JPH1166531A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH1166531A JPH1166531A JP21637997A JP21637997A JPH1166531A JP H1166531 A JPH1166531 A JP H1166531A JP 21637997 A JP21637997 A JP 21637997A JP 21637997 A JP21637997 A JP 21637997A JP H1166531 A JPH1166531 A JP H1166531A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- carbon
- magnetic
- magnetic layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は磁気ディスク装置な
どに使用される磁気記録媒体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used for a magnetic disk drive and the like.
【0002】[0002]
【従来の技術】磁気ディスク媒体は、例えば、NiP無
電解めっきを施したAl−Mg系合金製の基板などの非
磁性基板上にスパッタリング法により形成されるのが一
般的である。このとき基板表面にポリッシュ加工および
テキスチャリング加工を施して用いることが多い。媒体
構成はCrを主成分とする下地膜、Co系合金磁性膜、
炭素などを主成分とする保護層の順に成膜されるのが一
般的である。2. Description of the Related Art A magnetic disk medium is generally formed by a sputtering method on a non-magnetic substrate such as a substrate made of an Al--Mg alloy plated with NiP electroless plating. At this time, the substrate surface is often subjected to polishing and texturing before use. The medium configuration is a base film mainly composed of Cr, a Co-based alloy magnetic film,
It is general that a protective layer mainly composed of carbon or the like is formed in this order.
【0003】磁気ディスク媒体の静磁気特性は、磁性膜
材料の種類、媒体形成時の成膜条件、下地層の構成等に
よって変化するため、目標の静磁気特性を達成するよう
条件の最適化を行い対応している。しかしながら近年、
磁気ディスクの面記録密度は年率60%にも達する早い
ペースで増加を続けており、磁気ディスク媒体にはそれ
に伴って厳しい特性が要求されている。特に媒体の磁性
膜の静磁気特性、その中でも保磁力は面記録密度の増加
にあわせてより高い値が要求され続けているのが現状で
ある。従って、高い保磁力を有する磁性薄膜層を形成す
ることは常に磁気ディスク媒体開発上の大きな課題とな
っている。Since the magnetostatic characteristics of a magnetic disk medium vary depending on the type of magnetic film material, film forming conditions for forming the medium, the configuration of the underlayer, etc., the conditions must be optimized to achieve the target static magnetic characteristics. We do and correspond. However, in recent years,
The areal recording density of magnetic disks is increasing at a rapid pace reaching 60% per year, and magnetic disk media is required to have strict characteristics accordingly. In particular, at present, the magnetostatic properties of the magnetic film of the medium, especially the coercive force, are required to be higher as the areal recording density increases. Therefore, forming a magnetic thin film layer having a high coercive force has always been a major issue in the development of magnetic disk media.
【0004】このような課題を解決するために、これま
で磁性層材料を変更するなどして対応してきた。特に広
く利用されているのはCo系磁性材料中にPtを添加し
て高保磁力を発生させる方法であるが、この方法は極め
て高価なPtを使用するので工業的には好ましい方法と
は言えない。また、ノイズが大きくなるというデメリッ
トもある。In order to solve such a problem, the magnetic layer material has been changed so far. Particularly widely used is a method of adding Pt to a Co-based magnetic material to generate a high coercive force, but this method is not industrially preferable because it uses extremely expensive Pt. . There is also a disadvantage that noise increases.
【0005】[0005]
【発明が解決しようとする課題】前述のように、磁気デ
ィスク媒体の面記録密度の増加のペースは激しいものが
あり、それに伴い媒体に要求される保磁力の値も刻々と
上昇している。これに対応するために磁性層材料の変
更、成膜条件の変更などを行っているが、新しい材料の
探索は困難であり、同材料内での改良にも限界があるた
め、要求への対応が困難になっていきている。As described above, the surface recording density of a magnetic disk medium is increasing at a rapid pace, and the value of the coercive force required for the medium is constantly increasing. To respond to this, we are changing the material of the magnetic layer and changing the film formation conditions, but it is difficult to search for a new material, and there is a limit to the improvement within the material. Is becoming more difficult.
