JPH1164899A - Nonlinear optical device - Google Patents

Nonlinear optical device

Info

Publication number
JPH1164899A
JPH1164899A JP22947897A JP22947897A JPH1164899A JP H1164899 A JPH1164899 A JP H1164899A JP 22947897 A JP22947897 A JP 22947897A JP 22947897 A JP22947897 A JP 22947897A JP H1164899 A JPH1164899 A JP H1164899A
Authority
JP
Japan
Prior art keywords
layer
thickness
quantum well
well structure
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22947897A
Other languages
Japanese (ja)
Other versions
JP2950799B2 (en
Inventor
Norio Iizuka
紀夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9229478A priority Critical patent/JP2950799B2/en
Publication of JPH1164899A publication Critical patent/JPH1164899A/en
Application granted granted Critical
Publication of JP2950799B2 publication Critical patent/JP2950799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize intersubband absorption which can form a well layer of multiple quantum well structure with good flatness and has high light confinement efficiency and enough strength. SOLUTION: A nonlinear optical device is provided with a GaN buffer layer 2 formed on a sapphire substrate 1, a AlGaN clad layer 3 formed on the buffer layer 2, a GaN intermediate layer 4 formed on the clad layer 3, the multiple quantum well structure 5 which is constituted by alternatively laminating GaN well layers and AlGaN barrier layers on the intermediate layer 4, constitutes a part of a waveguide and further functions as a light absorbing layer by intersubband transition and a laser amplifier section 6 formed on the multiple quantum well structure 5. In the nonlinear optical device, thickness of the barrier layer of the multiple quantum well structure 5 is made to be critical film thickness or below, thickness of the intermediate layer 4 is made to be 15 times the critical film thickness or above and thickness of the clad layer 3 is made to be the critical film thickness or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光スイッチ,光変
調器,波長変換素子などの非線形光デバイスに係わり、
特にサブバンド間遷移による光吸収層として機能する多
重量子井戸構造を備えた非線形光デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical device such as an optical switch, an optical modulator, and a wavelength conversion element.
In particular, the present invention relates to a nonlinear optical device having a multiple quantum well structure functioning as a light absorption layer by intersubband transition.

【0002】[0002]

【従来の技術】近年、半導体レーザ,低損失光ファイ
バ,光ファイバ増幅器,高速集積回路などのオプトエレ
クトロニクス関連技術の発展により、毎秒10ギガビッ
トという大量の情報を長距離伝送することが可能となっ
ている。しかし、来たるべきマルチメディア時代におい
ては、一般の末端利用者も高精細映像情報などの大量の
情報をリアルタイムで利用できることになるので、さら
に大容量の情報を伝送・処理できるインフラストラクチ
ャーの構築が必要になる。
2. Description of the Related Art In recent years, with the development of optoelectronics-related technologies such as semiconductor lasers, low-loss optical fibers, optical fiber amplifiers, and high-speed integrated circuits, it has become possible to transmit a large amount of information of 10 gigabits per second over long distances. I have. However, in the coming multimedia era, ordinary end users will be able to use a large amount of information, such as high-definition video information, in real time, so it is necessary to build an infrastructure that can transmit and process even larger amounts of information. Will be needed.

【0003】光ファイバの広帯域性を生かして大容量の
情報伝送・処理を行うには、光周波数多重(光FDM)
技術や光時分割多重(光TDM)技術を用いるのが妥当
と考えられる。そこで、大規模で効率的な光FDMネッ
トワークや光TDMネットワークの実現に向けて、コン
パクトで光効率の波長変換素子、光制御型の超高速非線
形光スイッチなどの、新しい機能を有する光素子を開発
することが急務となっている。
[0003] In order to transmit and process a large amount of information by utilizing the broadband characteristics of an optical fiber, optical frequency multiplexing (optical FDM) is required.
It is considered appropriate to use technology or optical time division multiplexing (optical TDM) technology. In order to realize large-scale and efficient optical FDM networks and optical TDM networks, we have developed optical devices with new functions such as compact and optically efficient wavelength converters and optically controlled ultra-high-speed nonlinear optical switches. It is urgent to do it.

【0004】このような素子として、電子のサブバンド
間遷移に伴う光吸収を応用した非線形光デバイスが考え
られる。サブバンド間吸収を利用することにより、応答
速度を高く、かつ非線形性を大きくすることができる。
[0004] As such an element, a non-linear optical device utilizing light absorption accompanying transition between sub-bands of electrons can be considered. By utilizing the inter-subband absorption, the response speed can be increased and the nonlinearity can be increased.

