JPH116552A - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH116552A
JPH116552A JP16258897A JP16258897A JPH116552A JP H116552 A JPH116552 A JP H116552A JP 16258897 A JP16258897 A JP 16258897A JP 16258897 A JP16258897 A JP 16258897A JP H116552 A JPH116552 A JP H116552A
Authority
JP
Japan
Prior art keywords
carrier
transmission
rotation
casing
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16258897A
Other languages
Japanese (ja)
Other versions
JP3701774B2 (en
Inventor
Yoshiaki Tsukada
善昭 塚田
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16258897A priority Critical patent/JP3701774B2/en
Publication of JPH116552A publication Critical patent/JPH116552A/en
Application granted granted Critical
Publication of JP3701774B2 publication Critical patent/JP3701774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To expand a range of a gear ratio of a continuously variable transmission and realize an automatic starting function. SOLUTION: In a transmission in which a shift is performed by bringing a driving revolving member 29 and a driven revolving member 30 which is freely revolvably supported by a transmission main shaft 21 into contact with a shift revolving member 39 which is freely revolvably supported by carriers 31, 32 contact parts P1 , P2 and moving the locations of the contact parts P1 , P2 along the bus of the shift revolving member 39, a range of a gear ratio is expanded in an increasing direction and a decreasing direction by applying braking force to revolutions of the carriers 31, 32 or positively revolving and driving the carriers 31, 32 by a carrier revolution and control means 35 constituted of an electromagnetic brake and an electric motor. Because the gear ratio gradually decrease form an infinity state if the carriers 31, 32 gradually stop revolutions from free revolvable states, the automatic starting of a vehicle is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、駆動回転部材及び
従動回転部材を変速回転部材に接触させるとともに、そ
の接触部を移動させることにより駆動回転部材から従動
回転部材への動力伝達と変速とを行う無段変速機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive rotating member and a driven rotating member that are brought into contact with a speed changing rotating member, and by moving the contact portions, power transmission from the driving rotating member to the driven rotating member and shifting are performed. The present invention relates to a continuously variable transmission.

【0002】[0002]

【従来の技術】かかる無段変速機は、例えば特公昭47
−447号公報に記載されているように既に知られてい
る。この種の無段変速機は、駆動回転部材が接触する円
錐状の第1摩擦伝達面及び従動回転部材が接触する円錐
状の第2摩擦伝達面から構成された変速回転部材を備え
てなり、駆動回転部材の接触部を第1摩擦伝達面の底面
側に移動させるとともに従動回転部材の接触部を第2摩
擦伝達面の頂点側に移動させることにより変速比をLO
W側に変化させ、また駆動回転部材の接触部を第1摩擦
伝達面の頂点側に移動させるとともに従動回転部材の接
触部を第2摩擦伝達面の底面側に移動させることにより
変速比をTOP側に変化させるようになっている。
2. Description of the Related Art Such a continuously variable transmission is disclosed, for example, in
It is already known as described in US Pat. This type of continuously variable transmission includes a variable speed rotating member including a conical first friction transmitting surface with which a driving rotating member contacts and a conical second friction transmitting surface with which a driven rotating member contacts, By moving the contact portion of the drive rotating member to the bottom side of the first friction transmission surface and moving the contact portion of the driven rotation member to the vertex side of the second friction transmission surface, the gear ratio can be reduced.
The gear ratio is changed to TOP by changing the contact portion of the drive rotary member to the top side of the first friction transmission surface and moving the contact portion of the driven rotary member to the bottom surface side of the second friction transmission surface. It changes to the side.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな無段変速機では変速比のレンジに制限があり、充分
な変速比のレンジを確保することが難しく、そのために
自動発進クラッチを別途設ける必要があった。
However, in such a continuously variable transmission, the range of the speed ratio is limited, and it is difficult to secure a sufficient range of the speed ratio. Therefore, it is necessary to separately provide an automatic starting clutch. was there.

【0004】本発明は前述の事情に鑑みてなされたもの
で、無段変速機の変速比のレンジを拡大し、自動発進機
能まで実現することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to extend the range of the speed ratio of a continuously variable transmission and realize an automatic starting function.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載された発明は、ケーシングと、ケー
シング内に設けた変速機主軸に回転自在に支持された駆
動回転部材と、変速機主軸に支持された従動回転部材
と、変速機主軸に沿って移動自在なキャリアと、変速機
主軸の軸線を中心線とする円錐母線に沿うようにキャリ
アに支持された支持軸と、前記支持軸に回転自在に支持
され、該支持軸の軸線に対して傾斜し且つ互いに傾斜方
向を反対にした第1、第2母線を該軸線回りに回転させ
て形成した第1摩擦伝達面及び第2摩擦伝達面が、それ
ぞれ前記駆動回転部材及び従動回転部材に接触する変速
回転部材とを備えてなり、それら接触部を前記第1、第
2母線に沿って移動させることにより変速を行う無段変
速機において、ケーシングに対するキャリアの変速機主
軸回りの回転速度を制御するキャリア回転制御手段を設
けたことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention described in claim 1 comprises a casing, a drive rotating member rotatably supported by a transmission main shaft provided in the casing, and A driven rotating member supported by the transmission main shaft, a carrier movable along the transmission main shaft, a support shaft supported by the carrier along a conical generatrix centered on the axis of the transmission main shaft, and A first friction transmission surface and a first friction transmission surface formed by rotating first and second busbars rotatably supported by the support shaft and inclined with respect to the axis of the support shaft and having opposite inclination directions to each other around the axis. (2) a continuously variable rotation member that has a friction transmission surface that is in contact with the drive rotation member and the driven rotation member, respectively, and performs a gear shift by moving the contact portions along the first and second generatrix. In transmissions, Characterized in that a carrier rotation control means for controlling the rotational speed of the main transmission shaft around carrier for packaging.