【0006】[0006]
【課題を解決するための手段】磁気ディスク媒体には通
常、磁性層を腐食や損傷から保護するため、磁性層状に
保護層が設けられる。保護層の代表的な材料としては炭
素、水素化炭素、窒化炭素等の炭素系材料や、酸化ケイ
素、酸化ジルコニウムなどの材料をあげることができ
る。これら保護層は磁気ディスクの耐久性向上のための
性能に主眼が置かれて選択、設定されており、媒体の磁
気的性質との相互関係については着目されていなかっ
た。SUMMARY OF THE INVENTION A magnetic disk medium is usually provided with a protective layer in the form of a magnetic layer in order to protect the magnetic layer from corrosion and damage. Typical materials for the protective layer include carbon-based materials such as carbon, hydrogenated carbon, and carbon nitride, and materials such as silicon oxide and zirconium oxide. These protective layers are selected and set with an emphasis on the performance for improving the durability of the magnetic disk, and attention has not been paid to the correlation with the magnetic properties of the medium.
【0007】発明者らは、磁気ディスク媒体における磁
性層と保護層のそれぞれの薄膜間における諸現象を調べ
る過程で、保護層に炭素もしくは炭素を主成分とした化
合物を材料として使用する磁気ディスク媒体において、
特定の条件を満たすものが、特に高い保磁力を有するこ
とを見いだし本発明に到達した。In a process of examining various phenomena between a magnetic layer and a protective layer in a magnetic disk medium, the inventors have studied a magnetic disk medium in which carbon or a compound containing carbon as a main component is used as a material for a protective layer. At
Those satisfying specific conditions have been found to have a particularly high coercive force, and have reached the present invention.
【0008】すなわち、本発明の要旨は、非磁性基板上
に少なくとも下地層、合金磁性層を有する磁気記録媒体
において、合金磁性層が厚み方向全域にわたって0.5
原子%以上の炭素を含有する磁気記録媒体に存する。That is, the gist of the present invention is that in a magnetic recording medium having at least an underlayer and an alloy magnetic layer on a nonmagnetic substrate, the alloy magnetic layer has a thickness of 0.5
Present in magnetic recording media containing at least atomic% of carbon.
【0009】[0009]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明による磁気記録媒体において、磁性層中の炭素濃
度の測定は、オージェ電子分光法、二次イオン質量分析
法などいくつかの手法が広く用いられるが、科学的に信
頼するに足る分析手法であればよい。少なくとも、オー
ジェ電子分光法、または二次イオン質量分析法のいずれ
かの手法を用いて濃度測定を行った場合にすくなくとも
どちらかの分析結果で磁性層の膜厚方向全域にわたって
炭素が0.5原子%以上存在しているとの結果が得られ
るようなすべての磁気記録媒体において本発明の効果が
期待できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the magnetic recording medium according to the present invention, several methods such as Auger electron spectroscopy and secondary ion mass spectrometry are widely used for measuring the carbon concentration in the magnetic layer, but the analysis method is scientifically reliable. I just need. At least, when the concentration is measured using either the Auger electron spectroscopy or the secondary ion mass spectrometry, at least one of the analysis results indicates that 0.5 atomic atoms of carbon are present in the entire thickness direction of the magnetic layer. %, The effect of the present invention can be expected in all magnetic recording media that can obtain the result of being present in an amount of not less than%.
【0010】ここで、磁性層の厚み方向全域とは、次の
規定により定める最上部から最下部までの全域のことを
意味する。 (最上部) (1)炭素を含む層が磁性層上にある場合 オージェ電子分光法(AES)などの分析方法で、媒体
を炭素系保護層の最表面からアルゴンイオンエッチング
法で掘り進みながら元素分析をしていった場合に、炭素
の存在濃度がCoの存在濃度と同じになる深さを指す。 (2)炭素を含む層が磁性層上にない場合 磁性層表面を指す。Here, the entire region in the thickness direction of the magnetic layer means the entire region from the uppermost portion to the lowermost portion defined by the following rules. (Top) (1) When the layer containing carbon is on the magnetic layer The element is digged from the outermost surface of the carbon-based protective layer by the argon ion etching method using an analysis method such as Auger electron spectroscopy (AES). It indicates the depth at which the concentration of carbon becomes the same as the concentration of Co when the analysis is performed. (2) In the case where the layer containing carbon is not on the magnetic layer This indicates the surface of the magnetic layer.
【0011】(最下部)アルゴンイオンエッチング方に
より掘り進みながら元素分析をしていった際に、Coの
存在濃度が金属下地層の主成分元素の存在濃度と同じに
なる深さを指す。たとえば、金属下地層が純Cr層であ
る場合はCoの存在濃度とCr存在濃度とが同じになる
深さになる。(Lower) The depth at which the concentration of Co becomes the same as the concentration of the main element in the metal underlayer when elemental analysis is performed while digging by argon ion etching. For example, when the metal underlayer is a pure Cr layer, the depth is such that the Co concentration and the Cr concentration are the same.
