JPH1164507A - Range finder method - Google Patents

Range finder method

Info

Publication number
JPH1164507A
JPH1164507A JP9231715A JP23171597A JPH1164507A JP H1164507 A JPH1164507 A JP H1164507A JP 9231715 A JP9231715 A JP 9231715A JP 23171597 A JP23171597 A JP 23171597A JP H1164507 A JPH1164507 A JP H1164507A
Authority
JP
Japan
Prior art keywords
distance
signal
time difference
phase difference
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9231715A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamamoto
光男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP9231715A priority Critical patent/JPH1164507A/en
Publication of JPH1164507A publication Critical patent/JPH1164507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a highly precise range measurement by correcting the detected values of the time difference and phase difference between a response signal returned with a delay quantity data added thereto after receiving a question signal and the question signal by use of the delay quantity data. SOLUTION: A question device (a) modulates a signal generated by a pulse generator 1 by a transmitter 2, and transmits it as a question signal St to a response device (b) through an antenna 3. The response device (b) receives the question signal by an antenna 4, modulates it with the natural delay quantity data of the device after removing an unnecessary component by a band-pass filter 5, and transmits the result as a response signal through the antenna 4. The question device (a) receives the response signal followed by amplifying, and then removes an unnecessary component by a band pass filter 7 to provide an output Sr. The time difference and phase difference between St and Sr are detected by a time difference wave detector 8 and a phase wave detector 9, digitized by A/D converters 10, 11, respectively, and inputted to a control circuit 12 together with the correction value by the delay quantity data to calculate the distance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電波による距離測定
方法に関し、詳しくは質問信号又は応答信号間の時間差
及び又は位相差を質問信号又は応答信号周波数の波長と
比較しその結果により、時間差及び又は位相差を最適に
組合わせ且つ系の遅延量デ−タ(制御及び処理による時
間及び位相遅延量の固定値)を用いて補正し、精度のよ
い測定を可能とする方法に関する。本発明は、移動する
車両、動物及び人間等に応答装置を装着して質問装置か
らの距離を測定することにより、その位置を把握するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring method using radio waves, and more particularly, to comparing a time difference and / or a phase difference between interrogation signals or response signals with a wavelength of an interrogation signal or response signal frequency, and according to the result, the time difference and / or phase difference is determined. The present invention relates to a method for optimally combining phase differences and correcting using system delay data (fixed values of time and phase delay by control and processing) to enable accurate measurement. According to the present invention, the response device is attached to a moving vehicle, an animal, a human, or the like, and the distance from the interrogation device is measured to grasp the position.

【0002】[0002]

【従来の技術】電波を使用して質問信号又は応答信号間
の位相差又は時間差を検出して距離を測定する方法とし
て2つの方法が提案されているが、以下にその概要を示
す。
2. Description of the Related Art Two methods have been proposed as methods for measuring a distance by detecting a phase difference or a time difference between interrogation signals or response signals using radio waves.

【0003】まず、従来の位相差検出による距離測定方
法では、距離が質問信号又は応答信号の1/2波長未満
の条件下であれば位相差のみの検出により距離測定は可
能であるが、位相差は質問信号又は応答信号波長の周期
関数であるので距離が1/2波長以上になると位相差の
みでは正確な測定が困難となる。
First, in the conventional distance measurement method using phase difference detection, distance measurement can be performed by detecting only the phase difference under the condition that the distance is less than 1/2 wavelength of the interrogation signal or response signal. Since the phase difference is a periodic function of the wavelength of the interrogation signal or the response signal, accurate measurement is difficult only with the phase difference when the distance exceeds 1/2 wavelength.

