い、反強磁性材料補助磁性膜30には面内磁化の反強磁
性材料を用いる。図8の再生層磁性膜24も室温では面
内磁化であるが臨界温度Tcr2で垂直磁性に転移する
が、臨界温度Tcr2は、図9の保持力の温度特性曲線
Bで明らかなように、補助磁性膜28の臨界温度Tcr
1よりも低い磁性材料を用いる。図9の曲線Cに補助磁
性膜28の温度と垂直磁化保持力との関係を示す。即ち
補助磁性膜28には臨界温度Tcr1が、曲線Bで示す
再生層磁性膜24の臨界温度Tcr2よりも高く設定で
き、且つ面内磁化の反強磁性材料補助磁性膜30のネー
ルポイントTnよりも低く設定できる材料を用いること
が好ましい。面内磁化の反強磁性材料補助磁性膜30は
ネールポイントTnが,図9に示す温度Tcr2、Tc
r1よりも高い材料であれば再生層磁性膜24へノイズ
が極めて少ない記録磁区を転写することができる。
[Embodiment 5] FIG. 8 shows a laminated film configuration of a magneto-optical disk used in Embodiment 5 of the present invention. The configuration of this laminated film is the same as that of FIG. 4, but the auxiliary magnetic film 28 is made of a magnetic material which has in-plane magnetization at room temperature and transitions to perpendicular magnetization at the critical temperature Tcr1. Uses an in-plane magnetization antiferromagnetic material. The reproducing layer magnetic film 24 in FIG. 8 also has in-plane magnetization at room temperature, but transitions to perpendicular magnetism at the critical temperature Tcr2. The critical temperature Tcr2 is, as apparent from the temperature characteristic curve B of coercive force in FIG. Critical temperature Tcr of magnetic film 28
A magnetic material lower than 1 is used. A curve C in FIG. 9 shows the relationship between the temperature of the auxiliary magnetic film 28 and the perpendicular magnetization coercive force. That is, the critical temperature Tcr1 of the auxiliary magnetic film 28 can be set higher than the critical temperature Tcr2 of the reproducing magnetic layer 24 shown by the curve B, and is higher than the nail point Tn of the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30. It is preferable to use a material that can be set low. The anti-ferromagnetic material auxiliary magnetic film 30 having in-plane magnetization has a nail point Tn at temperatures Tcr2 and Tc shown in FIG.
If the material is higher than r1, a recording magnetic domain with very little noise can be transferred to the reproducing layer magnetic film 24.

【0062】図10(a)は光磁気記録層10に記録磁
区22が記録された光磁気デイスクの各磁性膜の磁化の
状態である。再生レーザ光が照射され補助磁性膜28に
記録磁区が転写する時点では、図10(b)で示すよう
に、記録磁区信号磁界は面内磁化の反強磁性材料補助磁
性膜30にも及んでいるが、面内磁化の反強磁性材料補
助磁性膜30と交換結合されている再生層磁性膜24に
は記録磁区信号磁界の影響が現れていない。少なくとも
面内磁化の反強磁性材料補助磁性膜30のネールポイン
トTnまでは再生層磁性膜24に転写されないことが好
ましい。再生レーザ光による温度が、再生層磁性膜24
の臨界温度Tcr2と面内磁化の反強磁性材料補助磁性
膜30のネールポイントTnとの間程度の温度に達する
と再生層磁性膜24の部分に上記記録磁区信号の転写が
開始されるが、図10(c)、及び図10(d)に示す
ように面内磁化の反強磁性材料補助磁性膜30にネール
ポイントTn以上の温度が及ぶと、再生層磁性膜24へ
の記録磁区信号の転写は明瞭になる。従って図10
(c),図10(d)のようにTnとTcr1の温度間
で再生層磁性膜24へ転写した記録磁区は、231、及
び232で示すように再生層磁性膜24上の熱拡散に伴
う臨界温度Tcr2の進行領域へ拡大する。この際面内
磁化の反強磁性材料補助磁性膜30の再生レーザ光によ
る加熱温度の状態が高く、ネールポイントを越える部分
の広がりが拡大する場合には図10(c)のように面内
磁化の反強磁性材料補助磁性膜30の常磁性へ転移した
エリアが拡大し、再生レーザ光ビームが微細でパワーが
低い場合では図10(d)に示すような面内磁化の反強
磁性材料補助磁性膜30の常磁性へ転移したエリア状態
になると想定される。
FIG. 10A shows a state of magnetization of each magnetic film of the magneto-optical disk in which the recording magnetic domains 22 are recorded on the magneto-optical recording layer 10. At the point when the recording magnetic domain is transferred to the auxiliary magnetic film 28 by the irradiation of the reproduction laser beam, the recording magnetic domain signal magnetic field reaches the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30 as shown in FIG. However, no influence of the recording magnetic domain signal magnetic field appears on the reproduction layer magnetic film 24 exchange-coupled with the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30. It is preferable that the transfer is not performed to the reproducing layer magnetic film 24 at least up to the nail point Tn of the antiferromagnetic material auxiliary magnetic film 30 having the in-plane magnetization. The temperature of the reproducing laser beam is
When the temperature reaches about the temperature between the critical temperature Tcr2 and the nail point Tn of the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30, transfer of the recording magnetic domain signal to the portion of the reproducing layer magnetic film 24 is started. As shown in FIG. 10C and FIG. 10D, when a temperature equal to or higher than the nail point Tn is applied to the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30, a recording magnetic domain signal to the reproducing layer magnetic film 24 is transmitted. Transcription becomes clear. Therefore, FIG.
(C), the recording magnetic domain transferred to the reproducing layer magnetic film 24 between the temperatures Tn and Tcr1 as shown in FIG. 10 (d) is accompanied by the thermal diffusion on the reproducing layer magnetic film 24 as indicated by 231 and 232. The region expands to the region where the critical temperature Tcr2 advances. At this time, when the state of the heating temperature of the antiferromagnetic material auxiliary magnetic film 30 having the in-plane magnetization by the reproducing laser beam is high, and the portion beyond the nail point expands, as shown in FIG. The area of the antiferromagnetic material-assisted magnetic film 30 which has transitioned to paramagnetism is enlarged, and when the reproducing laser beam is fine and has low power, the in-plane magnetization antiferromagnetic material assisted as shown in FIG. It is assumed that the state of the magnetic film 30 is changed to the paramagnetic state.

【0063】図6の臨界温度Tcr1とTcr2とネー
ルポイントTnはTcr2<Tcr1<Tnの関係にあ
る。
The critical temperatures Tcr1 and Tcr2 and the nail point Tn in FIG. 6 have a relationship of Tcr2 <Tcr1 <Tn.

【0064】[0064]

【実施例6】光磁気デイスクを構成する記録層の積層膜
について、光磁気記録層10と室温で面内磁化であり臨
界温度Tcr1で垂直磁化に転移する補助磁性膜28と
面内磁化の反強磁性材料補助磁性膜30と再生層磁性膜
24とをこの順に直接接触する、図7に示すような磁性
膜の積層構造のものを作製した。この光磁気デイスクに
記録された記録磁区を再生用レーザ光によって転写、拡
大して再生する方法、再生機構、再生特性、及び得られ
た効果等は実施例5と同じである。
Embodiment 6 With respect to a laminated film of recording layers constituting a magneto-optical disk, the magneto-optical recording layer 10 has an auxiliary magnetic film 28 which has in-plane magnetization at room temperature and transitions to perpendicular magnetization at a critical temperature Tcr1, and an anti-in-plane magnetization. A layered structure of a magnetic film as shown in FIG. 7 was manufactured in which the ferromagnetic material auxiliary magnetic film 30 and the reproducing layer magnetic film 24 were directly contacted in this order. The method of transferring, enlarging, and reproducing the recording magnetic domain recorded on the magneto-optical disk by the reproducing laser beam, the reproducing mechanism, the reproducing characteristics, and the obtained effects are the same as those in the fifth embodiment.

【0065】[0065]

【実施例7】実施例5で用いた光磁気デイスクの記録膜
層における補助磁性膜28と光磁気記録膜10との間に
非磁性膜29を挿入して、図11に示すように、第1補
助磁性膜32と他の磁性膜とが直接接触することのない
ように第1補助磁性膜32を非磁性膜で被覆する構成の
光磁気デイスクを作製した。
Seventh Embodiment A non-magnetic film 29 is inserted between the auxiliary magnetic film 28 and the magneto-optical recording film 10 in the recording film layer of the magneto-optical disk used in the fifth embodiment, as shown in FIG. A magneto-optical disk was constructed in which the first auxiliary magnetic film 32 was covered with a non-magnetic film so that the first auxiliary magnetic film 32 did not directly contact another magnetic film.

【0066】第1補助磁性膜32には室温で面内磁化で
あり臨界温度Tcr1で垂直磁化に転移する磁性材料を
用い、反強磁性材料補助磁性膜30には面内磁化の反強
磁性材料を用いる。
The first auxiliary magnetic film 32 is made of a magnetic material which has in-plane magnetization at room temperature and transitions to perpendicular magnetization at the critical temperature Tcr1, and the anti-ferromagnetic material auxiliary magnetic film 30 is an anti-ferromagnetic material having in-plane magnetization. Is used.