【0006】上記構成によれば、キャリアをケーシング
に固定して回転速度をゼロに設定すると、変速回転部材
と駆動回転部材及び従動回転部材との接触部の移動によ
る通常の変速が行われる。またキャリアの自由回転が可
能な状態、キャリアの自由回転に制動力を加えた状態、
キャリアを積極的に回転駆動する状態を切り換えること
により、接触部の移動による変速比の制御に加えて更に
きめ細かい変速比の制御が可能となり、変速比のレンジ
を拡大することができる。このことは自動発進機能を実
現できることを意味する。つまりキャリアが自由回転可
能な状態から徐々に回転を止めていけば自動発進が可能
となる。
According to the above arrangement, when the carrier is fixed to the casing and the rotational speed is set to zero, normal gear shifting is performed by moving the contact portions between the gear changing rotating member, the driving rotating member and the driven rotating member. In addition, the state where free rotation of the carrier is possible, the state where braking force is applied to the free rotation of the carrier,
By actively switching the state in which the carrier is rotationally driven, the gear ratio can be more finely controlled in addition to the gear ratio control based on the movement of the contact portion, and the gear ratio range can be expanded. This means that the automatic start function can be realized. That is, if the carrier gradually stops rotating from a state in which the carrier can freely rotate, automatic start is possible.

【0007】また請求項2に記載された発明は、請求項
1の構成に加えて、前記キャリア回転制御手段が、キャ
リアからケーシングへのトルク伝達を制御するブレーキ
であることを特徴とする。
According to a second aspect of the present invention, in addition to the first aspect, the carrier rotation control means is a brake for controlling transmission of torque from the carrier to the casing.

【0008】上記構成によれば、キャリアを所定速度で
自由回転させて無段変速機の変速比のレンジを増加方向
に向けて拡大することができる。
[0008] According to the above configuration, the range of the speed ratio of the continuously variable transmission can be expanded in the increasing direction by freely rotating the carrier at the predetermined speed.

【0009】また請求項3に記載された発明は、請求項
1の構成に加えて、前記キャリア回転制御手段が、ケー
シングに対してキャリアを回転駆動するアクチュエータ
であることを特徴とする。
According to a third aspect of the present invention, in addition to the first aspect, the carrier rotation control means is an actuator for driving the carrier to rotate with respect to the casing.

【0010】上記構成によれば、キャリアを積極的に回
転させて無段変速機の変速比のレンジを増加方向及び減
少方向に向けて拡大することができるだけでなく、キャ
リア回転制御手段の駆動力で従動回転部材を駆動するこ
ともできる。
According to the above configuration, not only can the carrier be positively rotated to expand the speed ratio range of the continuously variable transmission in the increasing and decreasing directions, but also the driving force of the carrier rotation control means can be increased. Can also drive the driven rotary member.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on embodiments of the present invention shown in the accompanying drawings.

【0012】図1〜図5は本発明の第1実施例を示すも
ので、図1は車両用パワーユニットの縦断面図、図2は
図1の要部拡大図、図3は図2の要部拡大図(LOWレ
シオ)、図4は図2の要部拡大図(TOPレシオ)、図
5は図2の5−5線断面図である。
1 to 5 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a vehicle power unit, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG. FIG. 4 is an enlarged view of a main part (TOP ratio) of FIG. 2, and FIG. 5 is a sectional view taken along line 5-5 of FIG.

【0013】図1に示すように、このパワーユニットP
は自動二輪車に搭載されるものであって、エンジンE及
び無段変速機Tを収納するケーシング1を備える。ケー
シング1は、センターケーシング2と、センターケーシ
ング2の左側面に結合される左ケーシング3と、センタ
ーケーシング2の右側面に結合される右ケーシング4と
に3分割される。センターケーシング2及び左ケーシン
グ3に一対のボールベアリング5,5を介して支持され
たクランクシャフト6は、同じくセンターケーシング2
及び左ケーシング3に支持されたシリンダブロック7に
摺動自在に嵌合するピストン8にコネクティングロッド
9を介して連接される。
As shown in FIG. 1, this power unit P
Is mounted on a motorcycle, and includes a casing 1 that houses an engine E and a continuously variable transmission T. The casing 1 is divided into three parts: a center casing 2, a left casing 3 connected to a left side surface of the center casing 2, and a right casing 4 connected to a right side surface of the center casing 2. The crankshaft 6 supported by the center casing 2 and the left casing 3 via a pair of ball bearings 5, 5
And a piston 8 slidably fitted to a cylinder block 7 supported by the left casing 3 and connected via a connecting rod 9.

【0014】クランクシャフト6の左端には発電機10
が設けられており、この発電機10は左ケーシング3の
左側面に結合された発電機カバー11により覆われる。
右ケーシング4の内部に延出するクランクシャフト6の
右端にドライブギヤ12が固定される。
A generator 10 is provided at the left end of the crankshaft 6.
The generator 10 is covered by a generator cover 11 connected to the left side surface of the left casing 3.
A drive gear 12 is fixed to the right end of the crankshaft 6 extending inside the right casing 4.

【0015】図2を併せて参照すると明らかなように、
無段変速機Tの変速機主軸21には前記ドライブギヤ1
2に噛合するドリブンギヤ25が固定される。ドリブン
ギヤ25は変速機主軸21にスプライン結合された内側
ギヤ半体26と、この内側ギヤ半体26に複数個のゴム
ダンパー28…を介して僅かに相対回転し得るように結
合されて前記ドライブギヤ12に噛合する外側ギヤ半体
27とから構成される。ドライブギヤ12からドリブン
ギヤ25を経て変速機主軸21に伝達されるエンジント
ルクが変動したとき、前記ゴムダンパー28…の変形に
よりショックの発生が軽減される。
Referring to FIG. 2 together, it is apparent that
The drive gear 1 is provided on the transmission main shaft 21 of the continuously variable transmission T.
The driven gear 25 meshing with the second gear 2 is fixed. The driven gear 25 is spline-coupled to the transmission main shaft 21, and is connected to the inner gear half 26 via a plurality of rubber dampers 28 so as to be able to rotate relative to each other through a plurality of rubber dampers 28. And an outer gear half 27 that meshes with the outer gear half 12. When the engine torque transmitted from the drive gear 12 to the transmission main shaft 21 via the driven gear 25 fluctuates, the occurrence of shock is reduced by the deformation of the rubber dampers 28.