【0005】このサブバンド間吸収層は、光通信で用い
られる1.55μm付近の波長で動作する必要がある。
サブバンド間吸収については、InP基板上に形成した
InGaAs/AlAsと量子井戸層を用いて、この波
長での吸収が報告されている(J.H.Smet et al.,Appl.
Phys. Lett.,Vol.64,pp986-987(1997))。しかしなが
ら、この材料系の場合、エネルギー障壁の高さが比較的
小さく、上記のようにレーザ増幅器と組み合わせた場
合、電子が障壁を乗り越えて行き来してしまい、サブバ
ンド間吸収層の効果が十分に発揮されないことが懸念さ
れる。望ましくはバンドギャップのより大きい、GaN
やAlNのような窒化物半導体でサブバンド間吸収層を
形成することが求められる。
[0005] The intersubband absorption layer needs to operate at a wavelength around 1.55 µm used in optical communication.
As for inter-subband absorption, absorption at this wavelength has been reported using InGaAs / AlAs and a quantum well layer formed on an InP substrate (JHSmet et al., Appl.
Phys. Lett., Vol. 64, pp 986-987 (1997)). However, in the case of this material system, the height of the energy barrier is relatively small, and when combined with the laser amplifier as described above, electrons cross over the barrier, and the effect of the intersubband absorption layer is not sufficiently achieved. It is feared that it will not be demonstrated. GaN, preferably with a larger band gap
It is required to form an intersubband absorption layer using a nitride semiconductor such as AlN or AlN.

【0006】しかるに、例えばサファイア基板上に、G
aNをバッファ層として成長したものの上に、GaNを
井戸層にAl0.6 Ga0.4 Nを障壁層に用いて量子井戸
構造を形成しようとした場合、格子定数が異なるために
良好なヘテロ界面を形成することが困難であることが容
易に推測できる。
However, on a sapphire substrate, for example,
When an attempt is made to form a quantum well structure using GaN as a well layer and Al 0.6 Ga 0.4 N as a barrier layer on a substrate grown with aN as a buffer layer, a favorable heterointerface is formed due to a different lattice constant. It can easily be inferred that it is difficult.

【0007】また、さらには、光閉じ込めのために屈折
率の小さいAlGaNクラッド層をこの多重量子井戸構
造に隣接して設けようとすると、次のような問題が生じ
る。即ち、十分な光閉じ込めを実現するためにはクラッ
ド層に十分な厚さが必要となるが、この場合には臨界膜
厚を越えてしまうと考えられる。このため、クラッド層
上に成長される上記多重量子井戸に悪影響があることも
容易に推測できる。
Further, if an AlGaN cladding layer having a small refractive index is provided adjacent to the multiple quantum well structure for confining light, the following problem occurs. That is, in order to realize sufficient light confinement, the cladding layer needs to have a sufficient thickness, but in this case, it is considered that the critical thickness is exceeded. For this reason, it can be easily inferred that the above-described multiple quantum well grown on the cladding layer has an adverse effect.

【0008】これらの問題は、サブバンド間遷移により
本来期待されるべき吸収強度が達成できないことにつな
がり、サブバンド間吸収を利用した非線形光デバイスを
実現する上で必ず解決しなくてはならないものである。
[0008] These problems lead to the inability to achieve the expected absorption intensity due to the transition between sub-bands, and must be solved in order to realize a nonlinear optical device utilizing absorption between sub-bands. It is.

【0009】[0009]

【発明が解決しようとする課題】このように従来、多重
量子井戸構造におけるサブバンド間遷移を利用して非線
形デバイスを作成する場合、格子定数の違いにより、良
好な量子井戸やクラッド層の形成が困難で、期待される
サブバンド間吸収強度が得られないという問題があっ
た。
As described above, conventionally, when a non-linear device is produced by utilizing the transition between sub-bands in a multiple quantum well structure, a good quantum well and a good cladding layer can be formed due to a difference in lattice constant. There is a problem that it is difficult to obtain the expected intersubband absorption intensity.

【0010】本発明は、上記の事情を考慮してなされた
もので、その目的とするところは、多重量子井戸構造の
井戸層を平坦性良く形成することができ、光閉じ込め効
率が高く、十分な強度のサブバンド間吸収を実現するこ
とが可能な非線形光デバイスを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to form a well layer having a multiple quantum well structure with good flatness, to achieve high light confinement efficiency, and It is an object of the present invention to provide a nonlinear optical device capable of realizing inter-subband absorption with a high intensity.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(構成)上記課題を解決するために本発明は、次のよう
な構成を採用している。即ち本発明は、基板上に複数の
窒化物系半導体層を積層してなり、該窒化物系半導体層
中に、導波路の一部を構成し、かつサブバンド間遷移に
よる光吸収層として機能する多重量子井戸構造を備えた
非線形光デバイスにおいて、前記多重量子井戸構造の障
壁層はAlGaNで構成され、前記多重量子井戸構造と
基板との間にAlGaNからなるクラッド層が形成さ
れ、前記多重量子井戸層とクラッド層との間に該クラッ
ド層よりも格子定数が大きい中間層が形成されているこ
とを特徴とする。
(Structure) In order to solve the above problem, the present invention employs the following structure. That is, the present invention has a structure in which a plurality of nitride-based semiconductor layers are stacked on a substrate, a part of a waveguide is formed in the nitride-based semiconductor layer, and the nitride-based semiconductor layer functions as a light absorption layer by intersubband transition. In the nonlinear optical device having the multiple quantum well structure described above, the barrier layer of the multiple quantum well structure is made of AlGaN, and a cladding layer made of AlGaN is formed between the multiple quantum well structure and the substrate. An intermediate layer having a larger lattice constant than the cladding layer is formed between the well layer and the cladding layer.