【0067】図14(a)は光磁気記録層10に記録磁
区22が記録された光磁気デイスクの各磁性膜の磁化の
状態である。再生レーザ光を照射してまず第1補助磁性
膜32の臨界温度Tcr1まで加熱されて記録磁区が第
1補助磁性膜32に転写されなければならない。一方再
生層磁性膜24の臨界温度Tcr2はTcr1より低い
ので、再生層磁性膜24の温度は臨界温度Tcr2以上
に既に達している。面内磁化の反強磁性材料補助磁性膜
30にはネールポイントTnをTcr1より高く設定さ
れた材料を用いているので、記録磁区が第1補助磁性膜
32に転写された後に、図14(b)で示すように、面
内磁化の反強磁性材料補助磁性膜30に常磁性化の広が
り部分が発生し、面内磁化の反強磁性材料補助磁性膜3
0と交換結合されている再生層磁性膜24には、反強磁
性材料補助磁性膜30の常磁性化の広がり部分に対向す
る再生層磁性膜24の部分に記録磁区の転写と拡大を生
ずる。再生レーザ光による温度が、第1補助磁性膜32
の臨界温度Tcr1と面内磁化の反強磁性材料補助磁性
膜30のネールポイントTnとの間程度以上の温度に達
すると再生層磁性膜24の部分に上記記録磁区信号の転
写が開始される。
FIG. 14A shows the state of magnetization of each magnetic film of the magneto-optical disk in which the recording magnetic domains 22 are recorded on the magneto-optical recording layer 10. The recording magnetic domain must be transferred to the first auxiliary magnetic film 32 by irradiating the reproduction laser light to first heat the first auxiliary magnetic film 32 to the critical temperature Tcr1. On the other hand, since the critical temperature Tcr2 of the reproducing magnetic layer 24 is lower than Tcr1, the temperature of the reproducing magnetic film 24 has already reached the critical temperature Tcr2 or higher. Since the material whose nail point Tn is set to be higher than Tcr1 is used for the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30, after the recording magnetic domain is transferred to the first auxiliary magnetic film 32, FIG. As shown in ()), a paramagnetic broadened portion is generated in the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30 and the in-plane magnetization antiferromagnetic material auxiliary magnetic film 3 is formed.
In the reproducing layer magnetic film 24 exchange-coupled to 0, the recording magnetic domain is transferred and expanded in a portion of the reproducing layer magnetic film 24 opposite to the paramagnetic expansion portion of the antiferromagnetic material auxiliary magnetic film 30. The temperature due to the reproduction laser beam is changed to the first auxiliary magnetic film 32.
When the temperature reaches about the temperature between the critical temperature Tcr1 and the nail point Tn of the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30, the transfer of the recording magnetic domain signal to the reproducing layer magnetic film 24 is started.

【0068】[0068]

【実施例8】図11に示す実施例7で用いた光磁気デイ
スクの積層膜の再生層磁性膜24の再生用レーザ光入射
側面に再生補助磁性層240を加えて積層膜を形成した
光磁気デイスクについて図12に示す。本実施例は実施
例7で光磁気デイスクの再生層磁性膜24に記録磁区の
転写拡大を行った再生信号を、図15に示すように、さ
らに再生補助磁性層240に再転写を行って、再生補助
磁性層240に記録した記録磁区を再生レーザ光によっ
て再生する方法である。
[Embodiment 8] A magneto-optical device in which a reproducing auxiliary magnetic layer 240 is added to the reproducing laser beam incident side surface of the reproducing magnetic layer 24 of the laminated film of the magneto-optical disk used in the embodiment 7 shown in FIG. The disk is shown in FIG. In this embodiment, as shown in FIG. 15, the reproduction signal obtained by performing the transfer expansion of the recording magnetic domain on the reproduction layer magnetic film 24 of the magneto-optical disk in Embodiment 7 is further retransferred to the reproduction auxiliary magnetic layer 240, as shown in FIG. This is a method of reproducing a recording magnetic domain recorded in the reproduction auxiliary magnetic layer 240 by a reproduction laser beam.

【0069】[0069]

【実施例9】図12に示す実施例8に用いた光磁気デイ
スクの積層膜の中から再生層磁性膜24を取り除いて、
図13に示すような積層膜構成の光磁気デイスクを作製
した。再生用の磁性膜には垂直磁化の再生補助磁性膜2
40を用いる。再生補助磁性膜240へ記録される信号
は、光磁気記録層10の記録磁区磁界がいったん第1補
助磁性膜32に転写されて、ついで面内磁化の反強磁性
材料補助磁性膜30のネールポイントTn付近以上まで
温度が上昇すると、再生補助磁性層240と交換結合し
ている面内磁化の反強磁性材料補助磁性膜30の再生用
レーザ光入射部分が常磁性化する。ついで面内磁化の反
強磁性材料補助磁性膜30との交換結合が消失した再生
補助磁性層240の記録部分に光磁気記録層10或いは
第1補助磁性膜32からの記録磁区磁界によって、図1
6に示すように記録磁区信号が記録される。本実施例は
実施例8で光磁気デイスクの第1補助磁性膜32に転写
された記録磁区を、図16で示すように、再生補助磁性
層240に再転写を行って、再生補助磁性層240に記
録した記録磁区を再生レーザ光によって再生する方法で
ある。その他は実施例7と同じである。
Ninth Embodiment The reproducing layer magnetic film 24 is removed from the magneto-optical disk laminated film used in the eighth embodiment shown in FIG.
A magneto-optical disk having a laminated film structure as shown in FIG. 13 was manufactured. The auxiliary magnetic film 2 of perpendicular magnetization is used as the magnetic film for reproduction.
40 is used. In the signal recorded on the reproduction auxiliary magnetic film 240, the recording domain magnetic field of the magneto-optical recording layer 10 is temporarily transferred to the first auxiliary magnetic film 32, and then the in-plane magnetization of the antiferromagnetic material auxiliary magnetic film 30 When the temperature rises to around Tn or higher, the reproducing laser beam incident portion of the in-plane magnetization antiferromagnetic material auxiliary magnetic film 30 exchange-coupled with the auxiliary reproducing magnetic layer 240 becomes paramagnetic. Next, the recording magnetic domain magnetic field from the magneto-optical recording layer 10 or the first auxiliary magnetic film 32 causes the recording portion of the reproduction auxiliary magnetic layer 240, in which the exchange coupling between the in-plane magnetization and the antiferromagnetic material auxiliary magnetic film 30 has disappeared, to be as shown in FIG.
As shown in FIG. 6, a recording magnetic domain signal is recorded. In this embodiment, the recording magnetic domain transferred to the first auxiliary magnetic film 32 of the magneto-optical disk in the eighth embodiment is re-transferred to the reproduction auxiliary magnetic layer 240 as shown in FIG. This is a method of reproducing the recording magnetic domain recorded in the recording medium by a reproducing laser beam. Others are the same as the seventh embodiment.

【0070】[0070]

【実施例10】図11に示すように、第1補助磁性膜3
2と他の磁性膜とが直接接触することのないように第1
補助磁性膜32を非磁性膜で被覆する構成で、且つ第1
補助磁性膜32には室温で面内磁化であり臨界温度Tc
r1で垂直磁化に転移する磁性材料を用い、垂直磁化の
反強磁性材料からなる反強磁性材料補助磁性膜130と
垂直磁化の磁性膜124を再生用磁性膜に用いた光磁気
デイスクを作製した。
Embodiment 10 As shown in FIG. 11, the first auxiliary magnetic film 3
2 so as not to make direct contact with other magnetic films.
A configuration in which the auxiliary magnetic film 32 is covered with a non-magnetic film;
The auxiliary magnetic film 32 has in-plane magnetization at room temperature and a critical temperature Tc.
A magneto-optical disk was fabricated using a magnetic material that transitions to perpendicular magnetization at r1 and using an antiferromagnetic material auxiliary magnetic film 130 made of a perpendicular magnetization antiferromagnetic material and a perpendicular magnetization magnetic film 124 as a reproducing magnetic film. .

【0071】このような磁性膜構成の特長は、再生用磁
性膜としての垂直磁化の磁性膜124が垂直磁化の反強
磁性材料からなる反強磁性材料補助磁性膜130と強く
交換結合されること、及び光磁気記録層10の磁界、外
部磁界、漏洩磁界等の磁界を第1補助磁性膜32が遮断
するシャッターの役割を行うことである。
The feature of such a magnetic film configuration is that the perpendicularly magnetized magnetic film 124 as the reproducing magnetic film is strongly exchange-coupled with the antiferromagnetic material auxiliary magnetic film 130 made of the perpendicularly magnetized antiferromagnetic material. And that the first auxiliary magnetic film 32 functions as a shutter that blocks magnetic fields such as the magnetic field of the magneto-optical recording layer 10, an external magnetic field, and a leakage magnetic field.