【0012】本発明の磁気記録媒体は、磁性層の膜厚方
向における最上部から最下部までの全域で炭素原子が
0.5%以上含有されていることを特徴とする。好まし
くは全域で0.5%以上かつ磁性層の最下部における含
有量が3%以下であることを特徴とする。炭素原子が磁
性層の厚み方向全域に含有されていない場合や、含有量
が0.5%を下回る場合には保持力向上効果は得られな
い。[0012] The magnetic recording medium of the present invention is characterized in that the entire region from the uppermost portion to the lowermost portion in the thickness direction of the magnetic layer contains 0.5% or more of carbon atoms. Preferably, the content is 0.5% or more in the entire region and 3% or less in the lowermost portion of the magnetic layer. When carbon atoms are not contained in the entire region in the thickness direction of the magnetic layer, or when the content is less than 0.5%, the effect of improving coercive force cannot be obtained.
【0013】本発明において炭素原子は磁性層を設ける
際に磁性層材料に炭素を添加しておく等の方法で磁性層
中に含有させても、炭素を含有する保護層を磁性層上に
設け、保護層の炭素原子を拡散させる方法でもよい。In the present invention, carbon atoms may be contained in the magnetic layer by, for example, adding carbon to the material of the magnetic layer when the magnetic layer is provided, but a protective layer containing carbon may be provided on the magnetic layer. Alternatively, a method of diffusing carbon atoms in the protective layer may be used.
【0014】本発明の磁気記録媒体において使用できる
非磁性基板は、NiPめっきを施したAl−Mg合金基
板をはじめ、ソーダガラス、アルミノシリケート系ガラ
ス、シリコン、チタン、各種セラミクス、炭素など非磁
性基板であれば任意である。ただし、媒体形成中に基板
を加熱する場合はそれに応じた耐熱性が必要であるよう
に、条件に応じて選択すべきであることはいうまでもな
い。The non-magnetic substrate usable in the magnetic recording medium of the present invention includes a non-magnetic substrate such as an Al—Mg alloy substrate plated with NiP, a soda glass, an aluminosilicate glass, silicon, titanium, various ceramics, and carbon. Is optional. However, when the substrate is heated during the formation of the medium, it is needless to say that the substrate should be selected in accordance with the conditions so that the heat resistance corresponding thereto is required.
【0015】また、基板表面には摩擦係数低減のための
機械的加工やレーザー光線加工によるテキスチャリング
がなされていてもよい。また、金属下地層、合金磁性
層、炭素系保護層は直流スパッタリング法、高周波スパ
ッタリング法、イオンビームエピタキシー、真空蒸着法
などの物理的膜形成法であればよい。一般的には直流ま
たは高周波のスパッタリング法が用いられることが多
い。また、成膜中に基板に一定の基板バイアス電圧を印
可しても構わない。この基板バイアスは直流バイアス、
高周波バイアスのいずれも使用可能である。The surface of the substrate may be textured by mechanical processing for reducing the coefficient of friction or laser beam processing. The metal underlayer, the alloy magnetic layer, and the carbon-based protective layer may be any physical film forming method such as a direct current sputtering method, a high frequency sputtering method, an ion beam epitaxy, and a vacuum evaporation method. Generally, a direct current or high frequency sputtering method is often used. Further, a constant substrate bias voltage may be applied to the substrate during the film formation. This substrate bias is a DC bias,
Either high frequency bias can be used.
【0016】本発明の磁気記録媒体に使用できる合金磁
性層としては、公知の強磁性合金材料を任意に用いるこ
とができるが、高保持力という観点からCo系の合金磁
性層が好ましい(他に特別な理由がある?)。Co系合
金磁性層としては、CoP、CoCr、CoCrTa、
CoNiCr、CoCrPt、CoCrPtTa、Co
NiCrPt、CoCrPtBなど、Coを主成分とし
て含む合金材料のすべてを含む。これら磁性層の膜厚は
上記金属下地層の場合と同様、所望の磁気特性に合わせ
て設定する。膜厚範囲は500Å以下、好ましくは10
0〜300Å、さらに好ましくは150〜250Åであ
る。As the alloy magnetic layer that can be used in the magnetic recording medium of the present invention, a known ferromagnetic alloy material can be arbitrarily used, but a Co-based alloy magnetic layer is preferable from the viewpoint of high coercive force. Is there a special reason?). CoP alloy magnetic layers include CoP, CoCr, CoCrTa,
CoNiCr, CoCrPt, CoCrPtTa, Co
Includes all alloy materials containing Co as a main component, such as NiCrPt and CoCrPtB. The thicknesses of these magnetic layers are set in accordance with desired magnetic properties, as in the case of the metal underlayer. The thickness range is 500 ° or less, preferably 10
0 to 300 °, more preferably 150 to 250 °.