【0012】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 多重量子井戸構造の障壁層はAlx Ga1-x N(x
≧0.6)であり、多重量子井戸構造の井戸層はGaN
であること。
Here, preferred embodiments of the present invention include the following. (1) The barrier layer of the multiple quantum well structure is composed of Al x Ga 1 -xN (x
≧ 0.6), and the well layer of the multiple quantum well structure is GaN
That.

【0013】(2) 多重量子井戸構造の障壁層の厚さは臨
界膜厚以下であり、前記中間層はGaN,AlGaN,
又はInGaNで形成され、その厚さが臨界膜厚の15
倍以上であり、クラッド層の厚さは臨界膜厚以上である
こと。
(2) The thickness of the barrier layer of the multiple quantum well structure is less than the critical thickness, and the intermediate layer is made of GaN, AlGaN,
Or, it is formed of InGaN and the thickness is 15
And the thickness of the cladding layer must be equal to or greater than the critical thickness.

【0014】(作用)本発明者らの実験によれば、量子
井戸構造の品質は障壁層の厚さに依存することが明らか
となった。実験は、サファイア(0001)面基板上に
GaNバッファ層をMOCVD法にて成長し、その上に
Al0.6 Ga0.4 Nを障壁層、GaNを井戸層とする多
重量子井戸構造を成長して行った。
(Action) According to the experiments of the present inventors, it has become clear that the quality of the quantum well structure depends on the thickness of the barrier layer. In the experiment, a GaN buffer layer was grown on a sapphire (0001) plane substrate by MOCVD, and a multiple quantum well structure having Al 0.6 Ga 0.4 N as a barrier layer and GaN as a well layer was grown thereon. .

【0015】井戸層の厚さを1.5nmとし、障壁層の
厚さを種々の値に設定し、量子井戸層からのフォトルミ
ネッセンス(PL)の強度を調べたところ、図3に示す
ように、障壁層の厚さが9nm以下の場合には波長32
0nm付近にPL発光が見られたが、これ以上の厚さの
場合にはこの波長には信号は全く見られないか、若しく
は半値幅が広く強度も非常に弱くなった。
When the thickness of the well layer was set to 1.5 nm, the thickness of the barrier layer was set to various values, and the intensity of photoluminescence (PL) from the quantum well layer was examined, as shown in FIG. If the thickness of the barrier layer is 9 nm or less, the wavelength 32
PL emission was observed at around 0 nm, but when the thickness was greater than this, no signal was observed at this wavelength, or the half-width was wide and the intensity was very weak.

【0016】障壁層の厚さが14nmの試料と3nmの
試料について断面構造をTEM(透過電子顕微鏡)によ
って観察したところ、障壁層厚が14nmの試料につい
ては各ヘテロ接合界面が平坦でなく、膜厚も不均一であ
ったのに対し、障壁層厚が3nmの場合は界面平坦性,
膜厚均一性共に良好であった。つまり、障壁層が9nm
を越えると界面平坦性,膜厚均一性が悪くなり、その結
果、量子井戸中のサブバンドが形成されないか、形成さ
れたとしてもエネルギー準位の幅が非常に広くなり、こ
のために上記のようなPL強度が低下したものと考えら
れる。従って、9nmという値は臨界膜厚を意味するも
のと考えられる。臨界膜厚を与える計算式としては、例
えば文献(Appl. Phys. Lett.,Vol.69,pp2360 )に記載
されているように、
When the cross-sectional structures of a sample having a barrier layer thickness of 14 nm and a sample having a thickness of 3 nm were observed with a TEM (transmission electron microscope), the heterojunction interfaces of the sample having a barrier layer thickness of 14 nm were not flat, and While the thickness was also non-uniform, when the barrier layer thickness was 3 nm,
Both the film thickness uniformity was good. That is, the barrier layer has a thickness of 9 nm.
If the thickness exceeds, the interface flatness and the film thickness uniformity deteriorate, and as a result, the subband in the quantum well is not formed, or even if it is formed, the width of the energy level becomes very wide. It is considered that such PL intensity decreased. Therefore, the value of 9 nm is considered to mean the critical film thickness. As a calculation formula for giving the critical film thickness, for example, as described in the literature (Appl. Phys. Lett., Vol. 69, pp2360),

【0017】[0017]

【数3】 がある。但し、a0 ,as は該当する層と下地層の格子
定数、bはバーガーズベクトルの大きさ、λはバーガー
ズベクトルと界面とのなす角度の大きさ、υはポアソン
比、hc は臨界膜厚を示している。上記文献の著者はG
aNに対する値として、 b=0.3084nm、λ=π/3,υ=0.38 …(2) を用いている。
(Equation 3) There is. However, a 0, a s the lattice constant of the corresponding layer and the underlayer, b is the magnitude of Burgers vector, lambda is the angle between the Burgers vector and the interface size, upsilon is Poisson's ratio, h c is the critical film Shows the thickness. The author of the above document is G
As values for aN, b = 0.3084 nm, λ = π / 3, υ = 0.38 (2)