【0072】図20(a)は光磁気記録層10に記録磁
区22が記録された光磁気デイスクの各磁性膜の磁化の
状態である。再生レーザ光を照射するとまず、図20
(b)に示すように、第1補助磁性膜32に臨界温度T
cr1まで加熱されて垂直磁化へ転移する部分が発生す
る。この時点では反強磁性材料補助磁性膜130はネー
ルポイントTnに達していなければ垂直磁化の磁性膜1
24との強固な交換結合を保っている。しかし、反強磁
性材料補助磁性膜130にネールポイントTnに達した
部分が発生すると、図20(c)に記載するように、反
強磁性材料補助磁性膜130のその部分は常磁性化して
垂直磁化の磁性膜124は光磁気記録層10、第1補助
磁性膜32等からの磁界に反応するようになり、記録磁
区信号が垂直磁化の磁性膜124に転写される。垂直磁
化の磁性膜124に転写された記録磁区231、及び2
32の大きさは、図20(c)及び図20(d)のよう
に、反強磁性材料補助磁性膜130生じたネールポイン
トTnに達した部分の面積の拡張の状態に対応して垂直
磁化の磁性膜124に転写された記録磁区も拡大する。
FIG. 20A shows a state of magnetization of each magnetic film of the magneto-optical disk in which the recording magnetic domains 22 are recorded on the magneto-optical recording layer 10. When the reproduction laser beam is irradiated, first, FIG.
As shown in (b), the critical temperature T is applied to the first auxiliary magnetic film 32.
A portion that is heated to cr1 and transitions to perpendicular magnetization occurs. At this time, if the antiferromagnetic material auxiliary magnetic film 130 has not reached the nail point Tn, the perpendicular magnetic
24 and a strong exchange coupling is maintained. However, when a portion reaching the nail point Tn occurs in the antiferromagnetic material auxiliary magnetic film 130, as shown in FIG. 20C, the portion of the antiferromagnetic material auxiliary magnetic film 130 becomes paramagnetic and becomes vertical. The magnetized magnetic film 124 becomes responsive to the magnetic field from the magneto-optical recording layer 10, the first auxiliary magnetic film 32, and the like, and the recording magnetic domain signal is transferred to the perpendicularly magnetized magnetic film 124. Recording magnetic domains 231 and 2 transferred to perpendicular magnetic film 124
As shown in FIGS. 20 (c) and 20 (d), the size of the perpendicular magnetization 32 corresponds to the state where the area of the portion reaching the nail point Tn of the antiferromagnetic material auxiliary magnetic film 130 is expanded. The recording magnetic domain transferred to the magnetic film 124 of FIG.

【0073】この転写された記録磁区の拡大条件は、垂
直磁化の反強磁性材料補助磁性膜130の再生レーザ光
による加熱温度の状態が高く、ネールポイントを越える
部分の面積の広がりが拡大する場合には図20(c)の
ように垂直磁化の反強磁性材料補助磁性膜130の常磁
性化エリアが拡大し、再生レーザ光ビームが微細でパワ
ーが低い場合では図20(d)に示すような、垂直磁化
の反強磁性材料補助磁性膜130の常磁性化エリアが小
さな状態になると想定される。
The condition for enlarging the transferred recording magnetic domain is such that the state of the heating temperature of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 by the reproduction laser beam is high, and the spread of the area beyond the nail point is expanded. 20C, the paramagnetized area of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 is expanded as shown in FIG. 20C, and when the reproducing laser light beam is fine and the power is low, as shown in FIG. It is assumed that the paramagnetic area of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 becomes small.

【0074】[0074]

【実施例11】本実施例の光磁気記録媒体は、図1
(a)及び図1(b)に記載する積層膜構成と同じであ
り、光磁気記録膜10上に反射膜8、非磁性膜29、反
強磁性材料補助磁性膜、再生に用いられる再生用補助磁
性膜がこの順に積層された構造を有し、光磁気記録膜1
0の外側を紫外線硬化性樹脂、酸化珪素(SiO2),
窒化珪素(Si3N4)等を用いて保護膜で覆い、再生
用補助磁性膜の外表面に窒化珪素(Si3N4)、酸化
アルミ(Al2O3)、窒化アルミ(AlN)等等の材
料から選択される誘電体膜3とポリカーボネイト樹脂等
からなる基板1とを形成する。基板1の片面にはプリフ
オマッテイング2を形成し、このプリフオマッテイング
2形成面側に誘電体膜3、再生用補助磁性膜を配置し形
成する。本実施例の光磁気記録媒体の反強磁性材料補助
磁性膜には垂直磁化の反強磁性材料からなる補助磁性膜
130が用いられる。また再生に用いられる再生用補助
磁性膜は垂直磁化の再生用補助磁性膜124である。
Embodiment 11 A magneto-optical recording medium according to this embodiment is shown in FIG.
1A and 1B, a reflective film 8, a non-magnetic film 29, an antiferromagnetic material auxiliary magnetic film on a magneto-optical recording film 10, and a reproducing film used for reproducing. The magneto-optical recording film 1 has a structure in which auxiliary magnetic films are stacked in this order.
0 is an ultraviolet curable resin, silicon oxide (SiO2),
A dielectric film selected from materials such as silicon nitride (Si3N4), aluminum oxide (Al2O3), aluminum nitride (AlN), and the like is covered with a protective film using silicon nitride (Si3N4) or the like, and the outer surface of the auxiliary magnetic film for reproduction is formed on the outer surface. A film 3 and a substrate 1 made of a polycarbonate resin or the like are formed. A pre-formatting 2 is formed on one side of the substrate 1, and a dielectric film 3 and a reproducing auxiliary magnetic film are arranged and formed on the pre-formatting 2 forming side. As the antiferromagnetic material auxiliary magnetic film of the magneto-optical recording medium of this embodiment, an auxiliary magnetic film 130 made of a perpendicular magnetization antiferromagnetic material is used. The auxiliary magnetic film for reproduction used for reproduction is the auxiliary magnetic film for reproduction 124 of perpendicular magnetization.

【0075】実施例の光磁気デイスクに記録した記録磁
区22を再生する行程は、図21に示す。図21(a)
は再生前の記録磁区22が記録された光磁気記録媒体の
各磁性膜の磁化状態である。基板1側から再生レーザ光
が照射されると、図21(b)に示すような垂直磁化の
反強磁性材料補助磁性膜130の再生レーザ光照射部分
にネールポイントを越えて常磁性化して、垂直磁化の再
生層磁性膜124との交換結合が解かれた、斜線で示す
部分が発生し、その斜線部分に接触して積層する垂直磁
化の再生層磁性膜124の部分には光磁気記録層10の
記録磁区磁界によって転写された、転写記録磁区23が
形成される。ついで垂直磁化の再生層磁性膜124の記
録磁区転写23は、図21(c)の231、及び図21
(d)の232のように拡大する。垂直磁化の反強磁性
材料補助磁性膜130の再生レーザ光による加熱温度が
高いために、ネールポイントTnを越える面積の広がり
が大きく拡大する場合には図21(c)のように垂直磁
化の反強磁性材料補助磁性膜130の斜線部分の拡大面
積に追随して垂直磁化の再生層磁性膜124の転写記録
磁区が拡大する。再生レーザ光ビームが微細でパワーが
低い場合では図21(d)に示すように垂直磁化の反強
磁性材料補助磁性膜130の斜線部分の面積は小さくな
り、従って垂直磁化の再生層磁性膜124の転写記録磁
区の拡大も小さくなる。
FIG. 21 shows a process of reproducing the recorded magnetic domains 22 recorded on the magneto-optical disk of the embodiment. FIG. 21 (a)
Represents the magnetization state of each magnetic film of the magneto-optical recording medium on which the recording magnetic domain 22 before recording is recorded. When the reproducing laser beam is irradiated from the substrate 1 side, the portion of the perpendicularly magnetized antiferromagnetic material auxiliary magnetic film 130 irradiated with the reproducing laser beam as shown in FIG. A portion indicated by oblique lines occurs in which exchange coupling with the perpendicular magnetization reproducing layer magnetic film 124 is broken, and a portion of the perpendicular magnetization reproducing layer magnetic film 124 stacked in contact with the oblique line portion has a magneto-optical recording layer. The transferred recording magnetic domains 23 formed by the ten recording magnetic domain magnetic fields are formed. 21 (c), and FIG. 21 (c).
The image is enlarged as indicated by 232 in FIG. When the area of the area exceeding the nail point Tn greatly expands due to the high heating temperature of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 by the reproduction laser beam, as shown in FIG. The transfer recording magnetic domain of the perpendicular magnetization reproduction layer magnetic film 124 expands following the enlarged area of the hatched portion of the ferromagnetic material auxiliary magnetic film 130. When the reproducing laser beam is small and the power is low, the area of the hatched portion of the perpendicular magnetization antiferromagnetic material auxiliary magnetic film 130 becomes small as shown in FIG. Of the transfer recording magnetic domain is also reduced.

【0076】上記実施例1から実施例11までの実施に
おいて用いた材料、製造方法、稼働手段、測定方法、環
境条件、及びその他については以下に記載するように行
った。
The materials, manufacturing methods, operating means, measuring methods, environmental conditions, and others used in the above Examples 1 to 11 were performed as described below.

【0077】本発明の光磁気記録媒体に用いられる、透
明基板1としては、例えばポリカーボネートやアモルフ
ァスポレオレフィンなどの透明樹脂材料を所望の形状に
成形したものや、所望の形状に形成されたガラス板の片
面に所望のプリフォーマットパターン2が転写された透
明樹脂膜を密着したものなど光透過性のある任意の基板
を用いることができる。誘電体膜3は、膜内で再生用光
ビームを多重干渉させ、見かけ上のカー回転角を増加す
るために設けられるものであって、透明基板1よりも屈
折率が大きい、例えばSi3N4からなる無機誘電体に
て形成することができる。保護膜は、基板と保護膜との
間に積層される膜体を腐食等の化学的な悪影響から保護
するためのものであって、例えば、Si3N4膜よりな
る。光磁気記録膜10は室温以上の温度で垂直磁気異方
性を示す垂直磁化膜であり、例えば、TbFeCo、D
yFeCo、TbDyFeCoなどの希土類と遷移金属
の非晶質合金が最も好ましいが、Pt膜とCo膜の交互
積層体やガーネット系酸化物磁性体などの他の知られた
光磁気記録材料を用いることもできる。
As the transparent substrate 1 used in the magneto-optical recording medium of the present invention, for example, a transparent resin material such as polycarbonate or amorphous polyolefin formed into a desired shape, or a glass plate formed into a desired shape is used. Any substrate having a light-transmitting property, such as a substrate in which a transparent resin film having a desired preformat pattern 2 transferred thereon is adhered to one side of the substrate, can be used. The dielectric film 3 is provided for causing a reproduction light beam to cause multiple interference in the film and increasing the apparent Kerr rotation angle, and is made of, for example, Si 3 N 4 having a larger refractive index than the transparent substrate 1. It can be formed of an inorganic dielectric. The protective film is for protecting a film body laminated between the substrate and the protective film from a chemical adverse effect such as corrosion, and is made of, for example, a Si3N4 film. The magneto-optical recording film 10 is a perpendicular magnetization film exhibiting perpendicular magnetic anisotropy at a temperature equal to or higher than room temperature. For example, TbFeCo, D
An amorphous alloy of a rare earth and a transition metal such as yFeCo and TbDyFeCo is most preferable, but other known magneto-optical recording materials such as an alternately stacked Pt film and a Co film or a garnet-based oxide magnetic material may be used. it can.