【0004】一方、従来の時間差検出による距離測定方
法において、電波の質問信号又は応答信号の時間差を検
出する方法では、信号送出からその信号受信迄の遅延時
間差をカウンタ−で計測して距離を求めている。しかし
このカウンタ−方式は、距離が大きい場合は高精度で測
定出来るが距離が短い場合は超高速の高価なカウンタ−
が必要となる。例えば、1mの距離では電波の伝搬時間
は、0.0067μsecであり、この様な短時間を計
測するにはクロック周波数として最低でも151MHz
が必要となり、応答装置が質問を受けて応答する迄の応
答時間ジッタ−も数nsec以下が要求されることは勿
論、実際の系の時間遅れは、通常数μsecあるので実
質的には測定不可能である。
On the other hand, in the conventional distance measuring method by detecting a time difference, in a method of detecting a time difference between a radio wave inquiry signal and a response signal, a counter measures a delay time difference from signal transmission to signal reception to obtain a distance. ing. However, this counter system can measure with high accuracy when the distance is large, but is an ultra-high-speed expensive counter when the distance is short.
Is required. For example, at a distance of 1 m, the propagation time of a radio wave is 0.0067 μsec. To measure such a short time, a clock frequency of at least 151 MHz is required.
Needless to say, the response time jitter until the response device receives a query and responds is required to be several nsec or less. Of course, since the actual system time delay is usually several μsec, it is substantially impossible to measure. It is possible.

【0005】[0005]

【発明が解決しようとする課題】しかしながら以上説明
したような従来の技術では以下に示す問題点があった。 (1)質問信号と応答信号間の位相差又は時間差検出の
どちらか一つの方法だけで短い距離から長い距離までの
全区間を、高精度で測定することが難しい。 (2)さらに、系の遅延量デ−タは各応答装置毎に絶対
値に差があり距離測定精度に限界を生じさせる原因にな
っている。
However, the prior art as described above has the following problems. (1) It is difficult to measure the entire section from a short distance to a long distance with high accuracy by only one of the methods of detecting the phase difference or the time difference between the interrogation signal and the response signal. (2) Further, the delay amount data of the system has a difference in the absolute value for each response device, which causes a limitation in the distance measurement accuracy.

【0006】[0006]

【課題を解決するための手段】質問装置から送出する質
問信号を、応答装置により受信し且つ各応答装置毎に固
有の遅延量デ−タを付加した応答信号を質問装置に返送
し、それを質問装置により受信して、送出した質問信号
と受信した応答信号間の時間差及び位相差の検出値から
前記各応答装置毎に固有の遅延量デ−タを用いて補正す
ることにより真の時間差及び真の位相差を求めて距離を
測定する手段を有する電波による距離測定方法であっ
て、前記真の時間差を自動的に質問信号又は応答信号周
波数の一波長に相当する時間値と比較して、それが一波
長に相当する時間差未満であれば前記真の位相差のみで
距離を算出し、それが一波長に相当する時間差以上であ
れば、真の時間差に対する質問信号又は応答信号周波数
の一波長に相当する時間の比の整数倍×1/2波長+真
の位相差のみで算出した距離により算出する手段を有し
て、時間差及び又は位相差を最適に組合わせて全測定区
間に亙り高精度な距離算出を可能とする距離測定方法を
有する。
An interrogation signal sent from an interrogation device is received by a response device, and a response signal to which an inherent delay amount data is added for each response device is returned to the interrogation device. The true time difference and the true time difference are corrected by correcting the time difference and the phase difference between the interrogated signal received and transmitted by the interrogator using the delay amount data unique to each of the responders. A distance measuring method by a radio wave having a means for measuring a distance by obtaining a true phase difference, wherein the true time difference is automatically compared with a time value corresponding to one wavelength of an interrogation signal or a response signal frequency, If it is less than the time difference corresponding to one wavelength, the distance is calculated only by the true phase difference, and if it is equal to or greater than the time difference corresponding to one wavelength, one wavelength of the interrogation signal or response signal frequency for the true time difference Equivalent to Integral multiple of the ratio between the two times the half wavelength + means for calculating the distance based on only the true phase difference, and a highly accurate distance over the entire measurement section by optimally combining the time difference and / or the phase difference. It has a distance measurement method that allows calculation.

【0007】[0007]

【発明の実施の形態】図1は、本発明の一実施例を示す
ブロック図である。図1(a)は質問装置、図1(b)
は応答装置の実施例を示す。以下に動作を示す。
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 1 (a) is an inquiry device, FIG. 1 (b)
Shows an embodiment of a response device. The operation will be described below.