【0018】本発明者らの実験においては問題となる層
はAl0.6 Ga0.4 Nであり、上記パラメータの値は現
在のところ分っていないが、上記のGaNに対するパラ
メータを用いてhc を計算すると9nmとなり、実験で
示された値と一致する。これは、AlGaNとGaNの
物性値が近く、差異は実験誤差の範囲内に収まるためと
考えられる。
In our experiments, the layer in question is Al 0.6 Ga 0.4 N, and the values of the above parameters are not known at present, but h c is calculated using the above parameters for GaN. Then, it becomes 9 nm, which matches the value shown in the experiment. This is presumably because the physical properties of AlGaN and GaN are close to each other, and the difference falls within the range of experimental error.

【0019】このようにして、サブバンド間遷移を利用
した素子を形成するためには、障壁層の厚さを上記の
(1)(2)式で定義される膜厚以下にする必要がある
と結論できる。
In order to form an element utilizing the transition between sub-bands in this manner, the thickness of the barrier layer needs to be equal to or less than the thickness defined by the above equations (1) and (2). Can be concluded.

【0020】ところが、このように薄い障壁層で量子井
戸構造を形成すると、光が漏れ出てしまい、十分に閉じ
込められないという問題が生じる。この問題を回避する
ためにAlGaNクラッド層を成長し、その上に量子井
戸構造を成長することが必要になる。これに関して本発
明者らの実験について、以下に説明する。
However, when a quantum well structure is formed with such a thin barrier layer, there is a problem that light leaks out and the light cannot be sufficiently confined. In order to avoid this problem, it is necessary to grow an AlGaN cladding layer and grow a quantum well structure thereon. In this regard, the experiments of the present inventors will be described below.

【0021】クラッド層としてAl0.6 Ga0.4 Nを上
記臨界膜厚を越える150nm成長し、その上にGaN
中間層を成長し、さらに厚さ3nmのAl0.6 Ga0.4
N障壁層と厚さ1.5nmのGaN井戸層からなる井戸
数30の多重量子井戸構造を成長して実験を行った。試
料を厚さ50μmの厚さになるように裏面を鏡面研磨
し、8mm角の大きさにへき開し、端面から波長1〜6
μmの近赤外光を入射し、反対側の端面から透過光スペ
クトルをFTIRで測定した。中間層の厚さをパラメー
タとして調べたところ、中間層の厚さが厚い場合には波
長約1.5μm付近に吸収が見られたが、薄い場合には
吸収は見られなかった。吸収強度と中間層の厚さの関係
は図4に示すようになった。この結果より、中間層は1
35nm以上であれば吸収強度に影響を与えないと結論
できる。
As a cladding layer, Al 0.6 Ga 0.4 N is grown to a thickness of 150 nm exceeding the above critical film thickness.
An intermediate layer is grown, and a 3 nm thick Al 0.6 Ga 0.4
An experiment was conducted by growing a multiple quantum well structure having 30 wells consisting of an N barrier layer and a GaN well layer having a thickness of 1.5 nm. The back side of the sample was mirror-polished to a thickness of 50 μm, cleaved to a size of 8 mm square, and a wavelength of 1 to 6 was measured from the end face.
Near-infrared light of μm was incident, and the transmitted light spectrum was measured by FTIR from the opposite end face. When the thickness of the intermediate layer was examined as a parameter, absorption was observed at a wavelength of about 1.5 μm when the thickness of the intermediate layer was large, but was not observed when the thickness was small. FIG. 4 shows the relationship between the absorption strength and the thickness of the intermediate layer. From this result, the intermediate layer is 1
If it is 35 nm or more, it can be concluded that the absorption intensity is not affected.

【0022】この理由を調べるために、AlGaNの上
にGaNを90nm成長したものと200nm成長した
ものを用意し、それぞれの表面をSEM(走査電子顕微
鏡)で観察した。GaNの厚さが90nmの場合には表
面の平坦性が非常に悪いのに対し、200nmの場合は
ほぼ平坦であった。臨界膜厚を越えると成長は島状にな
り、成長が進むにつれてこの島が拡大し、隣り合う島が
合体して再び平坦性が回復すると考えられる。このこと
から、吸収強度が中間層の厚さに影響されることについ
ては、次のように説明できる。
In order to investigate the reason, ones prepared by growing GaN on AlGaN by 90 nm and those grown by 200 nm were prepared, and their surfaces were observed by SEM (scanning electron microscope). The surface flatness was very poor when the GaN thickness was 90 nm, whereas it was almost flat when the GaN thickness was 200 nm. When the thickness exceeds the critical film thickness, the growth becomes an island shape, and as the growth progresses, the island expands, and the adjacent islands are united to recover flatness again. From this, it can be explained as follows that the absorption intensity is affected by the thickness of the intermediate layer.