【0078】補助磁性膜28及び再生層磁性膜24は、
室温(R.T.)から室温以上のある臨界温度(Tcr
2)までは面内磁化膜であり、Tcr2以上では垂直磁化膜
に転移する磁気特性を有する。なお、本明細書において
室温とは光磁気記録媒体が通常使用される雰囲気温度を
示し、使用場所に応じて異なり、特に特定の温度に限定
されるものではない。
The auxiliary magnetic film 28 and the reproducing layer magnetic film 24
From room temperature (RT) to a certain critical temperature above room temperature (Tcr)
Up to 2), the film is an in-plane magnetized film, and has a magnetic property of transitioning to a perpendicular magnetized film at Tcr2 or more. In this specification, room temperature refers to an ambient temperature at which a magneto-optical recording medium is usually used, and varies depending on a place of use, and is not particularly limited to a specific temperature.

【0079】膜面に垂直な方向に外部磁界を印加した場
合のカー効果のヒステリシスループから求めたθKR/θ
KS(θKR:残留カー回転角、θKS:飽和カー回転角)の
温度依存性を調べてみると、補助磁性膜の材料として
は、例えばGdFeCo、GdFe、GdTbFeC
o、GdDyFeCoなどの希土類と遷移金属の非晶質
合金が最も好ましい。
ΘKR / θ obtained from the Kerr effect hysteresis loop when an external magnetic field is applied in a direction perpendicular to the film surface.
Examining the temperature dependence of KS (θKR: residual Kerr rotation angle, θKS: saturation Kerr rotation angle), the materials of the auxiliary magnetic film are, for example, GdFeCo, GdFe, GdTbFeC.
o, an amorphous alloy of a rare earth such as GdDyFeCo and a transition metal is most preferable.

【0080】誘電体膜3、再生層磁性膜24、補助磁性
膜28、光磁気記録膜10及び保護膜7は、例えば、マ
グネトロンスパッタ装置による連続スパッタリング等の
ドライプロセスにより形成することができる。
The dielectric film 3, the reproducing layer magnetic film 24, the auxiliary magnetic film 28, the magneto-optical recording film 10, and the protective film 7 can be formed by a dry process such as continuous sputtering using a magnetron sputtering device.

【0081】光磁気記録媒体、即ち光磁気ディスクの補
助磁性膜28を示す。サンプルは、プリフォーマットパ
ターンを有するガラス基板上に、SiN膜よりなる誘電
体膜と、Gd25Fe56Co19膜(II)よりなる再生層磁性
膜と、Gd28Fe53Co19(I)膜よりなる補助磁性膜
と 、Tb21Fe66Co13膜よりなる光磁気記録膜と、
SiN膜よりなる保護膜とを順次スパッタリング法によ
り被着形成して作製した。この場合の各補助磁性膜及び
光磁気記録膜の厚さ並びに磁気特性を表1に示す。表中
のTc はキュリー温度を表し、Tcrは、再生層磁性膜の
面内磁化膜が垂直磁化膜に変化する、或いは垂直磁化膜
が面内磁化膜に変化する臨界温度を表わす。
The auxiliary magnetic film 28 of a magneto-optical recording medium, that is, a magneto-optical disk is shown. The sample is composed of a dielectric film made of a SiN film, a reproducing magnetic film made of a Gd25Fe56Co19 film (II), an auxiliary magnetic film made of a Gd28Fe53Co19 (I) film, and a Tb21Fe66Co13 film on a glass substrate having a preformat pattern. A magneto-optical recording film,
A protective film made of a SiN film was sequentially formed by sputtering to form a protective film. Table 1 shows the thickness and magnetic characteristics of each auxiliary magnetic film and magneto-optical recording film in this case. In the table, Tc represents the Curie temperature, and Tcr represents the critical temperature at which the in-plane magnetic film of the reproducing layer magnetic film changes to a perpendicular magnetic film or the perpendicular magnetic film changes to an in-plane magnetic film.

【0082】 (表1) 材料 膜厚 TC TCR (nm) (℃) (℃) 光磁気記録膜 TbFeCo 50 270 − 補助磁性膜 GdFeCo(I) 70 >400 150 再生層磁性膜 GdFeCo(II) 60 >400 90 上記のように作製したディスクのデータ記録領域に、レ
ーザービームを一定周期のパルス状に照射しながら外部
磁界を記録信号に応じて変調させて記録を行う光磁界変
調方式を用いて、テスト信号を記録した。記録光パルス
のデューティー比は50%であった。種々の記録マーク
長の記録マークが形成されるようにテスト信号を与え
た。次いで、対物レンズの開口数NA=0.55、レー
ザー波長340、640、780nm等のピックアップ
を用い、線速度7.5m/sec、再生パワー2.5m
W、再生時外部印加磁界をゼロとして種々の長さの記録
マークを再生した。再生CN比(C:キャリアレベル、
N:ノイズレベル)を測定した。
(Table 1) Material Thickness TC TCR (nm) (° C.) (° C.) Magneto-optical recording film TbFeCo 50 270-Auxiliary magnetic film GdFeCo (I) 70> 400 150 Reproducing layer magnetic film GdFeCo (II) 60> 400 90 A test was performed by using an optical magnetic field modulation method in which an external magnetic field was modulated in accordance with a recording signal while recording was performed while irradiating a laser beam in a pulsed manner at a constant period to a data recording area of the disk manufactured as described above. The signal was recorded. The duty ratio of the recording light pulse was 50%. Test signals were applied so that recording marks of various recording mark lengths were formed. Next, using a pickup having a numerical aperture of the objective lens = 0.55, laser wavelengths of 340, 640, 780 nm, etc., a linear velocity of 7.5 m / sec and a reproduction power of 2.5 m
W, recording marks of various lengths were reproduced by setting the externally applied magnetic field to zero during reproduction. Regeneration CN ratio (C: carrier level,
N: noise level) was measured.

【0083】本実施例に係るサンプルディスク(データ
は実線)では、記録マーク長0.2μmにおいても、著
しく高い再生C/Nが得られることがわかった。従っ
て、本発明を用いれば、従来の再生限界を超えた極めて
微小な記録マークの再生が可能となり、記録密度を向上
させることができる。
In the sample disk according to the present embodiment (data is a solid line), it was found that a remarkably high reproduction C / N was obtained even when the recording mark length was 0.2 μm. Therefore, according to the present invention, extremely small recording marks exceeding the conventional reproduction limit can be reproduced, and the recording density can be improved.

【0084】記録及び再生用の光源として、波長680
nm、レンズ開口数0.55の光ヘッドを用いた。光磁
気ディスクへの記録は光パルス強度変調法を用いた。記
録は、線速度が5m/s、記録周期320ns、記録レ
−ザ−パワ−7.5mW、パルス幅53.3ns、記録
磁界500Oeの条件で行った。
As a light source for recording and reproduction, a wavelength of 680 is used.
An optical head having a nm and a lens numerical aperture of 0.55 was used. For recording on the magneto-optical disk, an optical pulse intensity modulation method was used. Recording was performed at a linear velocity of 5 m / s, a recording period of 320 ns, a recording laser power of 7.5 mW, a pulse width of 53.3 ns, and a recording magnetic field of 500 Oe.

【0085】0.8μmの記録磁区は1と0等のデ−タ
に対応して0.8μm間隔で記録された。
The 0.8 μm recording magnetic domains were recorded at 0.8 μm intervals corresponding to data such as 1 and 0.

【0086】この記録磁区を、次の再生条件で再生し
た。線速度を5.0m/sとし、再生レーザーパワーは
磁区拡大のための低パワーPr1として1.5mW、磁区
縮小(または消滅)のための高パワーPr2として3.5
mWの二つのパワ−レベルに変調した。再生パワーの変
調周期は160nsであり、低パワーPr1で150ns
照射し、高パワーPr2で10ns照射した。再生磁界は
一定の直流磁界を用い、記録方向へ約80Oe印加し
た。この磁界は、対物レンズ・アクチュエータ−からの
漏洩磁界によっても代用が可能である。
This recorded magnetic domain was reproduced under the following reproducing conditions. The linear velocity is 5.0 m / s, the reproducing laser power is 1.5 mW as low power Pr1 for magnetic domain expansion, and 3.5 as high power Pr2 for magnetic domain reduction (or disappearance).
Modulated to two power levels of mW. The modulation cycle of the reproduction power is 160 ns, and 150 ns at low power Pr1.
Irradiation was performed at a high power Pr2 for 10 ns. As the reproducing magnetic field, a constant DC magnetic field was used, and about 80 Oe was applied in the recording direction. This magnetic field can be substituted by a leakage magnetic field from the objective lens / actuator.