【0016】変速機主軸21の外周には、半径方向外側
を向く摩擦接触面を備えた駆動回転部材29がスプライ
ン結合されるとともに、半径方向内側を向く摩擦接触面
を備えた従動回転部材30がニードルベアリング22を
介して相対回転自在に支持される。概略円錐状に形成さ
れたキャリア第1半体31が変速機主軸21の外周にニ
ードルベアリング23を介して相対回転可能且つ軸方向
摺動可能に支持され、このキャリア第1半体31に概略
カップ状のキャリア第2半体32が結合される。キャリ
ア第2半体32の外周にはギヤ321 が形成される。
A drive rotary member 29 having a friction contact surface facing radially outward is spline-coupled to the outer periphery of the transmission main shaft 21, and a driven rotary member 30 having a friction contact surface facing radially inward is provided. It is rotatably supported via a needle bearing 22. A carrier first half 31 formed in a substantially conical shape is supported on the outer periphery of the transmission main shaft 21 via a needle bearing 23 so as to be relatively rotatable and slidable in the axial direction. The carrier-shaped second half 32 is joined. Gear 32 1 is formed on the outer periphery of the carrier second half 32.

【0017】図1及び図2から明らかなように、センタ
ーケーシング2に固定したカバー部材50に電磁ブレー
キよりなるキャリア回転制御手段35が支持される。セ
ンターケーシング2及びカバー部材50間に支持した増
速軸42に第1増速ギヤ43及び第2増速ギヤ44が設
けられており、キャリア第2半体32のギヤ321 が第
1増速ギヤ43に噛み合うとともに、キャリア回転制御
手段35の回転軸に設けた第3増速ギヤ45が第2増速
ギヤ44に噛み合っている。このように、キャリア第2
半体32のギヤ321 の回転を増速してキャリア回転制
御手段35に伝達するので、小容量のキャリア回転制御
手段35によって大きな制動力を発生させることができ
る。
As is apparent from FIGS. 1 and 2, a cover member 50 fixed to the center casing 2 supports a carrier rotation control means 35 composed of an electromagnetic brake. Speed increasing shaft 42 supported between the center housing 2 and the cover member 50 and the first speed-increasing gear 43 and second speed increasing gear 44 is provided, the gear 32 1 of the carrier second half 32 is first acceleration The third speed increasing gear 45 provided on the rotation shaft of the carrier rotation control means 35 meshes with the second speed increasing gear 44 while meshing with the gear 43. Thus, the second carrier
Since transmitted to the carrier rotation control means 35 by accelerating the rotation of the gear 32 1 halves 32, it is possible to generate a large braking force by a carrier rotation control means 35 of a small capacity.

【0018】而して、キャリア回転制御手段35に対す
る通電を遮断して回転軸36の制動を解除すると、両キ
ャリア半体31,32は変速機主軸21回りに自由に回
転することができる。またキャリア回転制御手段35に
通電して回転軸36を制動すると、両キャリア半体3
1,32の変速機主軸21回りの回転に制動力を与え、
或いは両キャリア半体31,32をケーシング1に対し
て回転不能に固定することができる。尚、両キャリア半
体31,32の回転が制動或いは拘束されても、その軸
線L方向の移動は可能である。
When the power supply to the carrier rotation control means 35 is cut off to release the braking of the rotary shaft 36, the two carrier halves 31, 32 can rotate freely around the transmission main shaft 21. When the carrier rotation control means 35 is energized to brake the rotating shaft 36, the two carrier halves 3
A braking force is applied to the rotations of the first and second transmissions about the transmission main shaft 21,
Alternatively, the two carrier halves 31, 32 can be fixed to the casing 1 so as not to rotate. Even if the rotation of the two carrier halves 31, 32 is braked or restrained, the movement in the axis L direction is possible.

【0019】図3及び図4から明らかなように、キャリ
ア第1半体31に形成された複数の窓孔311 …を横切
るように複数の支持軸37…が架設されており、各支持
軸37にニードルベアリング38,38を介して変速回
転部材39が回転自在且つ軸方向摺動自在に支持され
る。支持軸37…は変速機主軸21の軸線Lを中心線と
する円錐母線上に配置されている。各変速回転部材39
は底面を共有する円錐状の第1摩擦伝達面40及び第2
摩擦伝達面41から構成されており、第1摩擦伝達面4
0は駆動回転部材29に第1接触部P1 において当接す
るとともに、第2摩擦伝達面41は従動回転部材30に
第2接触部P2 において当接する。
FIG. 3 and As is apparent from FIG. 4, it is laid a plurality of support shafts 37 ... across the plurality of window holes 31 1 ... formed on the carrier first half 31, the supporting shaft The speed change rotating member 39 is supported by the 37 via needle bearings 38, 38 so as to be rotatable and slidable in the axial direction. The support shafts 37 are arranged on a conical generatrix centered on the axis L of the transmission main shaft 21. Each speed change rotating member 39
Are a first conical friction transmitting surface 40 and a second conical
The first friction transmission surface 4 includes a friction transmission surface 41.
0 with contacts in the first contact portion P 1 on the driving rotary member 29, the second friction transmission surface 41 abuts the second contact portion P 2 in the driven rotary member 30.