【0017】本発明の磁気記録媒体を構成する下地層、
合金磁性層等の薄膜層はそれぞれが2層以上からなる多
層構造を有していてもよい。また、炭素を含む保護層の
上に液体または固体の潤滑剤が塗布されてもよい。ここ
でいう下地層とは現在広く用いられているCr膜、Cr
−V合金膜、Cr−Ti合金膜、酸化Cr膜などをはじ
め、金属系の下地層のすべてが含まれる。そしてこれら
金属系下地層のなかに原子濃度で最も多く存在している
元素をこの金属系下地層の主成分と呼ぶこととする。ま
た、これら下地層の膜厚については所望する媒体性能に
合わせて設定するが、一般的には数百Å程度の膜厚のも
のが使用されることが多い。An underlayer constituting the magnetic recording medium of the present invention;
Each of the thin film layers such as the alloy magnetic layer may have a multilayer structure composed of two or more layers. Further, a liquid or solid lubricant may be applied on the protective layer containing carbon. The underlayer referred to here is a Cr film, which is widely used at present,
All the metal-based underlayers, including the -V alloy film, the Cr-Ti alloy film, the Cr oxide film, etc., are included. The element most present in the metal-based underlayer at the atomic concentration is referred to as the main component of the metal-based underlayer. The thickness of these underlayers is set in accordance with the desired medium performance, but a thickness of about several hundreds of mm is generally used.
【0018】炭素を含む保護層としては、任意の材料を
用いることができるが、炭素が主成分であることが好ま
しく、特に保護層中の炭素を磁性層中に拡散させる場合
には炭素が主成分の保護層を用いることが好ましい。具
体的な保護層の材料としては、純炭素膜をはじめ、水素
化炭素膜、窒化炭素膜、水素化窒素化炭素膜等をあげる
ことができる。As the protective layer containing carbon, any material can be used. However, it is preferable that carbon is a main component. Particularly, when carbon in the protective layer is diffused into the magnetic layer, carbon is mainly used. It is preferred to use a protective layer of the components. Specific examples of the material of the protective layer include a pure carbon film, a hydrogenated carbon film, a carbon nitride film, a hydrogenated carbon nitride film, and the like.
【0019】ここで、水素化炭素膜とは、炭素ターゲッ
トを用い、スパッタリング法で成膜する炭素系薄膜のう
ち、スパッタリングガスとして通常のアルゴンなど希ガ
スに加えて、H2、CH4などのガスを導入しながら成膜
したものである。通常、できディスクの保護層として用
いられるものは膜中に水素を20原子%〜35原子%程
度含有したものである。ある特定の膜質の場合には一般
的なa-炭素に比べて優れた耐摩耗性を示すため、広く用
いられている。成膜法は直流スパッタリング法、高周波
スパッタリング法いずれも可能で、基板に直流または高
周波のバイアス電圧を印加しながら成膜してもかまわな
い。Here, the hydrogenated carbon film refers to a carbon-based thin film formed by a sputtering method using a carbon target, in addition to a rare gas such as ordinary argon as a sputtering gas, H 2 , CH 4, or the like. The film was formed while introducing gas. Usually, the material used as the protective layer of the formed disk contains about 20 atomic% to 35 atomic% of hydrogen in the film. In the case of a specific film quality, it is widely used because it shows superior wear resistance as compared with general a-carbon. As the film forming method, either a DC sputtering method or a high frequency sputtering method is possible, and the film may be formed while applying a DC or high frequency bias voltage to the substrate.
【0020】また、窒化炭素膜とは、水素化炭素膜と同
様に炭素ターゲットを用い、スパッタリング法で成膜す
る炭素系薄膜のうち、ターゲットからスパッタされて飛
び出した炭素粒子の一部がNを含んだプラズマによって
窒化されてガス状のCNx中間体が形成され、基板状に
CNx膜として成膜されるものである。希ガスの他、N
2を真空チャンバ内に導入して成膜する。成膜方法は直
流スパッタリング法、高周波スパッタリング法のいずれ
でもかまわない。また、これらの炭素系保護膜は、結晶
質でも非晶質でもよい。炭素系保護層の膜厚は50〜5
00Å、好ましくは50〜300Å、さらに好ましくは
50〜150Å程度である。A carbon nitride film is a carbon-based thin film formed by a sputtering method using a carbon target in the same manner as a hydrogenated carbon film. A gaseous CNx intermediate is formed by nitriding by the contained plasma, and is formed as a CNx film on a substrate. In addition to rare gases, N
2 is introduced into a vacuum chamber to form a film. The film formation method may be either a direct current sputtering method or a high frequency sputtering method. Further, these carbon-based protective films may be crystalline or amorphous. The thickness of the carbon-based protective layer is 50 to 5
00 °, preferably about 50 to 300 °, and more preferably about 50 to 150 °.