【0023】AlGaNクラッド層は十分に厚いので格
子は緩和していると考えることができる。従って、この
上に成長したGaN中間層は成長初期においてはAlG
aNに格子整合しているが、臨界膜厚(9nm)を越え
ると上記多重量子井戸構造の場合と同様に平坦性が悪く
なる。この平坦性の悪い中間層の上に多重量子井戸構造
を成長しても、当然のことながら、この多重量子井戸構
造の井戸層の平坦性も悪くなる。従って、サブバンド準
位が形成できないか、形成できたとしても準位の幅が広
くなり、サブバンド間吸収強度は著しく弱くなってしま
う。しかし、中間層の厚さがさらに厚くなると平坦性が
改善され、強いサブバンド吸収が得られるようになる。
そして、サブバンド間吸収強度が影響されない中間層の
膜厚は臨界膜厚の15倍であると、この実験結果を解釈
できる。
Since the AlGaN cladding layer is sufficiently thick, the lattice can be considered to be relaxed. Therefore, the GaN intermediate layer grown thereon has an AlG
Although it is lattice-matched to aN, if it exceeds the critical film thickness (9 nm), the flatness deteriorates as in the case of the multiple quantum well structure. Even if the multiple quantum well structure is grown on the intermediate layer having poor flatness, the well layer of the multiple quantum well structure naturally has poor flatness. Therefore, a sub-band level cannot be formed, or even if a sub-band level can be formed, the width of the level is widened, and the absorption intensity between sub-bands is significantly reduced. However, when the thickness of the intermediate layer is further increased, the flatness is improved, and strong subband absorption can be obtained.
This experimental result can be interpreted that the thickness of the intermediate layer in which the intersubband absorption intensity is not affected is 15 times the critical thickness.

【0024】中間層をInGaNやAlGaNに変えて
実験したところ、いずれも同様の傾向が見られた。クラ
ッド層との格子定数差が異なるためにサブバンド間吸収
強度が影響されない膜厚値自体は様々であったが、いず
れの場合も少なくとも臨界膜厚の15倍以上の膜厚があ
ればサブバンド間吸収強度は影響を受けなかった。
When an experiment was conducted by changing the intermediate layer to InGaN or AlGaN, the same tendency was observed in each case. The film thickness itself was not affected by the difference in lattice constant from the cladding layer and the absorption intensity between subbands was not affected, but in any case, if the film thickness was at least 15 times the critical film thickness or more, The inter-absorption intensity was not affected.

【0025】[0025]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。図1は、本発明の一実施形態に
係わる非線形光デバイスの断面構成を模式的に示す図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a diagram schematically illustrating a cross-sectional configuration of a nonlinear optical device according to an embodiment of the present invention.

【0026】図1においては、サファイア基板1の(0
001)面上にMOCVD法にて、厚さ2μmのGaN
バッファ層2、厚さ130nmのAl0.6 Ga0.4 Nか
らなるクラッド層3、厚さ150nmのGaNからなる
中間層4、厚さ3nmのAl0.6 Ga0.4 N障壁層と厚
さ1.5nmのSiを2×1018cm-3ドープしたGa
N井戸層からなる井戸数30の多重量子井戸構造5、光
増幅部6が順次積層されている。
In FIG. 1, (0) of the sapphire substrate 1
001) GaN with a thickness of 2 μm on the surface by MOCVD
A buffer layer 2, a cladding layer 3 made of Al 0.6 Ga 0.4 N having a thickness of 130 nm, an intermediate layer 4 made of GaN having a thickness of 150 nm, an Al 0.6 Ga 0.4 N barrier layer having a thickness of 3 nm, and Si having a thickness of 1.5 nm. 2 × 10 18 cm -3 doped Ga
A multiple quantum well structure 5 having 30 wells composed of N well layers and an optical amplifier 6 are sequentially stacked.

【0027】この構造では、バッファ層2の一部より上
が光導波路7を形成している。光増幅部6としては、M
QW構造の窒化物半導体カスケードレーザを用いたレー
ザ増幅器を成長することによって形成しても良いし、或
いはInP基板上に成長したレーザ増幅器を多重量子井
戸構造5の上に直接張り付けることによって形成しても
良い。
In this structure, the optical waveguide 7 is formed above a part of the buffer layer 2. As the optical amplifier 6, M
It may be formed by growing a laser amplifier using a nitride semiconductor cascade laser having a QW structure, or by directly attaching a laser amplifier grown on an InP substrate on the multiple quantum well structure 5. May be.

【0028】レーザ増幅器6の一例を、図2に示してお
く。これは、本発明者らが既に提案したものであり(特
願平8−244785号)、コンタクト層81の上に1
00nm厚のn型GaN層61、Alの割合を0から
0.46まで連続的に変化させた170nm厚のn型A
lGaNグレーデイング層62、及びアンドープAlG
aN/アンドープGaN量子井戸層63が積層されてい
る。
An example of the laser amplifier 6 is shown in FIG. This has already been proposed by the present inventors (Japanese Patent Application No. 8-244785), and one layer is formed on the contact layer 81.
N-type GaN layer 61 having a thickness of 00 nm, n-type A having a thickness of 170 nm in which the ratio of Al is continuously changed from 0 to 0.46
lGaN graded layer 62 and undoped AlG
An aN / undoped GaN quantum well layer 63 is stacked.