【0008】質問装置は、質問パルス発生回路1で生成
した信号を送信機2にて変調して周波数がf1である信
号を発生しこれをStとして、アンテナ3から応答装置
へ送信する。これを質問信号とする。
The interrogating device modulates the signal generated by the interrogating pulse generating circuit 1 by the transmitter 2 to generate a signal having a frequency f1 and transmits it as St to the responding device from the antenna 3. This is used as an inquiry signal.

【0009】応答装置はStである質問信号をアンテナ
4で受信し、増幅した後に帯域フィルタ−5を通し不要
な信号成分を除去する。応答装置内での信号の遅延量デ
−タはゼロでなく、また各応答装置毎に遅延量デ−タは
違っている。各応答装置では読出し専用メモリ(RO
M)6中にそれらの実際の値を書込んでおき、符号化し
て応答信号を変調し応答装置のアンテナ4から送出す
る。
The transponder receives the interrogation signal St by the antenna 4, amplifies the signal, and removes unnecessary signal components through a bandpass filter 5. The delay amount data of the signal in the transponder is not zero, and the delay amount data differs for each transponder. In each response device, a read-only memory (RO
M) These actual values are written in 6 and encoded to modulate the response signal and transmitted from the antenna 4 of the transponder.

【0010】質問装置はアンテナ3から応答信号を受信
増幅後、帯域フィルタ−7で不要な信号成分を除去し、
その出力をSrとする。
[0010] After the interrogator receives and amplifies the response signal from the antenna 3, it removes unnecessary signal components with a bandpass filter 7,
The output is defined as Sr.

【0011】質問装置によって、StとSr間の時間差
検波器8及び位相検波器9でStとSrの位相差を検出
する。この場合、応答装置の遅延量デ−タをゼロとすれ
ば、StとSr間の真の位相差は距離の正弦波関数とな
る。検出した時間差及び位相差出力をそれぞれA/D変
換器10、11によりデジタル信号に変換し、遅延量デ
−タによる補正値と共に制御回路12に入力して計算す
れば精度よく自動距離測定が出来る。
An interrogator detects a phase difference between St and Sr by a time difference detector 8 and a phase detector 9 between St and Sr. In this case, if the delay amount data of the transponder is set to zero, the true phase difference between St and Sr becomes a sine wave function of the distance. The detected time difference and phase difference outputs are converted into digital signals by the A / D converters 10 and 11, respectively, and input to the control circuit 12 together with the correction value based on the delay amount data to calculate the distance. .