【0021】上述の通り、本発明の磁気記録媒体は磁性
層膜厚方向の全領域にわたって炭素原子が0.5原子%
以上含有することを特徴とするが、本発明の磁気記録媒
体を得るための方法としては、例えばあらかじめ5×1
0-6Pa以下に真空排気した容器内に高純度アルゴンガ
スを導入して200℃以上300℃以下で金属下地層、
Co系磁性層を形成したのち、基板温度を200℃以上
の高温に保ったまま、真空雰囲気を壊さないままで炭素
系保護層を成膜する方法、あるいは、あらかじめ5×1
0-5Pa以下に排気した容器内に高純度アルゴンガスなど
の希ガスを微量導入して、スパッタリング法を用いて、
金属下地層、Co系磁性層、炭素系保護層を形成したの
ち、5×10-6Pa以下の真空雰囲気中で200℃以上
の熱処理を行う方法などがあるが、これら2つの方法以
外であってもよい。As described above, the magnetic recording medium of the present invention has a carbon atom content of 0.5 atomic% over the entire region in the thickness direction of the magnetic layer.
The method for obtaining the magnetic recording medium of the present invention includes, for example, 5 × 1
A high-purity argon gas is introduced into a container evacuated to 0 -6 Pa or less, and a metal underlayer is formed at 200 ° C to 300 ° C.
After forming the Co-based magnetic layer, a method of depositing a carbon-based protective layer while maintaining the substrate temperature at a high temperature of 200 ° C. or higher and without breaking the vacuum atmosphere, or 5 × 1
A rare gas such as a high-purity argon gas is introduced in a small amount into a container evacuated to 0 -5 Pa or less, and a sputtering method is used.
There is a method of forming a metal underlayer, a Co-based magnetic layer, and a carbon-based protective layer, and then performing a heat treatment at 200 ° C. or more in a vacuum atmosphere of 5 × 10 −6 Pa or less. You may.
【0022】[0022]
【実施例】以下、実施例を用いて本発明を更に詳細に説
明する。 (実施例1)磁気ディスク製造用のスパッタリング装置
をあらかじめ5×10-6Paまで真空排気を行った。表
面にNiPめっき処理を施し、平均表面粗さRaが5Å
以下になるように表面研磨をしたものを装置にセット
し、真空チャンバ内にセットされたランプヒータを用い
て基板表面温度を約250℃に加熱した。The present invention will be described in more detail with reference to the following examples. (Example 1) A sputtering apparatus for manufacturing a magnetic disk was evacuated to 5 × 10 −6 Pa in advance. NiP plating is applied to the surface and the average surface roughness Ra is 5Å
The surface polished as follows was set in the apparatus, and the substrate surface temperature was heated to about 250 ° C. using a lamp heater set in a vacuum chamber.
【0023】その後速やかに、純Cr下地層、Co−1
3Cr−4Ta(原子%)系磁性層、水素化炭素(高純
度Ar86に対しH214の割合でガスを導入して作製
した)保護層の順に直流スパッタリング法を用いて媒体
各層を連続的に形成した。このとき、各層の形成を終え
て次ぎの層を形成するまでの時間的間隔は10秒以内と
なるようにして自然冷却による基板温度の低下を可能な
限り抑えて、最後の水素化炭素層の形成を行った際の基
板温度は200℃以上になるようにした。各層の膜厚
は、Cr下地層300Å、Co−13Cr−4Ta(原
子%)系磁性層200Å、水素化炭素150Åとした。
また、このうち磁性層形成時に基板に接地に対して−2
00Vの直流バイアス電圧を印加した。Then, immediately, a pure Cr underlayer, Co-1
Each layer of the medium is continuously formed using a DC sputtering method in the order of a 3Cr-4Ta (atomic%) magnetic layer and a protective layer of hydrogenated carbon (produced by introducing gas at a ratio of H 2 14 to high purity Ar86). Formed. At this time, the time interval between the completion of the formation of each layer and the formation of the next layer is set to be within 10 seconds so that the decrease in the substrate temperature due to natural cooling is suppressed as much as possible. The substrate temperature during the formation was set to 200 ° C. or higher. The thicknesses of the respective layers were a Cr underlayer 300 °, a Co-13Cr-4Ta (atomic%)-based magnetic layer 200 °, and hydrogenated carbon 150 °.