【0029】量子井戸層63は、具体的には、Al0.67
Ga0.33N障壁層63a、GaN井戸層63b、Al
0.67Ga0.33N障壁層63c、GaN井戸層63d、A
0.78Ga0.22N障壁層63e、GaN井戸層63f、
Al0.78Ga0.22N障壁層63g、GaN井戸層63
h、Al0.89Ga0.11N障壁層63i、GaN井戸層6
3j、Al0.89Ga0.11N障壁層63k、GaN井戸層
63l、AlN障壁層63m、GaN井戸層63n、A
lN障壁層63oが順次積層されている。
Specifically, the quantum well layer 63 is made of Al 0.67
Ga 0.33 N barrier layer 63a, GaN well layer 63b, Al
0.67 Ga 0.33 N barrier layer 63 c, GaN well layer 63 d, A
l 0.78 Ga 0.22 N barrier layer 63e, GaN well layer 63f,
Al 0.78 Ga 0.22 N barrier layer 63 g, GaN well layer 63
h, Al 0.89 Ga 0.11 N barrier layer 63i, GaN well layer 6
3j, Al 0.89 Ga 0.11 N barrier layer 63 k, GaN well layer 63 l, AlN barrier layer 63 m, GaN well layer 63 n, A
The 1N barrier layers 63o are sequentially stacked.

【0030】各層63a〜63oの厚さは7モノレイヤ
ーであり、障壁層においてはAlの組成の変化に伴って
格子定数が変化し、厚さが積層順に同じか又は少しずつ
薄くなっている。また、各井戸層のエネルギー障壁は、
積層順に、等しいか又は大きくなっている。
Each of the layers 63a to 63o has a thickness of 7 monolayers. In the barrier layer, the lattice constant changes with a change in the Al composition, and the thickness becomes the same or slightly smaller in the stacking order. The energy barrier of each well layer is
They are equal or larger in the stacking order.

【0031】量子井戸層63上には、Alの割合を0.
12から0.46まで連続的に変化させた125nm厚
のn型AlGaNグレーディング層64が形成されてい
る。これらAlGaN/GaN量子井戸層63とAlG
aNグレーディング層64との組み合わせは合計25
組、順次積層されている。そして、25組目のAlGa
N/GaN量子井戸層63の上には、100nm厚のn
型GaN層65、n型AlAsクラッド層66及びn型
GaNコンタクト層82が形成されている。
On the quantum well layer 63, the ratio of Al is set to 0.1.
An n-type AlGaN grading layer 64 having a thickness of 125 nm continuously changed from 12 to 0.46 is formed. These AlGaN / GaN quantum well layers 63 and AlG
25 combinations with the aN grading layer 64
Pairs are sequentially stacked. And the 25th set of AlGa
On the N / GaN quantum well layer 63, a 100 nm thick n
A GaN layer 65, an n-type AlAs cladding layer 66, and an n-type GaN contact layer 82 are formed.

【0032】このように本実施形態によれば、Al0.6
Ga0.4 Nクラッド層3の厚さを130nmとその臨界
膜厚以上に設定し、GaN中間層4の厚さを150nm
とその臨界膜厚の15倍以上に設定し、さらに多重量子
井戸構造5におけるAl0.6Ga0.4 N障壁層の厚さを
3nmとその臨界膜厚以下に設定することにより、多重
量子井戸構造5の井戸層を平坦性良く形成することがで
き、光閉じ込め効率が高く、十分な強度のサブバンド間
吸収を実現することができる。
As described above, according to the present embodiment, Al 0.6
The thickness of the Ga 0.4 N cladding layer 3 is set to 130 nm and its critical thickness or more, and the thickness of the GaN intermediate layer 4 is set to 150 nm.
By setting the thickness of the Al 0.6 Ga 0.4 N barrier layer in the multiple quantum well structure 5 to 3 nm or less and the critical thickness of the multiple quantum well structure 5 or less. The well layer can be formed with good flatness, the light confinement efficiency is high, and a sufficient intensity of intersubband absorption can be realized.

【0033】なお、本発明は上述した実施形態に限定さ
れるものではない。実施形態では、中間層にGaNを用
いたが、中間層としてInGaNを用いることもでき
る。InGaN層を用いることによりクラック防止層と
しての効果も発揮でき、これにより井戸数を増すことが
でき、より吸収効率の大きい素子が形成できる。また、
中間層としてクラッド層よりはAl組成の低いAlGa
Nを用いてもよい。この場合には、GaNを用いた場合
に比べて屈折率が小さくなるので、光の強度分布が相対
的に多重量子井戸層に偏り、吸収効率が大きくなる。
The present invention is not limited to the above embodiment. In the embodiment, GaN is used for the intermediate layer, but InGaN may be used for the intermediate layer. By using the InGaN layer, an effect as a crack prevention layer can be exhibited, whereby the number of wells can be increased, and an element having higher absorption efficiency can be formed. Also,
AlGa having a lower Al composition than the cladding layer as an intermediate layer
N may be used. In this case, since the refractive index is smaller than when GaN is used, the light intensity distribution is relatively biased toward the multiple quantum well layer, and the absorption efficiency is increased.