【0087】再生波形から、記録磁区が存在している部
分だけで信号が上昇して、記録磁区が存在しないところ
では信号は上昇していないことがわかった。このこと
は、再生光が記録トッラクの記録磁区が存在している部
分を走査しているときだけ、再生層において記録磁区が
転写、拡大していることを意味する。さらに、再生信号
は、磁気超解像モ−ド、すなわち、磁区転写された磁区
が拡大されずに再生された場合の再生信号の約1.5倍
の大きさに増幅されていた。この再生信号の増幅効果は
さらに微細な記録磁区において顕著に効果を現し、0.
4μm以下の微小磁区を記録した場合においても飽和振
幅(再生層の全ての磁化が下向きの場合の再生信号と再
生層の全ての磁化が上向きの場合の再生信号との差)に
対して80%(対飽和振幅比)の再生信号出力を得るこ
とができた。
From the reproduced waveform, it was found that the signal increased only in the portion where the recording magnetic domain was present, and was not increased where the recording magnetic domain was not present. This means that the recording magnetic domain is transferred and expanded in the reproducing layer only when the reproducing light scans the portion where the recording magnetic domain of the recording track exists. Further, the reproduced signal has been amplified to a magnetic super-resolution mode, that is, about 1.5 times as large as the reproduced signal when the magnetic domain transferred by the magnetic domain is reproduced without being enlarged. This effect of amplifying the reproduced signal is remarkably effective in a finer recording magnetic domain.
Even when a small magnetic domain of 4 μm or less is recorded, 80% of the saturation amplitude (the difference between the reproduction signal when all the magnetizations of the reproduction layer are downward and the reproduction signal when all the magnetizations of the reproduction layer are upward). (To the saturation amplitude ratio) was obtained.

【0088】上記実施例の再生条件は、次のように説明
することができる。すなわち、パワー変調した再生光の
低パワーPr1で磁区転写及び磁区拡大が起こる温度領
域、即ち、Tcr2=175℃〜Tc0mp=240℃にまで再
生層が加熱され、高パワーPr2で磁区消滅が起こる温度
領域(エリアc)即ち、Tcomp(240℃)を超える温
度からTc0=270℃までに加熱されている。また、記
録方向へ印加した直流磁界約80Oeは、磁気温度曲線
A及びBを図に記載のような関係に位置させている。す
なわち、この実施例で用いた光磁気ディスクの磁気温度
特性と印加した直流磁界との関係は、以下の要件(3) 及
び(4) を満足している。以下に、この実施例で説明した
再生方法に必要な要件を列挙する。なお、この実施例で
用いた光磁気記録媒体の再生層と記録層自体の磁気特性
は、前述のように以下の(1) 及び(2) の要件を満足して
いる。
The reproduction conditions in the above embodiment can be explained as follows. That is, a temperature region in which magnetic domain transfer and magnetic domain expansion occur at low power Pr1 of the power-modulated reproducing light, that is, a temperature at which the reproducing layer is heated to Tcr2 = 175 ° C. to Tc0mp = 240 ° C. and magnetic domain disappears at high power Pr2. It is heated from a temperature exceeding a region (area c), that is, Tcomp (240 ° C.) to Tc0 = 270 ° C. A DC magnetic field of about 80 Oe applied in the recording direction positions the magnetic temperature curves A and B in the relationship as shown in the figure. That is, the relationship between the magnetic temperature characteristics of the magneto-optical disk used in this embodiment and the applied DC magnetic field satisfies the following requirements (3) and (4). Hereinafter, requirements necessary for the reproducing method described in this embodiment will be listed. The magnetic characteristics of the reproducing layer and the recording layer of the magneto-optical recording medium used in this embodiment satisfy the following requirements (1) and (2) as described above.

【0089】(1)少なくとも室温で膜面方向に磁化さ
れる再生層が、垂直方向へ磁化する臨界温度Tcr2とキ
ュリ−温度Tc0の間に補償温度Tc0mpを有すること。
(1) The reproducing layer magnetized in the film plane direction at least at room temperature has a compensation temperature Tc0mp between the critical temperature Tcr2 for magnetizing in the vertical direction and the Curie temperature Tc0.

【0090】(2)記録層のキュリ−温度Tcが再生層
の補償温度Tc0mpと再生層のキュリ−温度Tc0との間の温
度にあること。
(2) The Curie temperature Tc of the recording layer is between the compensation temperature Tc0mp of the reproducing layer and the Curie temperature Tc0 of the reproducing layer.

【0091】この実施例では前記特定の材料を用いて光
磁気ディスクを構成し、DC磁界=80Oeを記録方向
に印加することにより上記要件(1)〜(2)を満足さ
せたが、この要件(1)〜(2)を満足させることがで
きる材料及び積層構造を有する光磁気記録媒体並びに再
生時に印加する外部磁界の大きさであれば、任意のもの
を用いることができる。再生時に印加するDC磁界は記
録方向のみならず、消去方向であってもよい。
In this embodiment, the above requirements (1) and (2) were satisfied by forming a magneto-optical disk using the specific material and applying a DC magnetic field of 80 Oe in the recording direction. Any material can be used as long as it can satisfy the conditions (1) and (2) and a magneto-optical recording medium having a laminated structure and an external magnetic field applied during reproduction. The DC magnetic field applied at the time of reproduction may be not only in the recording direction but also in the erasing direction.

【0092】本発明の再生方法においては、DC磁界の
下で、再生光パワー強度を変調することによって、
(a) 磁区転写、(b)磁区拡大及び(c)転写磁区の
消滅のプロセスを実行している。これらのプロセスが行
われる時間は、記録層、補助磁化層、再生層の磁気特性
のみならず、記録層、補助磁化層、再生層、非磁性層、
誘電体層、保護層、及びその他の積層可能な磁性層また
は非磁性層、基板等の温度上昇速度や各層間の伝熱速度
にも依存する。これらの速度は、それらの層を構成する
材料の熱伝導性、厚み、積層構造等を適宜変更すること
によって調節することができ、それによって所望の再生
アクセス速度に対応させることができる。
In the reproducing method of the present invention, by modulating the reproducing light power intensity under a DC magnetic field,
The processes of (a) magnetic domain transfer, (b) magnetic domain enlargement, and (c) disappearance of the transferred magnetic domain are performed. The time during which these processes are performed depends not only on the magnetic properties of the recording layer, the auxiliary magnetic layer, and the reproducing layer, but also on the recording layer, the auxiliary magnetic layer, the reproducing layer, the nonmagnetic layer,
It also depends on the temperature rise rate of the dielectric layer, the protective layer, and other stackable magnetic or non-magnetic layers, the substrate, etc., and the heat transfer rate between the layers. These speeds can be adjusted by appropriately changing the thermal conductivity, the thickness, the laminated structure, and the like of the materials constituting the layers, and thereby can correspond to a desired reproduction access speed.

【0093】再生層に隣接する誘電体層及び非磁性層は
適度な断熱性を持つことが好ましいが、その断熱性の程
度は、記録再生のアクセス速度、或いは記録媒体におけ
る記録再生の線速度の大きさ、再生層及び記録層の熱伝
導性とを組み合わせた熱特性との関係で適宜調整するこ
とができる。
It is preferable that the dielectric layer and the non-magnetic layer adjacent to the reproducing layer have a suitable heat insulating property. The degree of the heat insulating property depends on the access speed of recording / reproducing or the linear speed of recording / reproducing on the recording medium. The size and the thermal characteristics of the reproducing layer and the recording layer and the thermal characteristics in combination can be adjusted as appropriate.

【0094】上記実施例では光磁気記録媒体の再生層が
誘電体層と非磁性層によって挟まれている構造を示した
が、上記再生層磁性層に接して面内方向の磁気異方性を
有する磁性体を積層してもよい。この磁性体は、そのキ
ュリー温度まで面内方向の磁気異方性が優勢で、そのキ
ュリー温度は再生層のキュリー温度とほぼ等しいことが
望ましい。かかる磁性体を再生層に接して積層すること
により、再生時の転写磁区におけるブロッホラインの発
生を抑制し、その抑制作用により再生時のノイズを低減
することができる。かかる磁性体の材料としては、PTc
0合金、例えば、Coを25原子%含むPTc0合金やGd
FeCo合金等を用いることができる。なお、かかる磁
性体は再生層の上側あるいは下側のいずれの側に接して
積層してもよい。
In the above embodiment, the structure in which the reproducing layer of the magneto-optical recording medium is sandwiched between the dielectric layer and the non-magnetic layer has been described. May be laminated. The magnetic material has a predominant in-plane magnetic anisotropy up to its Curie temperature, and it is preferable that the Curie temperature is substantially equal to the Curie temperature of the reproducing layer. By laminating such a magnetic material in contact with the reproducing layer, it is possible to suppress the occurrence of Bloch lines in the transfer magnetic domain at the time of reproducing, and to reduce the noise at the time of reproducing by the suppression action. As a material of such a magnetic material, PTc
0 alloy, for example, PTc0 alloy containing 25 atomic% of Co or Gd
An FeCo alloy or the like can be used. The magnetic material may be laminated on the upper side or the lower side of the reproducing layer.

【0095】パルス光を照射しながら記録信号に応じて
印加磁界の極性を変調する光磁界変調方式や、DC磁界
を印加しながら記録信号に応じて光強度を変調する光変
調方式を用いてそれぞれ記録を行ったが、通常のDC光
を用いた磁界変調記録方式、光変調記録方式並びに光磁
界変調方式のいずれの方式を用いてもかまわない。
A light magnetic field modulation method for modulating the polarity of an applied magnetic field according to a recording signal while irradiating pulse light, and a light modulation method for modulating light intensity according to a recording signal while applying a DC magnetic field are used. Although the recording was performed, any of a magnetic field modulation recording method using a normal DC light, a light modulation recording method, and a light magnetic field modulation method may be used.