Among them, the ground is -2 with respect to the ground when the magnetic layer is formed.
A DC bias voltage of 00V was applied.
【0024】このようにして作製した磁気ディスク媒体
をオージェ電子分光法を用いて元素分析にかけた。媒体
の表面から3kV−300nA、走査×100の設定の
イオン銃でイオンエッチングを行いながら、エッチング
箇所の元素分析を行った。その結果第1図に示すような
膜厚方向への元素分布が得られた。これを見るとCo系
磁性層の最上部から最下部までの全域にわたって炭素が
検出されており、その濃度は約1原子%となっているこ
とがわかった。The magnetic disk medium thus manufactured was subjected to elemental analysis using Auger electron spectroscopy. Element analysis of the etched portion was performed while performing ion etching from the surface of the medium with an ion gun set at 3 kV-300 nA, scanning x100. As a result, an element distribution in the film thickness direction as shown in FIG. 1 was obtained. From this, it was found that carbon was detected over the entire region from the uppermost portion to the lowermost portion of the Co-based magnetic layer, and the concentration was about 1 atomic%.
【0025】一方、この磁気ディスク媒体の一部を切り
取り、試料振動型磁力計(V.S.M.)を用いて静磁
気特性の測定を行った。その結果は第1表に示す通りと
なった。On the other hand, a part of the magnetic disk medium was cut out, and the static magnetic characteristics were measured using a sample vibration magnetometer (VSM). The results were as shown in Table 1.
【0026】(比較例1)磁気ディスク製造用のスパッ
タリング装置をあらかじめ2×10-5Paまで真空排気
を行った。表面にNiPめっき処理を施し、平均表面粗
さRaが5Å以下になるように表面研磨をしたものを装
置にセットし、真空チャンバ内にセットされたランプヒ
ータを用いて基板表面温度を約250℃に加熱した。そ
の後純Cr下地層、Co−13Cr−4Ta(原子%)
系磁性層、水素化炭素(高純度Ar86に対しH214
の割合でガスを導入して作製した)保護層の順に形成し
た。Comparative Example 1 A sputtering apparatus for manufacturing a magnetic disk was evacuated to 2 × 10 −5 Pa in advance. The surface is subjected to NiP plating, and the surface is polished so that the average surface roughness Ra is 5 ° or less. The apparatus is set in an apparatus, and the substrate surface temperature is set to about 250 ° C. using a lamp heater set in a vacuum chamber. Heated. Thereafter, a pure Cr underlayer, Co-13Cr-4Ta (atomic%)
Magnetic layer, hydrogenated carbon (high purity Ar86 vs. H214
(Introduced gas at a rate of 2).
【0027】このとき各層の膜厚はそれぞれCr下地層
300Å、Co−13Cr−4Ta(原子%)系磁性層
200Å、水素化炭素150Åとした。また、このうち
磁性層形成時に基板に接地に対して−200Vの直流バ
イアス電圧を印加した。また、Cr下地層およびCo−
13Cr−4Ta系磁性層までは速やかに成膜を行った
が、最後の水素化C保護層の形成は基板温度が100℃
に低下してから行った。At this time, the thicknesses of the respective layers were a Cr underlayer 300 °, a Co-13Cr-4Ta (at.%)-Based magnetic layer 200 °, and hydrogenated carbon 150 °, respectively. During the formation of the magnetic layer, a DC bias voltage of -200 V was applied to the substrate with respect to the ground. In addition, a Cr underlayer and Co-
The film was quickly formed up to the 13Cr-4Ta-based magnetic layer, but the final formation of the hydrogenated C protective layer was performed at a substrate temperature of 100 ° C.
Went down.
【0028】このようにして作製した磁気ディスク媒体
を実施例1と同様にオージェ電子分光法を用いて調べ
た。このときの膜厚方向への元素分布は第2図のように
なった。これを見るとCo系磁性層の最下部近傍ではC
の濃度は0.3%であり、ほとんど存在していないこと
がわかった。また、実施例1と同様にこの磁気ディスク
媒体の一部を切り取り、試料振動型磁力計(V.S.