【0034】また、クラッド層のAl組成は0.6に限
らず、多重量子井戸層と中間層の平均の屈折率よりも小
さくなる範囲、即ち光の閉じ込めが行える範囲内で変更
して良い。その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施することができる。
The Al composition of the cladding layer is not limited to 0.6, but may be changed within a range where the average refractive index of the multiple quantum well layer and the intermediate layer is smaller than the average refractive index, that is, within a range where light can be confined. In addition, without departing from the gist of the present invention,
Various modifications can be made.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、多
重量子井戸構造とクラッド層との間にクラッド層よりも
格子定数が大きい中間層を形成し、この中間層の膜厚、
多重量子井戸構造の障壁層の膜厚、クラッド層の膜厚等
を最適に設定することにより、光閉じ込め効率が高く、
十分な強度のサブバンド間吸収を発現することが可能な
構造を有する非線形光デバイスを実現することが可能と
なる。
As described above, according to the present invention, an intermediate layer having a larger lattice constant than the cladding layer is formed between the multiple quantum well structure and the cladding layer.
By optimally setting the thickness of the barrier layer and the thickness of the cladding layer of the multiple quantum well structure, the optical confinement efficiency is high,
It is possible to realize a non-linear optical device having a structure capable of expressing a sufficient intensity of inter-subband absorption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わる非線形光デバイス
の構成を模式的に示す図。
FIG. 1 is a diagram schematically showing a configuration of a nonlinear optical device according to an embodiment of the present invention.

【図2】図1の実施形態に用いたレーザ増幅器の構成例
を示す図。
FIG. 2 is a diagram illustrating a configuration example of a laser amplifier used in the embodiment of FIG. 1;

【図3】PL強度の障壁層の厚さに対する依存性を示す
図。
FIG. 3 is a diagram showing the dependence of PL intensity on the thickness of a barrier layer.

【図4】サブバンド間吸収強度の中間層の厚さに対する
依存性を示す図。
FIG. 4 is a diagram showing the dependence of the intersubband absorption intensity on the thickness of the intermediate layer.

【符号の説明】[Explanation of symbols]

1…サファイア基板 2…GaNバッファ層 3…AlGaNクラッド層 4…GaN中間層 5…AlGaN/GaN多重量子井戸構造 6…増幅部 7…光導波路 REFERENCE SIGNS LIST 1 sapphire substrate 2 GaN buffer layer 3 AlGaN cladding layer 4 GaN intermediate layer 5 AlGaN / GaN multiple quantum well structure 6 amplifying unit 7 optical waveguide

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に複数の窒化物系半導体層を積層し
てなり、該窒化物系半導体層中に、導波路の一部を構成
し、かつサブバンド間遷移による光吸収層として機能す
る多重量子井戸構造を備えた非線形光デバイスにおい
て、 前記多重量子井戸構造の障壁層はAlGaNで構成さ
れ、 前記多重量子井戸構造と基板との間にAlGaNからな
るクラッド層が形成され、 前記多重量子井戸構造とクラッド層との間に該クラッド
層よりも格子定数が大きい中間層が形成されていること
を特徴とする非線形光デバイス。
1. A semiconductor device comprising: a plurality of nitride-based semiconductor layers laminated on a substrate; a part of a waveguide in the nitride-based semiconductor layers; and a function as a light absorption layer by transition between sub-bands In the nonlinear optical device having the multiple quantum well structure, the barrier layer of the multiple quantum well structure is made of AlGaN, and a cladding layer made of AlGaN is formed between the multiple quantum well structure and the substrate. A nonlinear optical device, wherein an intermediate layer having a larger lattice constant than the cladding layer is formed between the well structure and the cladding layer.
【請求項2】前記多重量子井戸構造の障壁層はAlx
1-x N(x≧0.6)であり、前記多重量子井戸構造
の井戸層はGaNであることを特徴とする請求項1記載
の非線形光デバイス。
2. The multi-quantum well structure barrier layer is formed of Al x G
2. The nonlinear optical device according to claim 1, wherein a 1-x N (x ≧ 0.6), and the well layer of the multiple quantum well structure is GaN.
【請求項3】前記多重量子井戸構造の障壁層の厚さは、
次式 【数1】 (a0 ,as は該当する層と下地層の格子定数、b=0.
3084nm,λ=π/3,υ=0.38、hc は膜厚)で定義さ
れる臨界膜厚以下であり、前記中間層はGaN,AlG
aN,又はInGaNで形成され、その厚さが上式で定
義される臨界膜厚の15倍以上であり、前記クラッド層
の厚さは上式で定義される臨界膜厚以上であることを特
徴とする請求項1又は2記載の非線形光デバイス。
3. The barrier layer of the multiple quantum well structure has a thickness of:
The following equation (A 0, a s the lattice constant of the corresponding layer and the underlying layer, b = 0.
3084 nm, λ = π / 3, υ = 0.38, and h c is a film thickness or less, and the intermediate layer is made of GaN, AlG
aN or InGaN, the thickness of which is at least 15 times the critical thickness defined by the above equation, and the thickness of the cladding layer is at least the critical thickness defined by the above equation. The nonlinear optical device according to claim 1 or 2, wherein
【請求項4】基板上に形成されたGaNバッファ層と、
このバッファ層上に形成されたAlGaNクラッド層
と、このクラッド層上に形成された該クラッド層よりも
格子定数の大きいGaN,AlGaN,又はInGaN
からなる中間層と、この中間層上にGaN井戸層とAl
x Ga1-x N(x≧0.6)障壁層を交互に積層してな
り、導波路の一部を構成すると共に、サブバンド間遷移
による光吸収層として機能する多重量子井戸構造とを備
えた非線形光デバイスであって、 前記多重量子井戸構造の障壁層の厚さは、次式 【数2】 (a0 ,as は該当する層と下地層の格子定数、b=0.
3084nm、λ=π/3、υ=0.38、hc は膜厚)で定義さ
れる臨界膜厚以下であり、前記中間層の厚さは上式で定
義される臨界膜厚の15倍以上であり、前記クラッド層
の厚さは上式で定義される臨界膜厚以上であることを特
徴とする非線形光デバイス。
4. A GaN buffer layer formed on a substrate,
An AlGaN cladding layer formed on the buffer layer, and GaN, AlGaN, or InGaN having a larger lattice constant than the cladding layer formed on the cladding layer.
, A GaN well layer and Al
x Ga 1-x N (x ≧ 0.6) becomes a barrier layer are laminated alternately, thereby constituting a part of the waveguide, and a multiple quantum well structure that serves as a light absorbing layer according to intersubband transitions The thickness of the barrier layer of the multiple quantum well structure is expressed by the following equation: (A 0, a s the lattice constant of the corresponding layer and the underlying layer, b = 0.
3084 nm, λ = π / 3, υ = 0.38, h c is a critical thickness or less defined by the following formula, and the thickness of the intermediate layer is 15 times or more the critical thickness defined by the above equation. Wherein the thickness of the cladding layer is equal to or greater than the critical thickness defined by the above equation.
JP9229478A 1997-08-26 1997-08-26 Nonlinear optical device Expired - Lifetime JP2950799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9229478A JP2950799B2 (en) 1997-08-26 1997-08-26 Nonlinear optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9229478A JP2950799B2 (en) 1997-08-26 1997-08-26 Nonlinear optical device