【0096】また、上記各実施例に用いた光磁気記録媒
体は、各実施例に記載した積層膜構成の光磁気記録媒体
に限定されるものではなく、各図に記載した各光磁気記
録媒体の何れを各実施例に用いてもかまわない。
Further, the magneto-optical recording medium used in each of the above embodiments is not limited to the magneto-optical recording medium having the laminated film structure described in each of the embodiments. May be used in each embodiment.

【0097】[0097]

【発明の効果】本発明では、光磁気記録媒体の光磁気記
録膜に記録した磁区信号を再生専用の磁気記録膜に転写
をする手段によって再生を行う方式の記録媒体である
が、前記再生層に室温以上からある臨界温度(Tcr2)
までは面内磁化膜でありTcr2以上で垂直磁化に転移す
る磁性材料を用い、記録磁区信号を転写し、拡大して再
生することを可能にしたものであり、これまで記録はで
きるが再生が困難であった、超微細な記録磁区信号の再
生を可能にした。このためにより一層の高密度記録が可
能になった。
According to the present invention, there is provided a recording medium in which reproduction is performed by means for transferring a magnetic domain signal recorded on a magneto-optical recording film of a magneto-optical recording medium to a magnetic recording film exclusively for reproduction. Critical temperature above room temperature (Tcr2)
Up to this point, a magnetic material that transitions to perpendicular magnetization at Tcr2 or more using an in-plane magnetized film is used to transfer the recorded magnetic domain signal and to reproduce it by enlarging it. It was possible to reproduce an extremely fine recorded magnetic domain signal, which was difficult. For this reason, higher density recording has become possible.

【0098】本発明では、再生層磁化膜と光磁気記録層
との間に、室温から所望の臨界温度まで垂直磁化である
が、臨界温度Tcr1以上の温度で面内磁化に転移する補
助磁性膜を形成することによって、再生層磁化膜に転写
拡大する再生信号に、外部磁場、洩れ磁界等の磁気ノイ
ズの進入を、上記補助磁性膜の面内磁化転移によって、
遮蔽防止を行う手段と、再生専用の磁気記録膜に及ぶ転
写磁界について光磁気記録膜と再生専用の磁気記録膜と
の間に反強磁性材料の磁性膜を形成して、実質的に転写
磁界の遮断と解放の制御を行う手段とによって、高純度
の記録磁区の転写を行わせ、再生信号のC/Nを大幅に
向上させることができる。
In the present invention, an auxiliary magnetic film which has perpendicular magnetization from room temperature to a desired critical temperature between the reproducing layer magnetic film and the magneto-optical recording layer, but transitions to in-plane magnetization at a temperature higher than the critical temperature Tcr1. The magnetic signal such as an external magnetic field and a leakage magnetic field enters the reproduction signal transferred and expanded on the reproduction layer magnetized film by forming
A means for preventing shielding and a transfer magnetic field reaching the read-only magnetic recording film A magnetic film of an antiferromagnetic material is formed between the magneto-optical recording film and the read-only magnetic recording film to substantially reduce the transfer magnetic field. The means for controlling the shut-off and release of the magnetic field enables the transfer of the high-purity recording magnetic domain, thereby greatly improving the C / N of the reproduced signal.

【0099】さらに、再生光スポット径に比べて極めて
微小な記録マークも独立して再生することができるた
め、光磁気記録媒体の記録密度を著しく向上させること
ができる。また、再生時に印加する磁界はDC磁界でよ
く交番磁界を用いる必要がないため、安価で簡単な構造
の再生装置を用いて再生操作を行うことができる。
Furthermore, since recording marks extremely small as compared with the reproducing light spot diameter can be reproduced independently, the recording density of the magneto-optical recording medium can be remarkably improved. Further, the magnetic field applied at the time of reproduction is a DC magnetic field, and it is not necessary to use an alternating magnetic field. Therefore, the reproduction operation can be performed by using a low-cost and simple reproducing apparatus.

【0100】この光磁気記録媒体を用いることにより、
再生光スポットより小さな微小磁区を記録信号として記
録した後、かかる微小磁区を他の磁区と区別して且つ増
幅された再生信号で検出することができる。それゆえ、
本発明の光磁気記録媒体は、高密度光磁気記録媒体とし
て極めて有用である。
By using this magneto-optical recording medium,
After recording a minute magnetic domain smaller than the reproduction light spot as a recording signal, the minute magnetic domain can be distinguished from other magnetic domains and detected by an amplified reproduction signal. therefore,
The magneto-optical recording medium of the present invention is extremely useful as a high-density magneto-optical recording medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、(a)(b)共に本発明の光磁気記録
媒体の積層構造を概念的に示す断面図である。
FIGS. 1A and 1B are cross-sectional views conceptually showing a laminated structure of a magneto-optical recording medium according to the present invention.

【図2】図2は、本発明の光磁気記録媒体の光磁気記録
層と光磁気再生層の磁気温度特性を示す図である。
FIG. 2 is a diagram showing magnetic temperature characteristics of a magneto-optical recording layer and a magneto-optical reproducing layer of the magneto-optical recording medium of the present invention.

【図3】図3は、本発明の光磁気記録媒体の再生前の各
層の磁化状態を示す概念図(A)、光磁気記録媒体の転
写時の各層の磁化状態を示す概念図(B)、光磁気記録
媒体の転写磁区の拡大時の各層の磁化状態を示す概念図
(C)(D)である。
FIG. 3 is a conceptual diagram (A) showing the magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram (B) showing the magnetization state of each layer during transfer of the magneto-optical recording medium. FIGS. 7C and 7D are conceptual diagrams (C) and (D) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【図4】図4は、本発明の光磁気記録媒体の他の積層構
造を概念的に示す断面図である。
FIG. 4 is a sectional view conceptually showing another laminated structure of the magneto-optical recording medium of the present invention.

【図5】図5は、本発明の光磁気記録媒体の光磁気記録
層と補助磁性層と光磁気再生層の磁気温度特性を示す図
である。
FIG. 5 is a diagram showing magnetic temperature characteristics of a magneto-optical recording layer, an auxiliary magnetic layer, and a magneto-optical reproducing layer of the magneto-optical recording medium of the present invention.

【図6】図6は、本発明の光磁気記録媒体の再生前の各
層の磁化状態を示す概念図(A)、光磁気記録媒体の転
写時の各層の磁化状態を示す概念図(B)、光磁気記録
媒体の転写磁区の拡大時の各層の磁化状態を示す概念図
(C)(D)である。
FIG. 6 is a conceptual diagram (A) showing the magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram (B) showing the magnetization state of each layer during transfer of the magneto-optical recording medium. FIGS. 7C and 7D are conceptual diagrams (C) and (D) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【図7】図7は、本発明の光磁気記録媒体の再生前の各
層の磁化状態を示す概念図。
FIG. 7 is a conceptual diagram showing a magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention.

【図8】図8は、本発明の光磁気記録媒体の積層構造を
概念的に示す断面図である。
FIG. 8 is a sectional view conceptually showing a laminated structure of the magneto-optical recording medium of the present invention.

【図9】図9は、本発明の光磁気記録媒体の光磁気記録
層と補助磁性膜と光磁気再生層の磁気温度特性を示す図
である。
FIG. 9 is a diagram showing the magnetic temperature characteristics of the magneto-optical recording layer, the auxiliary magnetic film, and the magneto-optical reproducing layer of the magneto-optical recording medium of the present invention.

【図10】図10は、本発明の光磁気記録媒体の再生前
の各層の磁化状態を示す概念図(A)、光磁気記録媒体
の転写時の各層の磁化状態を示す概念図(B)、光磁気
記録媒体の転写磁区の拡大時の各層の磁化状態を示す概
念図(C)(D)である。
FIG. 10 is a conceptual diagram (A) showing a magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram (B) showing a magnetization state of each layer during transfer of the magneto-optical recording medium. FIGS. 7C and 7D are conceptual diagrams (C) and (D) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【図11】図11は、本発明の光磁気記録媒体の他の積
層構造を概念的に示す断面図である。
FIG. 11 is a sectional view conceptually showing another laminated structure of the magneto-optical recording medium of the present invention.

【図12】図12は、本発明の光磁気記録媒体の他の積
層構造を概念的に示す断面図である。
FIG. 12 is a sectional view conceptually showing another laminated structure of the magneto-optical recording medium of the present invention.

【図13】図13は、本発明の光磁気記録媒体の他の積
層構造を概念的に示す断面図である。
FIG. 13 is a sectional view conceptually showing another laminated structure of the magneto-optical recording medium of the present invention.

【図14】図14は、本発明の光磁気記録媒体の再生前
の各層の磁化状態を示す概念図(A)、光磁気記録媒体
の転写磁区の拡大時の各層の磁化状態を示す概念図
(B)、である。
FIG. 14 is a conceptual diagram (A) showing the magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram showing the magnetization state of each layer when the transfer domain of the magneto-optical recording medium is enlarged. (B).

【図15】図15は、光磁気記録媒体の転写磁区の拡大
時の各層の磁化状態を示す概念図である。
FIG. 15 is a conceptual diagram showing a magnetization state of each layer when a transfer magnetic domain of a magneto-optical recording medium is enlarged.

【図16】図16は、光磁気記録媒体の転写磁区の拡大
時の各層の磁化状態を示す概念図である。
FIG. 16 is a conceptual diagram showing a magnetization state of each layer when a transfer magnetic domain of a magneto-optical recording medium is enlarged.