【0020】図2に示すように、キャリア第2半体32
の内部に、変速機主軸21の回転数に応じて両キャリア
半体31,32を軸方向に摺動させて無段変速機Tの変
速比を変更する遠心機構51が設けられる。遠心機構5
1は、変速機主軸21に固定された固定カム部材52
と、変速機主軸21に軸方向摺動自在に支持されて前記
固定カム部材52と一体に回転する可動カム部材53
と、固定カム部材52のカム面521 及び可動カム部材
53のカム面531 間に配置された複数の遠心ウエイト
54…とから構成される。可動カム部材53とキャリア
第2半体32とをボールベアリング55で結合すること
により、両者は相対回転を許容された状態で軸方向に一
体に移動する。
As shown in FIG. 2, the carrier second half 32
Is provided with a centrifugal mechanism 51 that changes the speed ratio of the continuously variable transmission T by sliding both carrier halves 31, 32 in the axial direction according to the rotation speed of the transmission main shaft 21. Centrifugal mechanism 5
1 is a fixed cam member 52 fixed to the transmission main shaft 21.
And a movable cam member 53 supported by the transmission main shaft 21 so as to be slidable in the axial direction and rotating integrally with the fixed cam member 52.
When composed of a plurality of centrifugal weights 54 ... and which is disposed between the cam surfaces 53 1 of the cam surfaces 52 1 and the movable cam member 53 of the fixed cam member 52. By connecting the movable cam member 53 and the carrier second half 32 with a ball bearing 55, the two move integrally in the axial direction with relative rotation allowed.

【0021】変速機主軸21の右端近傍はセンターケー
シング2に固定したカバー部材50にボールベアリング
56を介して支持されており、そのカバー部材50とキ
ャリア第2半体32との間に縮設したスプリング57の
弾発力で、キャリア第1半体31及びキャリア第2半体
32は左方向に付勢される。従って、変速機主軸21の
回転数が増加すると遠心力で遠心ウエイト54…が半径
方向外側に移動して両カム面521 ,531 を押圧する
ため、可動カム部材53がスプリング57の弾発力に抗
して右方向に移動し、この可動カム部材53にボールベ
アリング55を介して接続されたキャリア第2半体32
がキャリア第1半体31と共に右方向に移動する。
The vicinity of the right end of the transmission main shaft 21 is supported by a cover member 50 fixed to the center casing 2 via a ball bearing 56, and is contracted between the cover member 50 and the carrier second half 32. The elastic force of the spring 57 urges the first carrier half 31 and the second carrier half 32 leftward. Therefore, when the rotational speed of the transmission main shaft 21 increases, the centrifugal weights 54 move radially outward due to centrifugal force and press the two cam surfaces 52 1 , 53 1. The movable second half 32 connected to the movable cam member 53 via a ball bearing 55 moves rightward against the force.
Moves rightward with the carrier first half 31.

【0022】図3及び図4に示すように、変速比が何れ
の状態でも変速機主軸21の軸線Lから測った駆動回転
部材29の第1接触部P1 の距離Aは一定値となり、支
持軸37から測った駆動回転部材29の第1接触部P1
の距離Bは可変値(BL ,B T )となる。また、支持軸
37から測った従動回転部材30の第2接触部P2 の距
離Cは可変値(CL ,CT )となり、変速機主軸21の
軸線Lから測った従動回転部材30の第2接触部P2
距離Dは一定値となる。
As shown in FIG. 3 and FIG.
The drive rotation measured from the axis L of the transmission main shaft 21
First contact portion P of member 291Distance A becomes a constant value,
First contact portion P of drive rotating member 29 measured from holding shaft 371
Is a variable value (BL, B T). Also support shaft
37, the second contact portion P of the driven rotary member 30 measured fromTwoDistance
Release C is a variable value (CL, CT) And the transmission main shaft 21
Second contact portion P of driven rotary member 30 measured from axis LTwoof
The distance D has a constant value.

【0023】駆動回転部材29の回転数をNDRとし、従
動回転部材30の回転数をNDNとして変速比RをR=N
DR/NDNで定義すると、変速比Rは、 R=NDR/NDN=(B/A)×(D/C) により与えられる。
Assuming that the rotational speed of the driving rotary member 29 is N DR and the rotational speed of the driven rotary member 30 is N DN , the speed ratio R is R = N.
When defined by DR / NDN , the gear ratio R is given by: R = NDR / NDN = (B / A) × (D / C)

【0024】図1及び図2から明らかなように、変速機
主軸21の外周にボールベアリング58を介して相対回
転自在に支持された出力ギヤ59の右端と、前記従動回
転部材30の左端との間に調圧カム機構60が設けられ
る。図5から明らかなように、調圧カム機構60は、出
力ギヤ59の右端に形成した複数の凹部591 …と従動
回転部材30の左端に形成した複数の凹部301 …との
間にボール61…を挟持したものであり、出力ギヤ59
と従動回転部材30とに間には従動回転部材30を右方
向に付勢する予荷重を与えるように皿バネ62が介装さ
れる。従動回転部材30にトルクが作用して出力ギヤ5
9との間に相対回転が生じると、調圧カム機構60によ
り従動回転部材30が出力ギヤ59から離反する方向
(右方向)に付勢される。
As is apparent from FIGS. 1 and 2, the right end of the output gear 59, which is rotatably supported on the outer periphery of the transmission main shaft 21 via a ball bearing 58, and the left end of the driven rotary member 30. A pressure adjusting cam mechanism 60 is provided therebetween. As is apparent from FIG. 5, the pressure adjusting cam mechanism 60 includes a ball between a plurality of recesses 59 1 formed at the right end of the output gear 59 and a plurality of recesses 30 1 formed at the left end of the driven rotary member 30. 61 ... and the output gear 59
A disc spring 62 is interposed between the driven rotary member 30 and the driven rotary member 30 so as to apply a preload for urging the driven rotary member 30 rightward. The torque is applied to the driven rotary member 30 so that the output gear 5
When the relative rotation occurs between the output gear 59 and the driven gear 9, the driven rotation member 30 is urged by the pressure adjusting cam mechanism 60 in a direction away from the output gear 59 (to the right).