M.)を用いて静磁気特性の測定を行った。その結果は
実施例1の結果と一緒に第1表に示した。The magnetic disk medium manufactured as described above was examined by Auger electron spectroscopy in the same manner as in Example 1. At this time, the element distribution in the film thickness direction was as shown in FIG. It can be seen from the graph that C is near the bottom of the Co-based magnetic layer.
Was 0.3%, and it was found that almost no Nb was present. Further, a part of the magnetic disk medium was cut out in the same manner as in Example 1, and a sample vibration magnetometer (VS.
M. ) Was used to measure the magnetostatic properties. The results are shown in Table 1 together with the results of Example 1.
【0029】(比較例2)実施例1の磁気ディスク媒体
を作製したものと同じスパッタリング装置をあらかじめ
5×10-6Paまで真空排気を行った。表面にNiPめ
っき処理を施し、平均表面粗さRaが5Å以下になるよ
うに表面研磨をしたものを装置にセットし、真空チャン
バ内にセットされたランプヒータを用いて基板表面温度
を約250℃に加熱した。その後速やかに、純Cr下地
層、Co−13Cr−4Ta(原子%)系磁性層の順に
直流スパッタリング法を用いて媒体各層を連続的に形成
した。(Comparative Example 2) The same sputtering apparatus as used for producing the magnetic disk medium of Example 1 was evacuated to 5 × 10 −6 Pa in advance. The surface is subjected to NiP plating, and the surface is polished so that the average surface roughness Ra is 5 ° or less. The apparatus is set in an apparatus, and the substrate surface temperature is set to about 250 ° C. using a lamp heater set in a vacuum chamber. Heated. Immediately thereafter, each layer of the medium was continuously formed by using a direct current sputtering method in the order of a pure Cr underlayer and a Co-13Cr-4Ta (atomic%) magnetic layer.
【0030】このとき、Cr下地層の形成を終えて次の
Co−13Cr−4Ta(原子%)系磁性層を形成する
までの時間的間隔は10秒以内となるようにして自然冷
却による基板温度の低下を可能な限り抑えた。そして保
護層の形成は行わなかった。また、Co−13Cr−4
Ta系磁性層表面が酸化するのを防ぐために、この磁気
ディスク媒体をそのまま高真空度環境中に放置し媒体の
温度が室温に低下するまで放置した。各層の膜厚は、C
r下地層300Å、Co−13Cr−4Ta(原子%)
系磁性層200Åとした。また、このうち磁性層形成時
に基板に接地に対して−200Vの直流バイアス電圧を
印加した。At this time, the time interval between the completion of the formation of the Cr underlayer and the formation of the next Co-13Cr-4Ta (at.%) Magnetic layer is set to within 10 seconds, and the substrate temperature by natural cooling is reduced. Was suppressed as much as possible. No protective layer was formed. In addition, Co-13Cr-4
In order to prevent the Ta-based magnetic layer surface from being oxidized, the magnetic disk medium was left as it was in a high vacuum environment until the temperature of the medium dropped to room temperature. The thickness of each layer is C
r Underlayer 300%, Co-13Cr-4Ta (atomic%)
The system magnetic layer was 200 mm. During the formation of the magnetic layer, a DC bias voltage of -200 V was applied to the substrate with respect to the ground.
【0031】この比較例2の磁気ディスク媒体は、炭素
系の保護層をいっさい成膜していないので炭素原子が磁
性膜に拡散する可能性はまったくない。このときの保磁
力値を第1表に示した。水素化C保護層を成膜していな
いこと以外はほぼ実施例1と同じ条件で作製した媒体で
あるが、保磁力は第1表の通り実施例1にくらべて著し
く低い値を示している。In the magnetic disk medium of Comparative Example 2, there is no possibility that carbon atoms diffuse into the magnetic film because no carbon-based protective layer is formed. The coercive force values at this time are shown in Table 1. The medium was manufactured under almost the same conditions as in Example 1 except that the hydrogenated C protective layer was not formed, but the coercive force was significantly lower than that of Example 1 as shown in Table 1. .
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【本発明の効果】以上説明したように、本発明の磁気記
録媒体によれば、磁性層中に特定濃度の炭素を含有する
合金磁性層を有することにより、保持力の向上が実現で
き、高い面記録密度を達成することに寄与する。As described above, according to the magnetic recording medium of the present invention, since the magnetic layer has the alloy magnetic layer containing a specific concentration of carbon, the coercive force can be improved, and This contributes to achieving the areal recording density.
【図1】 実施例1で得られた磁気記録媒体の分析結果
を示すグラフFIG. 1 is a graph showing an analysis result of a magnetic recording medium obtained in Example 1.