【図17】図17は、本発明の光磁気記録媒体の他の積
層構造を概念的に示す断面図である。
FIG. 17 is a sectional view conceptually showing another laminated structure of the magneto-optical recording medium of the present invention.

【図18】図18は、光磁気記録媒体の転写磁区の拡大
時の各層の磁化状態を示す概念図(A)、(B)であ
る。
FIGS. 18A and 18B are conceptual diagrams (A) and (B) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【図19】図19は、本発明の光磁気記録媒体の再生に
用いられる再生レーザ光スポット内部の温度分布を示す
図である。
FIG. 19 is a diagram showing a temperature distribution inside a reproducing laser beam spot used for reproducing the magneto-optical recording medium of the present invention.

【図20】図20は、本発明の光磁気記録媒体の再生前
の各層の磁化状態を示す概念図(A)、光磁気記録媒体
の転写時の各層の磁化状態を示す概念図(B)、光磁気
記録媒体の転写磁区の拡大時の各層の磁化状態を示す概
念図(C)(D)である。
FIG. 20 is a conceptual diagram (A) showing the magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram (B) showing the magnetization state of each layer during transfer of the magneto-optical recording medium. FIGS. 7C and 7D are conceptual diagrams (C) and (D) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【図21】図21は、本発明の光磁気記録媒体の再生前
の各層の磁化状態を示す概念図(A)、光磁気記録媒体
の転写時の各層の磁化状態を示す概念図(B)、光磁気
記録媒体の転写磁区の拡大時の各層の磁化状態を示す概
念図(C)(D)である。
FIG. 21 is a conceptual diagram (A) showing the magnetization state of each layer before reproduction of the magneto-optical recording medium of the present invention, and a conceptual diagram (B) showing the magnetization state of each layer during transfer of the magneto-optical recording medium. FIGS. 7C and 7D are conceptual diagrams (C) and (D) showing the magnetization state of each layer when the transfer magnetic domain of the magneto-optical recording medium is enlarged.

【符号の説明】[Explanation of symbols]

1 基板 3 誘電体膜 24 再生層磁性膜 10 光磁気記録膜 28 128 補助磁性膜 30 130 反強磁性材料の磁性膜 Reference Signs List 1 substrate 3 dielectric film 24 reproducing layer magnetic film 10 magneto-optical recording film 28 128 auxiliary magnetic film 30 130 magnetic film of antiferromagnetic material

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも記録用磁化膜と再生
用磁化膜を備え、再生光を再生用磁化膜に照射すること
によって再生する光磁気記録媒体おいて、前記記録用磁
化膜と再生用磁化膜との間に反強磁性材料からなる補助
磁性膜が介在して構成される積層膜であることを特徴と
する光磁気記録媒体。
1. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing magnetic film with reproducing light. A magneto-optical recording medium comprising a laminated film in which an auxiliary magnetic film made of an antiferromagnetic material is interposed between the magnetic film and the magnetic film.
【請求項2】 基板上に少なくとも記録用磁化膜と再生
用磁化膜を備え、再生光を再生用磁化膜に照射すること
によって再生する光磁気記録媒体おいて、前記記録用磁
化膜と再生用磁化膜との間に副格子磁化の方向が膜面に
対して垂直である(以下垂直磁化と呼ぶ)反強磁性材料
からなる補助磁性膜が介在して構成される積層膜である
ことを特徴とする光磁気記録媒体。
2. A magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film. It is a laminated film in which an auxiliary magnetic film made of an antiferromagnetic material whose sublattice magnetization is perpendicular to the film surface (hereinafter referred to as perpendicular magnetization) is interposed between the magnetic film and the magnetic film. Magneto-optical recording medium.
【請求項3】 基板上に少なくとも記録用磁化膜と再生
用磁化膜を備え、再生光を再生用磁化膜に照射すること
によって再生する光磁気記録媒体おいて、前記記録用磁
化膜と再生用磁化膜との間に副格子磁化の方向が膜面に
対して平行である(以下面内磁化と呼ぶ)反強磁性材料
からなる補助磁性膜が介在して構成される積層膜である
ことを特徴とする光磁気記録媒体。
3. A magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film. The laminated film is formed by interposing an auxiliary magnetic film made of an antiferromagnetic material in which the direction of the sublattice magnetization is parallel to the film surface (hereinafter referred to as in-plane magnetization) between the magnetic film and the magnetic film. Characteristic magneto-optical recording medium.
【請求項4】 請求項1、2、及び3において、前記記
録用磁化膜と前記反強磁性材料からなる補助磁性膜と前
記再生用磁化膜の内、少なくとも前記反強磁性材料から
なる補助磁性膜と前記再生用磁化膜とが接触して積層化
されていることを特徴とする光磁気記録媒体。
4. An auxiliary magnetic material comprising at least the antiferromagnetic material among the recording magnetic film, the auxiliary magnetic film made of the antiferromagnetic material, and the reproducing magnetic film, according to claim 1, 2, or 3, A magneto-optical recording medium, wherein a film and the reproducing magnetic film are stacked in contact with each other.
【請求項5】 請求項1、2、及び3において、前記反
強磁性材料からなる補助磁性膜と前記再生用磁化膜と
は、垂直磁化磁性膜と垂直磁化磁性膜との組み合わせ、
及び面内磁化磁性膜と面内磁化磁性膜との組み合わせか
ら選択される組み合わせで構成することを特徴とする光
磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein the auxiliary magnetic film made of the antiferromagnetic material and the reproducing magnetic film are a combination of a perpendicular magnetic magnetic film and a perpendicular magnetic magnetic film.
And a magneto-optical recording medium comprising a combination selected from a combination of an in-plane magnetization magnetic film and an in-plane magnetization magnetic film.
【請求項6】 請求項1、2、及び3において、前記記
録用磁化膜と前記反強磁性材料からなる補助磁性膜との
間に非磁性材料からなる膜を介在させて積層構成するこ
とを特徴とする光磁気記録媒体。
6. A laminated structure according to claim 1, 2 or 3, wherein a film made of a non-magnetic material is interposed between the recording magnetic film and the auxiliary magnetic film made of the antiferromagnetic material. Characteristic magneto-optical recording medium.
【請求項7】 請求項1、2、及び3において、前記記
録用磁化膜と前記反強磁性材料からなる補助磁性膜との
間に、磁性材料からなる膜と非磁性材料からなる膜の積
層体を介在させて積層構成することを特徴とする光磁気
記録媒体。
7. A lamination of a film made of a magnetic material and a film made of a non-magnetic material between the recording magnetic film and the auxiliary magnetic film made of the antiferromagnetic material according to claim 1, 2, or 3. A magneto-optical recording medium having a laminated structure with a body interposed therebetween.
【請求項8】 請求項6及び7において、前記非磁性材
料からなる膜は光磁気記録媒体の光反射膜、断熱性膜、
誘電体膜、透明保護膜、基板材料等に用いられる材料か
ら選択される材料で構成することを特徴とする光磁気記
録媒体。
8. The film according to claim 6, wherein the film made of the nonmagnetic material is a light reflecting film, a heat insulating film, or a heat insulating film of a magneto-optical recording medium.
A magneto-optical recording medium comprising a material selected from materials used for a dielectric film, a transparent protective film, a substrate material and the like.
【請求項9】 基板上に少なくとも記録用磁化膜と再生
用磁化膜を備え、再生光を再生用磁化膜に照射すること
によって再生する光磁気記録媒体おいて、前記記録用磁
化膜、非磁性材料膜、室温では面内磁化で臨界温度以上
で垂直磁化に転移する第1の補助磁性膜、非磁性材料
膜、反強磁性材料からなる補助磁性膜、室温では面内磁
化で臨界温度以上で垂直磁化に転移する再生用磁化膜と
して機能する第2の補助磁性膜等の膜層を備えると共
に、この順に積層構成されることを特徴とする光磁気記
録媒体。
9. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film, wherein the recording magnetic film and the non-magnetic A material film, a first auxiliary magnetic film which transitions to perpendicular magnetization at a temperature above the critical temperature due to in-plane magnetization at room temperature, a non-magnetic material film, an auxiliary magnetic film made of an antiferromagnetic material, and a room temperature above the critical temperature due to in-plane magnetization at room temperature A magneto-optical recording medium comprising a film layer such as a second auxiliary magnetic film functioning as a reproducing magnetic film that changes to perpendicular magnetization, and is laminated in this order.
【請求項10】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、非磁性材料膜、室温では面内磁化で臨界温度以
上で垂直磁化に転移する第1の補助磁性膜、非磁性材料
膜、面内磁化の反強磁性材料からなる補助磁性膜、室温
では面内磁化で臨界温度以上で垂直磁化に転移する再生
用磁化膜として機能する第2の補助磁性膜等の膜層を備
えると共に、この順に積層構成されることを特徴とする
光磁気記録媒体。
10. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film, wherein the recording magnetic film and the non-magnetic Material film, first auxiliary magnetic film that transitions to perpendicular magnetization above critical temperature at in-plane magnetization at room temperature, non-magnetic material film, auxiliary magnetic film made of antiferromagnetic material with in-plane magnetization, at room temperature with in-plane magnetization A magneto-optical recording medium comprising: a film layer such as a second auxiliary magnetic film functioning as a reproducing magnetic film that changes to perpendicular magnetization at a critical temperature or higher, and is laminated in this order.
【請求項11】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、非磁性材料膜、室温では面内磁化で臨界温度以
上で垂直磁化に転移する補助磁性膜、非磁性材料膜、垂
直磁化の反強磁性材料からなる補助磁性膜、垂直磁化の
再生用磁化膜等の膜層を備えると共に、この順に積層構
成されることを特徴とする光磁気記録媒体。
11. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film. Materials such as auxiliary magnetic film, non-magnetic material film, auxiliary magnetic film made of perpendicularly magnetized anti-ferromagnetic material, perpendicular magnetization reproducing magnetic film, etc. A magneto-optical recording medium comprising layers and stacked in this order.
【請求項12】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、非磁性膜、室温では垂直磁化で臨界温度以上で
は面内磁化に転移する補助磁性膜、反強磁性材料からな
る補助磁性膜、再生用磁化膜等の膜層を備えると共に、
この順に積層構成されることを特徴とする光磁気記録媒
体。
12. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film, wherein the recording magnetic film and the non-magnetic In addition to a film layer such as a film, an auxiliary magnetic film which is perpendicularly magnetized at room temperature and transitions to in-plane magnetization at or above a critical temperature, an auxiliary magnetic film made of an antiferromagnetic material, a reproducing magnetic film, etc.
A magneto-optical recording medium characterized by being laminated in this order.
【請求項13】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、面内磁化の反強磁性材料からなる補助磁性膜、
室温では面内磁化で臨界温度以上で垂直磁化に転移する
再生用磁化膜等の膜層を備えると共に、この順に積層構
成されることを特徴とする光磁気記録媒体。
13. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate and reproducing by irradiating a reproducing light to the reproducing magnetic film, wherein the recording magnetic film and the in-plane An auxiliary magnetic film made of a magnetized antiferromagnetic material,
A magneto-optical recording medium comprising: a film layer such as a reproducing magnetic film which transitions to perpendicular magnetization at a temperature equal to or higher than a critical temperature at room temperature at room temperature, and is laminated in this order.
【請求項14】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、面内磁化の反強磁性材料からなる補助磁性膜、
室温では面内磁化で臨界温度以上で垂直磁化に転移する
第1の補助磁性膜、室温では面内磁化で臨界温度以上で
垂直磁化に転移する再生用磁化膜として機能する第2の
補助磁性膜等の膜層を備えると共に、この順に積層構成
されることを特徴とする光磁気記録媒体。
14. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing light to the reproducing magnetic film, wherein the recording magnetic film and An auxiliary magnetic film made of a magnetized antiferromagnetic material,
A first auxiliary magnetic film that transitions to a perpendicular magnetization above the critical temperature due to in-plane magnetization at room temperature, and a second auxiliary magnetic film that functions as a reproducing magnetic film that transitions to a perpendicular magnetization above the critical temperature due to in-plane magnetization at room temperature A magneto-optical recording medium comprising a film layer such as
【請求項15】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、面内磁化の反強磁性材料からなる補助磁性膜、
室温では面内磁化で臨界温度以上で垂直磁化に転移する
補助磁性膜、垂直磁化再生用膜等の膜層を備えると共
に、この順に積層構成されることを特徴とする光磁気記
録媒体。
15. A magneto-optical recording medium having at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing magnetic film with a reproducing light, wherein the recording magnetic film has an in-plane magnetic field. An auxiliary magnetic film made of a magnetized antiferromagnetic material,
A magneto-optical recording medium comprising: a film layer such as an auxiliary magnetic film and a film for perpendicular magnetization reproduction, which transition to perpendicular magnetization at room temperature or higher at in-plane magnetization at room temperature, and are laminated in this order.
【請求項16】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、室温では面内磁化で臨界温度以上で垂直磁化に
転移する第1の補助磁性膜、非磁性材料膜、面内磁化の
反強磁性材料からなる補助磁性膜、及び室温では面内磁
化で臨界温度以上で垂直磁化に転移する再生用磁化膜と
して機能する第2の補助磁性膜等の膜層を備えると共
に、この順に積層構成されることを特徴とする光磁気記
録媒体。
16. A magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate and reproducing by irradiating a reproducing magnetic film with reproducing light, wherein the recording magnetic film is at room temperature. A first auxiliary magnetic film which transitions to perpendicular magnetization at a temperature above the critical temperature by in-plane magnetization, a non-magnetic material film, an auxiliary magnetic film made of an antiferromagnetic material having in-plane magnetization, and A magneto-optical recording medium comprising a film layer such as a second auxiliary magnetic film functioning as a reproducing magnetic film that changes to perpendicular magnetization, and is laminated in this order.
【請求項17】 基板上に少なくとも記録用磁化膜と再
生用磁化膜を備え、再生光を再生用磁化膜に照射するこ
とによって再生する光磁気記録媒体おいて、前記記録用
磁化膜、室温では面内磁化で臨界温度以上で垂直磁化に
転移する第1の補助磁性膜、室温では面内磁化で臨界温
度以上で垂直磁化に転移する第2の補助磁性膜、垂直磁
化の反強磁性材料からなる補助磁性膜、及び垂直磁化の
再生用磁化膜等の膜層を備えると共に、この順に積層構
成されることを特徴とする光磁気記録媒体。
17. A magneto-optical recording medium comprising at least a recording magnetic film and a reproducing magnetic film on a substrate, and reproducing by irradiating a reproducing magnetic film with reproducing light. From a first auxiliary magnetic film that transitions to perpendicular magnetization above the critical temperature due to in-plane magnetization, a second auxiliary magnetic film that transitions to perpendicular magnetization above the critical temperature due to in-plane magnetization at room temperature, and a perpendicular magnetization antiferromagnetic material A magneto-optical recording medium comprising: a film layer such as an auxiliary magnetic film and a magnetic film for reproducing perpendicular magnetization, and laminated in this order.
【請求項18】 請求項14において、前記反強磁性材
料からなる補助磁性膜と前記再生用磁化膜とは、垂直磁
化磁性膜と垂直磁化磁性膜との組み合わせ、及び面内磁
化磁性膜と面内磁化磁性膜との組み合わせから選択され
る組み合わせで構成することを特徴とする光磁気記録媒
体。
18. The magnetic recording medium according to claim 14, wherein the auxiliary magnetic film made of the antiferromagnetic material and the reproducing magnetic film are a combination of a perpendicular magnetic magnetic film and a perpendicular magnetic magnetic film, and a combination of an in-plane magnetic magnetic film and a planar magnetic film. A magneto-optical recording medium comprising a combination selected from a combination with an inner magnetization magnetic film.
【請求項19】 請求項9、10、11、12、及び1
6において、前記非磁性材料からなる膜は光磁気記録媒
体の光反射膜、断熱性膜、誘電体膜、透明保護膜、基板
材料等に用いられる材料から選択される材料で構成する
ことを特徴とする光磁気記録媒体。
19. The method of claim 9, 10, 11, 12, or 1.
6. The method according to 6, wherein the film made of the nonmagnetic material is made of a material selected from materials used for a light reflection film, a heat insulating film, a dielectric film, a transparent protective film, a substrate material, and the like of a magneto-optical recording medium. Magneto-optical recording medium.
JP21733897A 1997-08-12 1997-08-12 Magneto-optical recording medium and its reproducing method Withdrawn JPH1166651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21733897A JPH1166651A (en) 1997-08-12 1997-08-12 Magneto-optical recording medium and its reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21733897A JPH1166651A (en) 1997-08-12 1997-08-12 Magneto-optical recording medium and its reproducing method