【0012】実際の応用例として、車間距離の測定につ
いて下記に示す。説明を簡単にする為に、一台の車両に
質問装置、もう一台の車両に応答装置を装着した場合
で、系の遅延量デ−タはゼロと仮定する。数mの距離を
電波による質問信号と応答信号間の時間差を計測して行
うのは困難を伴うが、位相差検出により行えば時間差計
測よりも容易に実現出来る。例えば、質問装置と応答装
置間の距離をR(m)とし、この往復の距離2Rは質問
信号又は応答信号周波数f1の波長λf1(m)よりも短
いとすれば、距離Rを電波が往復する真の時間Tは次式
で表せる。 T=2R[m]/300[m/μsec](μsec) 但し,2R<λf1……(1) 距離Rを信号が往復すれば、真の位相差Φは次式で与え
られる。 Φ=2π(2R/λf1)(radian)但し、Φ<2π …… (2) もし、Rが数mという短距離であればTは非常に小さい
値となる。仮にR=1mとすれば(1)式よりT=0.
0067μsecであり、この値を測定するには高価な
超高速カウンタ−が必要となる。しかし、波長λf1=1
0mの周波数(f1=30MHz)を使用すれば、Φ=
2π×2/10であり検出は容易になる。この方法で
は、まず質問から応答迄の時間差を検出しそれが質問信
号又は応答信号周波数の一波長の整数長を電波が往復し
て進む時間長を越えているかどうか判定する。整数倍未
満ならば距離が質問信号又は応答信号の1/2波長未満
であるので(2)式より、真の位相差のみで距離が計算
出来る。整数倍以上であれば1/2波長以上であり距離
R+は、真の時間差に対する質問信号又は応答信号周波
数の一波長に相当する時間(Tf1)の比の整数倍×1/
2波長+真の位相差から求められる距離、 R+ =T/Tf1の整数倍×1/2λf1+(2)式で求めた距離 (但し、2R ≧λf1)……(3) で与えられ、真の時間差及び又は真の位相差を最適に組
合わせることにより短い距離から長い距離までの全区間
に亙り、高精度に計測可能とするものである。
As an actual application example, measurement of an inter-vehicle distance will be described below. For the sake of simplicity, it is assumed that the interrogation device is mounted on one vehicle and the response device is mounted on the other vehicle, and the delay amount data of the system is zero. It is difficult to measure a distance of several meters by measuring the time difference between the interrogation signal and the response signal by radio waves. However, if the measurement is performed by detecting the phase difference, it can be realized more easily than the time difference measurement. For example, if the distance between the interrogator and the responder is R (m), and the reciprocating distance 2R is shorter than the wavelength λf1 (m) of the interrogation signal or response signal frequency f1, the radio wave reciprocates over the distance R. The true time T can be expressed by the following equation. T = 2R [m] / 300 [m / μsec] (μsec) where 2R <λf1 (1) If the signal reciprocates over the distance R, the true phase difference Φ is given by the following equation. Φ = 2π (2R / λf1) (radian) where Φ <2π (2) If R is a short distance of several meters, T is a very small value. Assuming that R = 1m, T = 0.
0067 μsec, and an expensive ultra-high-speed counter is required to measure this value. However, the wavelength λf1 = 1
Using a frequency of 0 m (f1 = 30 MHz), Φ =
2π × 2/10, which facilitates detection. In this method, first, a time difference from a question to a response is detected, and it is determined whether or not the time difference exceeds a time length of a radio wave traveling back and forth over one wavelength of an inquiry signal or response signal frequency. If it is less than an integral multiple, the distance is less than half the wavelength of the interrogation signal or the response signal, and the distance can be calculated only from the true phase difference according to equation (2). If it is an integral multiple or more, it is 1/2 wavelength or more, and the distance R + is an integral multiple of the ratio of the time (Tf1) corresponding to one wavelength of the interrogation signal or response signal frequency to the true time difference × 1/1.
R + = Integer multiple of T / Tf1 × 1 / 2λf1 + Distance calculated by equation (2) (provided that 2R ≧ λf1) (3) By optimally combining the time difference and / or the true phase difference, it is possible to measure with high accuracy over the entire section from a short distance to a long distance.