【図2】 比較例1で得られた磁気記録媒体の分析結果
を示すグラフFIG. 2 is a graph showing an analysis result of the magnetic recording medium obtained in Comparative Example 1.
Claims (4)
磁性層を有する磁気記録媒体において、前記合金磁性層
が厚み方向全域にわたって0.5原子%以上の炭素を含
有していることを特徴とする磁気記録媒体。1. A magnetic recording medium having at least a base layer and an alloy magnetic layer on a nonmagnetic substrate, wherein the alloy magnetic layer contains 0.5 atomic% or more of carbon over the entire area in the thickness direction. Magnetic recording medium.
設けられていることを特徴とする請求項1記載の磁気記
録媒体。2. The magnetic recording medium according to claim 1, wherein a layer containing carbon is provided on the alloy magnetic layer.
前記炭素を含有する層を設ける際に前記合金磁性層中に
拡散したものであることを特徴とする請求項2記載の磁
気記録媒体。3. The method according to claim 1, wherein the carbon atoms contained in the alloy magnetic layer are:
The magnetic recording medium according to claim 2, wherein the magnetic recording medium is diffused into the alloy magnetic layer when the carbon-containing layer is provided.
磁性層及びこの合金磁性層上に設けられた炭素を含む層
を有する磁気記録媒体において、前記合金磁性層の厚み
方向全域に渡って炭素原子が0.5原子%以上含有され
ているとともに、その濃度が前記炭素を含む層に近いほ
ど多いことを特徴とする磁気記録媒体。4. In a magnetic recording medium having at least a base layer, an alloy magnetic layer, and a carbon-containing layer provided on the alloy magnetic layer on a non-magnetic substrate, the carbon layer extends over the entire area in the thickness direction of the alloy magnetic layer. A magnetic recording medium containing 0.5 atomic% or more of atoms and having a higher concentration as it is closer to the layer containing carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21637997A JPH1166531A (en) | 1997-08-11 | 1997-08-11 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21637997A JPH1166531A (en) | 1997-08-11 | 1997-08-11 | Magnetic recording medium |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005301769A Division JP2006040542A (en) | 2005-10-17 | 2005-10-17 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1166531A true JPH1166531A (en) | 1999-03-09 |
Family
ID=16687653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21637997A Pending JPH1166531A (en) | 1997-08-11 | 1997-08-11 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1166531A (en) |
-
1997
- 1997-08-11 JP JP21637997A patent/JPH1166531A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
US6007623A (en) | Method for making horizontal magnetic recording media having grains of chemically-ordered FePt or CoPt | |
US6013161A (en) | Thin film magnetic alloy having low noise, high coercivity and high squareness | |
US6086974A (en) | Horizontal magnetic recording media having grains of chemically-ordered FEPT of COPT | |
US5993956A (en) | Manganese containing layer for magnetic recording media | |
US4778582A (en) | Process for making a thin film metal alloy magnetic recording disk with a hydrogenated carbon overcoat | |
KR19990077289A (en) | Method for manufacturing a crystalline cluster magnetic recording medium | |
US7407685B2 (en) | Magnetic recording medium and the method of manufacturing the same | |
JP6205871B2 (en) | Magnetic recording medium | |
US4636448A (en) | Magnetic recording medium | |
US6117570A (en) | Thin film medium with surface-oxidized NiAl seed layer | |
US6403241B1 (en) | CoCrPtB medium with a 1010 crystallographic orientation | |
EP0710949B1 (en) | Magnetic recording medium and its manufacture | |
JP2005276366A (en) | Magnetic recording medium and magnetic recording/reproducing device using the same | |
US20020098389A1 (en) | High coercivity chp structural Co-based aloy longitudinal recording media and method for its fabrication | |
JP4557838B2 (en) | Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus | |
US20140178714A1 (en) | Method and Manufacture Process for Exchange Decoupled First Magnetic Layer | |
JPH11213371A (en) | Magnetic recording medium | |
JPH1166531A (en) | Magnetic recording medium | |
JP2000105916A (en) | Magnetic recording medium and its production | |
JPH07141641A (en) | Magnetic recording medium and its production | |
JP2006040542A (en) | Magnetic recording medium | |
JPH0817032A (en) | Magnetic recording medium and its production | |
JP2000082210A (en) | Target for ground surface film and magnetic recording medium | |
JPH10233014A (en) | Magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20031219 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20031224 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040223 Effective date: 20040223 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20040223 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050510 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050711 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051017 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051124 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20060120 Free format text: JAPANESE INTERMEDIATE CODE: A912 |