【0025】第3減速ギヤ63が、左ケーシング3との
間に配置したボールベアリング64、変速機主軸21と
の間に配置したニードルベアリング65及び出力ギヤ5
9との間に配置したボールベアリング66によって回転
自在に支持される。左ケーシング3及び中央ケーシング
2にボールベアリング67及びニードルベアリング68
を介して減速軸69が支持されており、減速軸69に設
けた第1減速ギヤ70及び第2減速ギヤ71がそれぞれ
前記出力ギヤ59及び第3減速ギヤ63に噛合する。左
ケーシング3から外部に突出する第3減速ギヤ63の軸
部先端に、無端チェーン72を巻き掛けた駆動スプロケ
ット73が設けられる。従って、変速機主軸21の回転
は出力ギヤ59、第1減速ギヤ70、第2減速ギヤ7
1、第3減速ギヤ63、駆動スプロケット73及び無端
チェーン72を介して駆動輪に伝達される。
A third reduction gear 63 includes a ball bearing 64 disposed between the third reduction gear 63 and the left casing 3, a needle bearing 65 disposed between the transmission main shaft 21 and the output gear 5.
9 and is rotatably supported by a ball bearing 66 disposed between them. Ball bearing 67 and needle bearing 68 are provided on the left casing 3 and the central casing 2.
The first reduction gear 70 and the second reduction gear 71 provided on the reduction shaft 69 mesh with the output gear 59 and the third reduction gear 63, respectively. A driving sprocket 73 around which an endless chain 72 is wound is provided at a tip of a shaft portion of a third reduction gear 63 protruding outside from the left casing 3. Therefore, the rotation of the transmission main shaft 21 is controlled by the output gear 59, the first reduction gear 70, and the second reduction gear 7.
1, transmitted to the drive wheels via the third reduction gear 63, the drive sprocket 73 and the endless chain 72.

【0026】次に、キャリア回転制御手段35により両
キャリア半体31,32の回転を拘束したときの作用を
説明する。
Next, the operation when the rotation of both carrier halves 31, 32 is restricted by the carrier rotation control means 35 will be described.

【0027】図3に示すように、エンジンEの低速回転
時にはドライブギヤ12により駆動されるドリブンギヤ
25の回転数が低いため、遠心機構51の遠心ウエイト
54…に作用する遠心力も小さくなり、両キャリア半体
31,32はスプリング57の弾発力で左方向に移動す
る。キャリア第1半体31が左方向に移動すると、駆動
回転部材29の第1接触部P1 が第1摩擦伝達部材40
の底面側に移動して距離Bは最大値BL に増加するとと
もに、従動回転部材30の第2接触部P2 が第2摩擦伝
達面41の頂点側に移動して距離Cが最小値CL に減少
する。
As shown in FIG. 3, when the engine E is rotating at a low speed, the rotational speed of the driven gear 25 driven by the drive gear 12 is low, so that the centrifugal force acting on the centrifugal weights 54 of the centrifugal mechanism 51 is also small. The halves 31, 32 move leftward due to the elastic force of the spring 57. When the first carrier half 31 moves to the left, the first contact portion P 1 of the drive rotation member 29 is moved to the first friction transmission member 40.
And the distance B increases to the maximum value B L , and the second contact portion P 2 of the driven rotary member 30 moves to the vertex side of the second friction transmission surface 41 to reduce the distance C to the minimum value C L. Decreases to L.

【0028】このとき、前記距離A,Dは一定値である
ため、距離Bが最大値BL に増加し、距離Cが最小値C
L に減少すると、前記変速比Rが大きくなってLOWレ
シオに変速される。
At this time, since the distances A and D are constant values, the distance B increases to the maximum value B L and the distance C increases to the minimum value C L.
When the gear ratio decreases to L , the gear ratio R increases and the gear is shifted to the LOW ratio.

【0029】一方、図4に示すように、エンジンEの高
速回転時にはドライブギヤ12により駆動されるドリブ
ンギヤ25の回転数が高いため、遠心機構51の遠心ウ
エイト54…に作用する遠心力も大きくなり、両キャリ
ア半体31,32は遠心力で半径方向外側に移動する遠
心ウエイト54…の作用でスプリング57の弾発力に抗
して右方向に移動する。キャリア第1半体31が右方向
に移動すると、駆動回転部材29の第1接触部P1 が第
1摩擦伝達面40の頂点側に移動して距離Bが最小値B
T に減少するとともに、従動回転部材30の第2接触部
2 が第2摩擦伝達面41の底面側に移動して距離Cが
最大値CT に増加する。
On the other hand, as shown in FIG. 4, when the engine E is rotating at high speed, the rotational speed of the driven gear 25 driven by the drive gear 12 is high, so that the centrifugal force acting on the centrifugal weights 54 of the centrifugal mechanism 51 increases. The two carrier halves 31, 32 move rightward against the elastic force of the spring 57 by the action of the centrifugal weights 54 moving radially outward due to the centrifugal force. When the first half 31 carriers move in the right direction, the first contact portion P 1 is the minimum distance B value by moving the vertex side of the first friction transmission surface 40 of the drive rotary member 29 B
With decreases in T, the distance the second contact portion P 2 of the driven rotary member 30 is moved to the bottom side of the second friction transmission surface 41 C is increased to the maximum value C T.

【0030】このとき、前記距離A,Dは一定値である
ため、距離Bが最小値BT に減少し、距離Cが最大値C
T に増加すると、前記変速比Rが小さくなってTOPレ
シオに変速される。
At this time, since the distances A and D are constant values, the distance B decreases to the minimum value B T and the distance C increases to the maximum value C T.
When the speed ratio increases to T , the speed ratio R decreases and the speed is shifted to the TOP ratio.

【0031】上述のようにして、車両の走行中に駆動回
転部材29の回転は変速回転部材39…を介して従動回
転部材30に所定の変速比Rで伝達され、更に従動回転
部材30の回転は調圧カム機構60を介して出力ギヤ5
9に伝達される。このとき、従動回転部材30に作用す
るトルクで出力ギヤ59との間に相対回転が生じると、
調圧カム機構60により従動回転部材30が出力ギヤ5
9から離反する方向に付勢される。この付勢力は皿バネ
62による付勢力と協働して、駆動回転部材29の第1
接触部P1 を第1摩擦伝達面40に圧接する面圧と、従
動回転部材30の第2接触部P2 を第2摩擦伝達面41
に圧接する面圧とを発生させる。
As described above, during the running of the vehicle, the rotation of the driving rotary member 29 is transmitted to the driven rotary member 30 at a predetermined speed ratio R via the variable speed rotating members 39. Is the output gear 5 through the pressure adjusting cam mechanism 60.
9 is transmitted. At this time, when relative rotation occurs between the driven gear 30 and the output gear 59 due to the torque acting on the driven rotating member 30,
The driven rotary member 30 is driven by the output gear 5
9 is urged in a direction away from 9. This urging force cooperates with the urging force of the disc spring 62 to make the first
The surface pressure at which the contact portion P 1 is pressed against the first friction transmission surface 40 and the second contact portion P 2 of the driven rotary member 30 is pressed against the second friction transmission surface 41
And a surface pressure in contact with the surface.