【0013】上記(1)〜(3)式は系の遅延量をゼロ
と仮定しているが実際の系には各応答装置毎に時間差及
び位相差の遅延量があり、これらを含めて処理する必要
がありその方法を具体的に説明する。ここで、質問信号
Stから応答信号Srまでの時間差及び位相差の検出値
をそれぞれTm、Φmとし,実際の系の時間差及び位相
差の遅延量をそれぞれTd’、Φd’、各応答装置毎の
時間及び位相遅延量デ−タ(固定値)をそれぞれTd、
Φd、質問信号又は応答信号周波数の一波長に相当する
時間(固定値)をTf1、時間差の比較基準をTrとすれ
ば、次式が成立する。 Tm=T+Td’ ここで、Td’=Tdとすれば、 T=Tm−Td’ =Tm−Td ………………………………………………………(4) となり、真の時間差は時間差の検出値と各応答装置毎の
時間遅延量デ−タの差によって表せる。次に、時間差の
比較基準を次式で表し、 Tr=Tf1+Td(固定値) TmとTrを比較する為にその差を取れば、Td’=T
dなので、 Tm−Tr=T−Tf1+Td’−Td =T−Tf1 ………………………………………………(5) となり、時間差の検出値と時間差の比較基準間の差をと
ることにより、真の時間差と質問信号又は応答信号周波
数の一波長に相当する時間との比較をすることが出来
る。位相差については、Φd’=Φdとすれば、 Φm=Φ+Φd’ =Φ+Φd Φ=Φm−Φd ………………………………………………………(6) となり、真の位相差は位相差の検出値と各応答装置毎の
位相遅延量デ−タの差によって表せる。従って、上記
(5)式により、Tm−Tr<0の時の距離は質問信号
又は応答信号周波数の1/2波長未満なので、(6)式
の値を使い(2)式によって真の位相差のみで距離を算
出する。Tm−Tr≧0の時の距離は質問信号又は応答
信号周波数の1/2波長以上なので(3)式、即ちT/
Tf1の整数倍×1/2λf1+(6)式の値を使い(2)
式によって真の位相差のみで算出した距離、で求められ
る。
In the above equations (1) to (3), the delay amount of the system is assumed to be zero. However, in an actual system, there is a delay amount of a time difference and a phase difference for each response device. The method must be specifically described. Here, the detected values of the time difference and the phase difference from the interrogation signal St to the response signal Sr are Tm and Φm, respectively, and the actual system time difference and the phase difference delay amount are Td ′ and Φd ′, respectively. The time and phase delay amount data (fixed values) are Td,
If Φd, the time (fixed value) corresponding to one wavelength of the interrogation signal or the response signal frequency is Tf1, and the comparison standard of the time difference is Tr, the following equation is established. Tm = T + Td ′ Here, if Td ′ = Td, T = Tm−Td ′ = Tm−Td........... The true time difference can be represented by the difference between the detected value of the time difference and the time delay data for each responding device. Next, the comparison standard of the time difference is expressed by the following equation. Tr = Tf1 + Td (fixed value) If the difference is taken to compare Tm and Tr, Td ′ = Td
d, Tm−Tr = T−Tf1 + Td′−Td = T−Tf1 (5). By taking the difference, it is possible to compare the true time difference with the time corresponding to one wavelength of the interrogation signal or response signal frequency. As for the phase difference, assuming that Φd ′ = Φd, Φm = Φ + Φd ′ = Φ + Φd Φ = Φm−Φd ………………………………… (6) The true phase difference can be represented by the difference between the detected value of the phase difference and the phase delay amount data for each response device. Therefore, according to the above equation (5), the distance when Tm−Tr <0 is less than 波長 wavelength of the interrogation signal or response signal frequency, so that the true phase difference is calculated by the equation (2) using the value of the equation (6). Only calculate the distance. Since the distance when Tm−Tr ≧ 0 is equal to or more than 波長 wavelength of the frequency of the interrogation signal or the response signal, Equation (3), that is, T /
Integer multiple of Tf1 × 1 / 2λf1 + Using the value of equation (6) (2)
The distance is calculated using only the true phase difference according to the equation.