Publications (2)

Publication Number Publication Date
JPH1164899A true JPH1164899A (en) 1999-03-05
JP2950799B2 JP2950799B2 (en) 1999-09-20

Family

ID=16892810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9229478A Expired - Lifetime JP2950799B2 (en) 1997-08-26 1997-08-26 Nonlinear optical device

Country Status (1)

Country Link
JP (1) JP2950799B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217421A (en) * 2004-01-30 2005-08-11 Lumileds Lighting Us Llc Group iii nitride light-emitting device of improved high current efficiency
CN114924432A (en) * 2021-02-12 2022-08-19 富士通光器件株式会社 Optical device and optical transceiver using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217421A (en) * 2004-01-30 2005-08-11 Lumileds Lighting Us Llc Group iii nitride light-emitting device of improved high current efficiency
CN114924432A (en) * 2021-02-12 2022-08-19 富士通光器件株式会社 Optical device and optical transceiver using the same

Also Published As

Publication number Publication date
JP2950799B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US7015498B2 (en) Quantum optical semiconductor device
JP4173445B2 (en) Nitride semiconductor substrate, method for manufacturing the same, and semiconductor light emitting device using the same
CA2424468C (en) Quantum dash devices
JP4737745B2 (en) Semiconductor device
JPH03119761A (en) Method of making quantum well structure with highly mismatching lattice
US20090085056A1 (en) Optical semiconductor device and method for fabricating the same
US7039078B2 (en) Semiconductor optical modulator and laser with optical modulator
JPH09318918A (en) Semiconductor optical modulator
EP1760851B1 (en) Semiconductor optical amplification device and optical integrated circuit
JP5374894B2 (en) Semiconductor optical amplifier, manufacturing method thereof, and semiconductor optical integrated device
Yasuoka et al. Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-$\mu $ m wavelength bands
JP2004087749A (en) Semiconductor light device having quantum dot
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JP2950799B2 (en) Nonlinear optical device
JP2922160B2 (en) Nonlinear optical device
JP3443803B2 (en) Semiconductor structure and method of manufacturing the same
JP2806089B2 (en) Semiconductor multiple strain quantum well structure
JP2002084042A (en) Quantum dot structure and semiconductor device having that
JP2954203B1 (en) Manufacturing method of optical waveguide element
JP2988934B1 (en) Nonlinear optical device
JP2005215395A (en) Semiconductor waveguide type light controlling element
US6791746B2 (en) Extended bandwidth semiconductor optical amplifier
JP2000299530A (en) Semiconductor light-emitting device
Tsuji et al. Selective growth of InAlAs by low pressure metalorganic vapor phase epitaxy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 14

EXPY Cancellation because of completion of term