【0032】次に、キャリア回転制御手段35に対する
通電を解除或いは弱めて両キャリア半体31,32を回
転可能にしたときの作用を説明する。
Next, the operation when the carrier rotation control means 35 is released or weakened to allow the two carrier halves 31, 32 to rotate will be described.

【0033】車両の発進時に予めキャリア回転制御手段
35に対する通電を解除しておき、両キャリア半体3
1,32がケーシング1に対して自由に回転できる状態
にしておく。エンジンEのクランクシャフト6の回転が
ドライブギヤ12及びドリブンギヤ25を介して変速機
主軸21に伝達されたとき、仮に両キャリア半体31,
32が回転不能に固定されていれば、変速機主軸21の
トルクは駆動回転部材29、変速回転部材39及び従動
回転部材30を経て車輪に伝達されるが、実際にはキャ
リア回転制御手段35に対する通電が解除されているた
め、両キャリア半体31,32が空転して従動回転部材
30にトルクが伝達されることはない。即ち、無段変速
機Tの変速比は無限大の状態になる。
When the vehicle starts moving, the power supply to the carrier rotation control means 35 is released in advance, so that the two carrier halves 3
1 and 32 are in a state where they can freely rotate with respect to the casing 1. When the rotation of the crankshaft 6 of the engine E is transmitted to the transmission main shaft 21 via the drive gear 12 and the driven gear 25, the two carrier halves 31,
When the transmission 32 is fixed so that it cannot rotate, the torque of the transmission main shaft 21 is transmitted to the wheels via the driving rotation member 29, the transmission rotation member 39, and the driven rotation member 30. Since the energization has been released, the two carrier halves 31, 32 do not run idle and no torque is transmitted to the driven rotary member 30. That is, the speed ratio of the continuously variable transmission T is infinite.

【0034】この状態からキャリア回転制御手段35に
対する通電量を次第に増加させ、両キャリア半体31,
32の回転に制動力を加えていくと、その回転数の低下
に伴って変速比が無限大から減少する。そして両キャリ
ア半体31,32がケーシング1に回転不能に固定され
たとき、変速比は図3に示すLOWの状態になる。この
ように、車両の発進時に両キャリア半体31,32を自
由に回転し得る状態からケーシング1に回転不能に固定
された状態へと移行させることにより、変速比を無限大
からからLOWまで変化させてスムーズな発進を可能に
することができる。両キャリア半体31,32の回転を
上述のように制御することにより、自動発進クラッチを
廃止しても発進が可能になる。またキャリア回転制御手
段35による制動力を予め所定値に設定しておけば、無
段変速機Tに過剰なトルクが入力したときに両キャリア
半体31,32をケーシング1に対してスリップさせ、
トルクリミッターとして機能させることもできる。
From this state, the amount of current supplied to the carrier rotation control means 35 is gradually increased, and the two carrier halves 31,
When the braking force is applied to the rotation of No. 32, the speed ratio decreases from infinity as the number of rotations decreases. When the two carrier halves 31, 32 are fixed to the casing 1 so as not to rotate, the speed ratio becomes a LOW state shown in FIG. As described above, by shifting the two carrier halves 31, 32 from a state in which they can freely rotate at the time of starting of the vehicle to a state in which the carrier halves 31 and 32 are non-rotatably fixed to the casing 1, the gear ratio is changed from infinity to LOW. It is possible to make a smooth start. By controlling the rotation of both carrier halves 31, 32 as described above, the vehicle can start even if the automatic starting clutch is abolished. If the braking force by the carrier rotation control means 35 is set to a predetermined value in advance, when excessive torque is input to the continuously variable transmission T, the two carrier halves 31, 32 slip with respect to the casing 1,
It can also function as a torque limiter.

【0035】本実施例では自動遠心クラッチよりなる自
動発進クラッチを用いていないので、エンジンブレーキ
を作動させたときにエンジン回転数がアイドル回転数に
近づいてもエンジンEと車輪との接続が保たれる。従っ
て、自動遠心クラッチが係合解除した後に継続してエン
ジンブレーキを作動させるために従来必要であった一方
向クラッチを廃止することができる。
In this embodiment, since the automatic starting clutch including the automatic centrifugal clutch is not used, even when the engine speed approaches the idle speed when the engine brake is operated, the connection between the engine E and the wheels is maintained. It is. Therefore, the one-way clutch conventionally required for continuously operating the engine brake after the automatic centrifugal clutch is disengaged can be eliminated.

【0036】次に、本発明の第2実施例を説明する。Next, a second embodiment of the present invention will be described.

【0037】第1実施例のキャリア回転制御手段35
は、キャリア第1半体31及びキャリア第2半体32の
回転を制動する電磁ブレーキから構成されているのに対
し、第2実施例のキャリア回転制御手段35は、キャリ
ア第1半体31及びキャリア第2半体32を回転駆動す
る電気モータ等のアクチュエータから構成されている。
キャリア回転制御手段35に通電すると回転軸36が回
転し、その回転がギヤ361 ,321 を介してキャリア
第2半体32に伝達され、キャリア第2半体32をキャ
リア第1半体31と一体で回転させる。キャリア回転制
御手段35にはブレーキ装置が付設されており、両キャ
リア半体31,32をケーシング1に回転不能に拘束す
ることもできる。
The carrier rotation control means 35 of the first embodiment
Is constituted by an electromagnetic brake that brakes the rotation of the first carrier half 31 and the second carrier half 32, while the carrier rotation control means 35 of the second embodiment is configured by the carrier first half 31 and the second carrier half 32. An actuator such as an electric motor that rotationally drives the second carrier half 32 is configured.
When the carrier rotation control means 35 is energized, the rotation shaft 36 rotates, and the rotation is transmitted to the carrier second half 32 via the gears 36 1 and 32 1 , and the carrier second half 32 is connected to the carrier first half 31. And rotate together. The carrier rotation control means 35 is provided with a brake device, so that both carrier halves 31, 32 can be restrained by the casing 1 so as not to rotate.