【0014】上記の車間距離計測について具体的な検出
値及び遅延量デ−タ等が下記の場合、 Tm=3.0
2μs(StとSr間の時間差検出値) Td=3.00μs(応答装置の時間遅延デ−タ) Φm=1.35π (StとSr間の位相差検出値) Φd=0.15π (応答装置の位相遅延デ−タ) Tf1=0.03μs(質問信号又は応答信号周波数:f
1=30MHz) λf1=10m (質問信号又は応答信号周波数:f
1=30MHz) (4)式より、T=0.02μs、(5)式より、Tm
−Tr=T−Tf1=0.02μs−0.03μs<0で
あるので、距離は質問信号又は応答信号周波数の1/2
波長未満であり、(6)式より、Φ=1.35π−0.
15π=1.20πを求めて(2)式に代入すれば、 1.20π=2π(2R/10) より、R=3mが算出でき、この値は(1)式にT=
0.02μsを代入して計算した値R=3mと一致す
る。次に車両の移動により検出値のみが、Tm=3.0
6μs、Φm=1.75πに変化した場合は、(4)式
より、T=0.06μs、(5)式より、Tm−Tr=
T−Tf1=0.06μs−0.03μs>0であるの
で、距離は質問信号又は応答信号の1/2波長以上であ
り、位相差のみによる距離は(6)式より、Φ=1.7
5π−0.15π=1.60πを求めて(2)式に代入
すれば、 1.60π=2π(2R/10) より、R=4mが算出できるので、(3)式より、求め
る距離は、 R+=0.06/0.03×1/2×10+4=14m と算出できる。
[0014] In the case where the specific detected value and delay amount data and the like for the above inter-vehicle distance measurement are as follows, Tm = 3.0
2 μs (detected value of time difference between St and Sr) Td = 3.00 μs (time delay data of response device) Φm = 1.35π (detected value of phase difference between St and Sr) φd = 0.15π (response device Tf1 = 0.03 μs (interrogation signal or response signal frequency: f
1 = 30 MHz) λf1 = 10 m (interrogation signal or response signal frequency: f
1 = 30 MHz) From equation (4), T = 0.02 μs, and from equation (5), Tm
Since −Tr = T−Tf1 = 0.02 μs−0.03 μs <0, the distance is 1 / of the interrogation signal or response signal frequency.
Less than the wavelength, and from equation (6), Φ = 1.35π-0.
By calculating 15π = 1.20π and substituting it into equation (2), R = 3m can be calculated from 1.20π = 2π (2R / 10), and this value is obtained by calculating T =
This value matches the value R = 3 m calculated by substituting 0.02 μs. Next, only the detected value due to the movement of the vehicle becomes Tm = 3.0.
When 6 μs and Φm are changed to 1.75π, T = 0.06 μs from equation (4) and Tm−Tr =
Since T−Tf1 = 0.06 μs−0.03 μs> 0, the distance is equal to or more than 波長 wavelength of the interrogation signal or the response signal, and the distance based only on the phase difference is Φ = 1.7 from the equation (6).
By calculating 5π−0.15π = 1.60π and substituting it into the expression (2), R = 4m can be calculated from 1.60π = 2π (2R / 10). R + = 0.06 / 0.03 × 1/2 × 10 + 4 = 14 m.

【0015】上記の距離計測では、(4)〜(6)式に
おいて実際の系での時間差及び位相差の遅延量Td’、
Φd’が、各応答装置毎の時間差及び位相差の遅延量デ
−タTd、Φdに等しいという前提を置いているが、現
実にはTd’、Φd’にはジッタ−(揺らぎ)成分があ
り、計測の精度を左右する。従って、系の測定精度を考
慮して各応答装置毎の時間差及び位相差の遅延量デ−タ
Td、Φdに対するジッタ−成分の許容率を、時間差の
遅延量デ−タに対するジッタ−許容率、 δt=±(Td’−Td)/Td×100%…………………………(7) 位相差の遅延量デ−タに対するジッタ−許容率、 δφ=±(Φd’−Φd)/Φd×100%…………………………(8) と定義しておき、実測した時間差及び位相差の遅延量デ
−タのジッタ−成分がこの許容範囲内、例えば、上記
(7)及び(8)式よりδt=±5%、δφ=±7%と
設定すれば、Td’=3.00μs±0.15μs、Φ
d’=0.15π±0.01πの範囲内であれば、T
d’=Td、Φd’=Φd、とみなして(4)〜(6)
式による距離計算を実行することも可能である。従っ
て、実測値のジッタ−許容率をシステム毎に設定して距
離測定の精度維持及び信頼度を高めることが出来る。
In the above distance measurement, the delay amount Td 'of the time difference and the phase difference in the actual system in the equations (4) to (6),
It is assumed that .PHI.d 'is equal to the delay time data Td and .PHI.d of the time difference and the phase difference of each responder, but in reality, Td' and .PHI.d 'have a jitter (fluctuation) component. Affects the accuracy of measurement. Therefore, taking into account the measurement accuracy of the system, the tolerance of the jitter component for the delay data Td and Φd of the time difference and the phase difference of each responder, the jitter tolerance for the delay data of the time difference, δt = ± (Td′−Td) / Td × 100% (7) Jitter-tolerance of delay amount data of phase difference, δφ = ± (Φd′−Φd) / Φd × 100% (8), and the jitter component of the delay time data of the actually measured time difference and phase difference falls within the allowable range, for example, By setting δt = ± 5% and δφ = ± 7% from equations 7) and (8), Td ′ = 3.00 μs ± 0.15 μs, Φ
If d ′ = 0.15π ± 0.01π, then T
Assuming that d ′ = Td and Φd ′ = Φd, (4) to (6)
It is also possible to perform a distance calculation by an expression. Therefore, it is possible to maintain the accuracy and reliability of the distance measurement by setting the jitter-tolerance of the actually measured value for each system.