Publications (1)

Publication Number Publication Date
JPH1166651A true JPH1166651A (en) 1999-03-09

Family

ID=16702618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21733897A Withdrawn JPH1166651A (en) 1997-08-12 1997-08-12 Magneto-optical recording medium and its reproducing method

Country Status (1)

Country Link
JP (1) JPH1166651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379415B1 (en) * 2000-01-13 2003-04-10 엘지전자 주식회사 ferroelectric recording media and method for fabricating the same
US7164623B2 (en) 2002-02-25 2007-01-16 Fujitsu Limited Magneto-optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379415B1 (en) * 2000-01-13 2003-04-10 엘지전자 주식회사 ferroelectric recording media and method for fabricating the same
US7164623B2 (en) 2002-02-25 2007-01-16 Fujitsu Limited Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JP3130929B2 (en) Thermomagnetic recording system with high storage density and direct overwrite capability
JP3477384B2 (en) Magneto-optical recording medium
JPH0954993A (en) Magneto-optical recording medium and reproducing method of information in the medium
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
KR19990023151A (en) Magneto-optical recording medium and method for reproducing the same
JP3580830B2 (en) Magneto-optical recording medium
JP3354726B2 (en) Magneto-optical recording medium and reproducing method
JPH1166651A (en) Magneto-optical recording medium and its reproducing method
JPH0935346A (en) Magneto-optical recording medium and information recording method thereof
JPS63179435A (en) Thin film magnetic recording medium
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
JP3763930B2 (en) Method for reproducing magneto-optical recording medium and magneto-optical recording medium
JPH11126384A (en) Magneto-optical record medium and its recording and reproducing method
JPH11126383A (en) Magneto-optical recording medium and its recording and reproducing method
JP3792366B2 (en) Magneto-optical recording medium
JP3424806B2 (en) Method of reproducing information recorded on magneto-optical recording medium
JPH1139737A (en) Magneto-optical recording medium and its recording/ reproducing method
JPH08235654A (en) Magneto-optical recording medium,system and reading method
JP3390713B2 (en) Magneto-optical recording medium
JP3542155B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing device
JPH07334877A (en) Magneto-optical recording medium and reproducing method for information in that medium
JP3328989B2 (en) Magneto-optical recording medium
JP2006221703A (en) Magneto-optical recording medium
JPH11154360A (en) Magneto-optical recording medium and its reproducing method
Hashimoto et al. Magneto-optic memory

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102