【0038】而して、キャリア回転制御手段35で両キ
ャリア半体31,32を従動回転部材32と同方向に駆
動してやれば、従動回転部材32の回転数が増加して変
速比が小さい側にシフトし、逆にキャリア回転制御手段
35で両キャリア半体31,32を従動回転部材32と
逆方向に駆動してやれば、従動回転部材32の回転数が
減少して変速比が大きい側にシフトする。このように、
遠心機構51による変速制御にキャリア回転制御手段3
5による変速制御を組み合わせることにより、無段変速
機Tの変速比を一層きめ細かく制御することができる。
勿論、両キャリア半体31,32をケーシング1に拘束
すれば、遠心機構51による前記LOW状態とTOP状
態との間の通常の変速が可能である。
If the carrier rotation control means 35 drives the two carrier halves 31, 32 in the same direction as the driven rotation member 32, the rotation speed of the driven rotation member 32 increases and the gear ratio becomes smaller. If the two carrier halves 31, 32 are driven in the opposite direction to the driven rotation member 32 by the carrier rotation control means 35, the rotation speed of the driven rotation member 32 decreases, and the gear ratio shifts to the larger side. . in this way,
Carrier rotation control means 3 for shifting control by centrifugal mechanism 51
5, the gear ratio of the continuously variable transmission T can be more finely controlled.
Of course, if both carrier halves 31, 32 are constrained to casing 1, normal shifting between the LOW state and the TOP state by centrifugal mechanism 51 is possible.

【0039】またエンジンEが停止した状態でも、キャ
リア回転制御手段35で両キャリア半体31,32を正
転方向又は逆転方向に駆動すれば、車両を前進走行又は
後進走行させることができるため、車両を押して移動さ
せる際の取り回しが容易になる。
Even when the engine E is stopped, if the carrier rotation control means 35 drives both carrier halves 31, 32 in the forward or reverse direction, the vehicle can travel forward or backward. The handling when pushing and moving the vehicle is facilitated.

【0040】以上、本発明の実施例を詳述したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。
Although the embodiments of the present invention have been described in detail, various design changes can be made in the present invention without departing from the gist thereof.

【0041】例えば、実施例ではキャリア回転制御手段
35として電磁ブレーキ及び電気モータを例示したが、
それを油圧ブレーキ及び油圧アクチュエータに置き換え
ることも可能である。
For example, in the embodiment, an electromagnetic brake and an electric motor are exemplified as the carrier rotation control means 35.
It is also possible to replace it with a hydraulic brake and a hydraulic actuator.

【0042】[0042]

【発明の効果】以上のように請求項1に記載された発明
によれば、ケーシングに対するキャリアの変速機主軸回
りの回転速度を制御するキャリア回転制御手段を設けた
ので、キャリアをケーシングに固定して回転速度をゼロ
に設定して変速回転部材と駆動、受動回転部材との接触
部の移動による通常の変速を行えるのは勿論のこと、キ
ャリアに制動力や駆動力を加えて更にきめ細かい変速比
の制御を行って変速比のレンジを拡大することができ
る。またキャリアが自由回転可能な状態から徐々に回転
を止めていけば、変速比が無限大の状態から次第に減少
するので車両の自動発進が可能となる。
As described above, according to the first aspect of the present invention, since the carrier rotation control means for controlling the rotation speed of the carrier about the transmission main shaft with respect to the casing is provided, the carrier is fixed to the casing. By setting the rotation speed to zero, it is possible to perform normal gear shifting by moving the contact part between the geared rotating member and the driven rotating member, and also to apply a braking force or a driving force to the carrier to achieve a finer gear ratio. And the range of the gear ratio can be expanded. Also, if the rotation is gradually stopped from a state where the carrier is freely rotatable, the automatic transmission of the vehicle becomes possible because the gear ratio gradually decreases from an infinite state.

【0043】また請求項2に記載された発明によれば、
前記キャリア回転制御手段が、キャリアからケーシング
へのトルク伝達を制御するブレーキであるので、キャリ
アを所定速度で自由回転させて無段変速機の変速比のレ
ンジを増加方向に向けて拡大することができる。
According to the second aspect of the present invention,
Since the carrier rotation control means is a brake for controlling the transmission of torque from the carrier to the casing, the carrier can be freely rotated at a predetermined speed to increase the speed ratio range of the continuously variable transmission in an increasing direction. it can.

【0044】また請求項3に記載された発明によれば前
記キャリア回転制御手段が、ケーシングに対してキャリ
アを回転駆動するアクチュエータであるので、キャリア
を積極的に回転させて無段変速機の変速比のレンジを増
加方向及び減少方向に向けて拡大することができるだけ
でなく、キャリア回転制御手段の駆動力で従動回転部材
を駆動することもできる。
According to the third aspect of the present invention, since the carrier rotation control means is an actuator for driving the carrier to rotate with respect to the casing, the carrier is positively rotated to change the speed of the continuously variable transmission. Not only can the ratio range be increased in the increasing and decreasing directions, but also the driven rotating member can be driven by the driving force of the carrier rotation control means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車両用パワーユニットの縦断面図FIG. 1 is a longitudinal sectional view of a vehicle power unit.

【図2】図1の要部拡大図FIG. 2 is an enlarged view of a main part of FIG. 1;

【図3】図2の要部拡大図(LOWレシオ)FIG. 3 is an enlarged view of a main part of FIG. 2 (LOW ratio).