【0016】[0016]

【発明の効果】本発明は時間差及び位相差検出の基準信
号である質問信号又は応答信号の波長に応じて測定距離
を自動判定し、時間差及び又は位相差の検出値を最適に
組合わせて全距離に亙って高精度の測定を簡易に且つ低
コストで実現可能である。さらに、システム毎に各応答
装置毎遅延量デ−タに対するジッタ−許容率を設定して
距離測定の精度維持と信頼度向上を図ることが出来る。
According to the present invention, the measurement distance is automatically determined according to the wavelength of the interrogation signal or the response signal which is the reference signal for detecting the time difference and the phase difference, and the detected values of the time difference and / or the phase difference are optimally combined to obtain a total. High-precision measurement over a distance can be realized easily and at low cost. Further, it is possible to maintain the accuracy of distance measurement and improve the reliability by setting the jitter tolerance for the delay amount data for each response device for each system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施例で、図1a)は質問装
置、図1b)は応答装置である。
FIG. 1 is an embodiment according to the present invention, wherein FIG. 1a) is an interrogator and FIG. 1b) is a responder.

【符号の説明】[Explanation of symbols]

1…質問パルス発生回路、2…質問装置の送信機、3…
質問装置アンテナ、4…応答装置アンテナ,5…応答装
置帯域フィルタ−、6…応答装置読出し専用メモリ(R
OM)、7…質問装置帯域フィルタ−、8…時間差検波
器、9…位相検波器、10、11…A/D変換器、12
…制御回路
1. Interrogation pulse generation circuit 2. Transmitter of interrogation device 3.
Interrogator antenna, 4 ... Answerer antenna, 5 ... Answerer bandpass filter, 6 ... Answerer read-only memory (R
OM), 7: Interrogator bandpass filter, 8: Time difference detector, 9: Phase detector, 10, 11: A / D converter, 12
... Control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質問装置から送出する質問信号を、応答
装置により受信し且つ各応答装置毎に固有の遅延量デ−
タを付加した応答信号を質問装置に返送し、それを質問
装置により受信して、送出した質問信号と受信した応答
信号間の時間差及び位相差の検出値から前記各応答装置
毎に固有の遅延量デ−タを用いて補正することにより真
の時間差及び真の位相差を求めて距離を測定する手段を
有する電波による距離測定方法。
An interrogation signal transmitted from an interrogation device is received by a response device, and a delay amount data unique to each response device is received.
The response signal with the data added thereto is returned to the interrogator, which is received by the interrogator, and a time delay and phase difference between the transmitted interrogation signal and the received response signal are used to determine the delay inherent in each of the responders. A distance measuring method using a radio wave, comprising means for measuring a distance by obtaining a true time difference and a true phase difference by correcting using quantity data.
【請求項2】 前記真の時間差を自動的に質問信号又は
応答信号周波数の一波長に相当する時間値と比較して、
それが一波長に相当する時間差未満であれば前記真の位
相差のみで距離を算出し、それが一波長に相当する時間
差以上であれば、真の時間差に対する質問信号又は応答
信号周波数の一波長に相当する時間の比の整数倍×1/
2波長+真の位相差のみで算出した距離により算出する
手段を有して、時間差及び又は位相差を最適に組合わせ
て全測定区間に亙り高精度な距離算出を可能とする距離
測定方法。
2. The method of automatically comparing the true time difference with a time value corresponding to one wavelength of an interrogation signal or response signal frequency,
If it is less than the time difference corresponding to one wavelength, the distance is calculated only by the true phase difference, and if it is equal to or greater than the time difference corresponding to one wavelength, one wavelength of the interrogation signal or response signal frequency for the true time difference Integer multiple of time ratio corresponding to x 1 /
A distance measuring method comprising means for calculating a distance based on only two wavelengths and a true phase difference, and capable of calculating a distance with high accuracy over an entire measurement section by optimally combining a time difference and / or a phase difference.
JP9231715A 1997-08-13 1997-08-13 Range finder method Pending JPH1164507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9231715A JPH1164507A (en) 1997-08-13 1997-08-13 Range finder method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9231715A JPH1164507A (en) 1997-08-13 1997-08-13 Range finder method