【図4】図2の要部拡大図(TOPレシオ)FIG. 4 is an enlarged view of a main part of FIG. 2 (TOP ratio)

【図5】図2の5−5線断面図FIG. 5 is a sectional view taken along line 5-5 of FIG. 2;

【符号の説明】[Explanation of symbols]

1 ケーシング 21 変速機主軸 29 駆動回転部材 30 従動回転部材 31 キャリア第1半体(キャリア) 32 キャリア第2半体(キャリア) 35 キャリア回転制御手段 37 支持軸 39 変速回転部材 40 第1摩擦伝達面 41 第2摩擦伝達面 DESCRIPTION OF SYMBOLS 1 Casing 21 Transmission main shaft 29 Drive rotation member 30 Follower rotation member 31 Carrier first half (carrier) 32 Carrier second half (carrier) 35 Carrier rotation control means 37 Support shaft 39 Transmission rotation member 40 First friction transmission surface 41 Second friction transmission surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング(1)と、 ケーシング(1)内に設けた変速機主軸(21)に回転
自在に支持された駆動回転部材(29)と、 変速機主軸(21)に支持された従動回転部材(30)
と、 変速機主軸(21)に沿って移動自在なキャリア(3
1,32)と、 変速機主軸(21)の軸線を中心線とする円錐母線に沿
うようにキャリア(31,32)に支持された支持軸
(37)と、 前記支持軸(37)に回転自在に支持され、該支持軸
(37)の軸線に対して傾斜し且つ互いに傾斜方向を反
対にした第1、第2母線を該軸線回りに回転させて形成
した第1摩擦伝達面(40)及び第2摩擦伝達面(4
1)が、それぞれ前記駆動回転部材(29)及び従動回
転部材(30)に接触する変速回転部材(39)と、を
備えてなり、それら接触部を前記第1、第2母線に沿っ
て移動させることにより変速を行う無段変速機におい
て、 ケーシング(1)に対するキャリア(31,32)の変
速機主軸(21)回りの回転速度を制御するキャリア回
転制御手段(35)を設けたことを特徴とする無段変速
機。
1. A casing (1), a drive rotating member (29) rotatably supported on a transmission main shaft (21) provided in the casing (1), and supported on a transmission main shaft (21). Driven rotation member (30)
And a carrier (3) movable along the transmission main shaft (21).
1, 32), a support shaft (37) supported by carriers (31, 32) along a conical generatrix centered on the axis of the transmission main shaft (21), and a rotation by the support shaft (37). A first friction transmission surface (40) formed by rotating first and second busbars, which are freely supported and inclined with respect to the axis of the support shaft (37) and whose inclination directions are opposite to each other, around the axis. And the second friction transmission surface (4
1) comprises a speed change rotation member (39) that comes into contact with the drive rotation member (29) and the driven rotation member (30), respectively, and moves the contact portions along the first and second generatrix. In the continuously variable transmission that performs a speed change by performing the rotation, a carrier rotation control means (35) for controlling a rotation speed of the carrier (31, 32) about the transmission main shaft (21) with respect to the casing (1) is provided. And continuously variable transmission.
【請求項2】 前記キャリア回転制御手段(35)が、
キャリア(31,32)からケーシング(1)へのトル
ク伝達を制御するブレーキであることを特徴とする、請
求項1に記載の無段変速機。
2. The carrier rotation control means (35)
The continuously variable transmission according to claim 1, wherein the brake is a brake that controls transmission of torque from the carriers (31, 32) to the casing (1).
【請求項3】 前記キャリア回転制御手段(35)が、
ケーシング(1)に対してキャリア(31,32)を回
転駆動するアクチュエータであることを特徴とする、請
求項1に記載の無段変速機。
3. The carrier rotation control means (35)
The continuously variable transmission according to claim 1, characterized in that it is an actuator that rotationally drives the carriers (31, 32) with respect to the casing (1).
JP16258897A 1997-06-19 1997-06-19 Continuously variable transmission Expired - Lifetime JP3701774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16258897A JP3701774B2 (en) 1997-06-19 1997-06-19 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16258897A JP3701774B2 (en) 1997-06-19 1997-06-19 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH116552A true JPH116552A (en) 1999-01-12
JP3701774B2 JP3701774B2 (en) 2005-10-05

Family

ID=15757450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16258897A Expired - Lifetime JP3701774B2 (en) 1997-06-19 1997-06-19 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3701774B2 (en)

Also Published As

Publication number Publication date
JP3701774B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP4511668B2 (en) Continuously variable transmission for vehicle
JPH034055A (en) Differential device
JPH06201017A (en) Transmission
US6484858B1 (en) Friction clutch and automatic transmission of automobile using the same and non-stage transmission of automobile and power distribution device of automobile and power transmission device of motorcycle
JPH10184820A (en) Planetary gear mechanism
JPH11132320A (en) Planetary gear mechanism
JP3914307B2 (en) Continuously variable winding transmission
JP2004169719A (en) Toroidal type continuously variable transmission, and continuously variable transmission device
JP3702597B2 (en) Toroidal type continuously variable transmission
JPH116552A (en) Continuously variable transmission
US5701983A (en) Clutch device
JPH05126170A (en) One-way clutch and automatic transmission using the same
JP4104201B2 (en) Power unit with continuously variable transmission
JPH09250579A (en) Electrical type disc brake
US3455422A (en) Drive for the oil pump of an automatic transmission coupled to an engine by a friction clutch
US6790161B2 (en) Clutch for automobiles
JP2005331079A (en) Belt-type continuously variable transmission and control device of it
JPS59155630A (en) Tortional-vibration absorbing apparatus in power transmission system for vehicle
JP2918878B1 (en) Continuously variable transmission for automobile
KR100529375B1 (en) Parallel type toroidal c.v.t(continuously variable transmission) of high efficiency using multi-shaft
JPS6192355A (en) Toroidal type continuously variable transmission
US5040650A (en) Power transmission
JP3696373B2 (en) Continuously variable transmission
JP4284859B2 (en) Toroidal continuously variable transmission
CN112923033A (en) Compact torque transmission device for motor vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080722

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090722

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100722