Publications (1)

Publication Number Publication Date
JPH1164507A true JPH1164507A (en) 1999-03-05

Family

ID=16927888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231715A Pending JPH1164507A (en) 1997-08-13 1997-08-13 Range finder method

Country Status (1)

Country Link
JP (1) JPH1164507A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098747A (en) * 2000-08-11 2002-04-05 Alcatel Usa Sourcing Lp System and method for searching for mobile device
JP2008039738A (en) * 2006-08-10 2008-02-21 Fujitsu Ltd Positioning method
JP2010048748A (en) * 2008-08-25 2010-03-04 Japan Radio Co Ltd Radio frequency tag distance measuring device
JP2010160064A (en) * 2009-01-08 2010-07-22 Alps Electric Co Ltd Tire information monitoring system
JP2010203789A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Distance measuring device
JP2019053091A (en) * 2019-01-11 2019-04-04 スズキ株式会社 Automatic two- or three-wheeled vehicle
JP2019082487A (en) * 2019-01-11 2019-05-30 スズキ株式会社 vehicle
JP2019082489A (en) * 2019-01-11 2019-05-30 スズキ株式会社 vehicle
JP2019082488A (en) * 2019-01-11 2019-05-30 スズキ株式会社 Vehicle and automated two/three-wheel vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098747A (en) * 2000-08-11 2002-04-05 Alcatel Usa Sourcing Lp System and method for searching for mobile device
JP2008039738A (en) * 2006-08-10 2008-02-21 Fujitsu Ltd Positioning method
JP2010048748A (en) * 2008-08-25 2010-03-04 Japan Radio Co Ltd Radio frequency tag distance measuring device
JP2010160064A (en) * 2009-01-08 2010-07-22 Alps Electric Co Ltd Tire information monitoring system
JP2010203789A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Distance measuring device
JP2019053091A (en) * 2019-01-11 2019-04-04 スズキ株式会社 Automatic two- or three-wheeled vehicle
JP2019082487A (en) * 2019-01-11 2019-05-30 スズキ株式会社 vehicle
JP2019082489A (en) * 2019-01-11 2019-05-30 スズキ株式会社 vehicle
JP2019082488A (en) * 2019-01-11 2019-05-30 スズキ株式会社 Vehicle and automated two/three-wheel vehicle

Similar Documents

Publication Publication Date Title
RU2419813C2 (en) Method and device for measuring distance
US5220332A (en) Ranging by sequential tone transmission
JP3461498B2 (en) Distance measuring device, distance measuring equipment and distance measuring method
US7672363B2 (en) Method of and system for determining the delay of digital signals
US6392598B1 (en) Cable phase calibration in a TCAS
US11125870B2 (en) Moving-target detection system and moving-target detection method
JPH1164507A (en) Range finder method
US7460012B2 (en) Method and system for synchronizing geographically distributed RF sensors using a pair of RF triggering devices
JP2008045940A (en) Method for measuring distance using continuous wave microwave sensor
KR20000036154A (en) Process for determining the relative velocity between two moving objects
JP7379551B2 (en) Radar device, transponder reflected wave detection method, and positioning method
JPS62251683A (en) Positioning device by transponder
NL8000016A (en) DOPPLER LOG.
US4045797A (en) Radar doppler frequency measuring apparatus
JP2010529446A (en) Method and apparatus for determining azimuth in a TACAN type radio navigation system
JPS63256881A (en) Transmitter and receiver of acoustic position measuring instrument
RU2010260C1 (en) Phase method of distance measurement
JPH05203732A (en) Range finder
JPH04105086A (en) Intermittent fm-cw radar
US4057801A (en) Continuous-wave ranging system
HUT76209A (en) Radio range finder
JPS62169072A (en) Tracking radar
JP2856042B2 (en) Radar equipment for vehicles
JPH05107350A (en) Radar
JPS63193085A (en) Ultrasonic range finder