JPH1164349A - Scanning tunnel microscope in plasma environment - Google Patents

Scanning tunnel microscope in plasma environment

Info

Publication number
JPH1164349A
JPH1164349A JP25122797A JP25122797A JPH1164349A JP H1164349 A JPH1164349 A JP H1164349A JP 25122797 A JP25122797 A JP 25122797A JP 25122797 A JP25122797 A JP 25122797A JP H1164349 A JPH1164349 A JP H1164349A
Authority
JP
Japan
Prior art keywords
environment
microscope
plasma
scanning
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25122797A
Other languages
Japanese (ja)
Inventor
Kazuo Terajima
和夫 寺嶋
Zen Takamura
禅 高村
Yoshimasa Taniguchi
好正 谷口
Toyonobu Yoshida
豊信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25122797A priority Critical patent/JPH1164349A/en
Publication of JPH1164349A publication Critical patent/JPH1164349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit measurement in a plasma environment by a scanning probe microscope, which is conventionally limited to measurement in a gaseous environment, a liquid environment, or a vacuum environment, to provide a tunnel spectroscope using the scanning probe microscope, and to provide a device and a method for material processing such as film formation, etching, synthesis by chemical reaction, atomic manipulation, surface processing under a new condition that is in a plasma environment. SOLUTION: This microscope is composed of a low-temperature plasma generating part 7 and a scanning tunnel microscope part with electronics to resist a plasma voltage of 30 V or more and uses a probe insulated by a coating except a micro part of a tip end of 10 μm or less to permit operation and measurement in a plasma environment. By using this microscope, the new application areas of a scanning probe microscope such as the analysis of a solid surface structure, the analysis of an electronic structure, substance synthesis in a new environment that is in a plasma environment are exploited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用】本発明は走査式トンネル顕微鏡技術に
関する。
This invention relates to the technology of scanning tunneling microscopes.

【0002】[0002]

【従来の技術および発明が解決しようとしている課題】
走査式トンネル顕微鏡は、真空中、大気中、ガス中、液
体中での固体表面ナノメータースケール構造の解析に広
く用いられている。
Problems to be solved by the prior art and the invention
Scanning tunneling microscopes are widely used to analyze nanometer-scale structures on solid surfaces in vacuum, air, gas, and liquid.

【0003】しかしながら、従来の技術では、電離ガス
集合体であるプラズマ環境中では、荷電粒子(電子、イ
オン)の存在やプラズマ空間電位の存在などのため、走
査式トンネル顕微鏡の測定は不可能であった。
However, in the prior art, in a plasma environment, which is an ionized gas aggregate, measurement by a scanning tunneling microscope is impossible because of the presence of charged particles (electrons and ions) and the presence of plasma space potential. there were.

【0004】本発明は、かかる状況の下で、プラズマ環
境中での計測が可能な走査式トンネル顕微鏡を提供する
ことを目的とする。
An object of the present invention is to provide a scanning tunneling microscope capable of performing measurement in a plasma environment under such circumstances.

【0005】[0005]

【課題を解決するための手段】本発明者は、前記課題を
解決するために、低温プラズマ発生部と耐プラズマ電圧
性(30V以上)エレクトロニクスを有する走査式トン
ネル顕微鏡部とから構成され、先端10μm以下の微小
部を残し絶縁被覆した探針を用いた低温プラズマ環境下
で動作/計測を可能とする走査式トンネル顕微鏡の開発
に至った。
In order to solve the above-mentioned problems, the present inventor has constituted a low-temperature plasma generating section and a scanning tunneling microscope section having plasma-resistant (30 V or more) electronics, and has a tip of 10 μm. We have developed a scanning tunneling microscope that can operate / measure in a low-temperature plasma environment using a probe covered with an insulating coating while leaving the following minute parts.

【0006】[0006]

【作用】本発明は以上のような構成であり、従来、大気
中、ガス雰囲気、液体雰囲気、真空雰囲気での計測にか
ぎられていたものを、低温プラズマ環境雰囲気中での走
査式トンネル顕微鏡測定を可能とする。
The present invention has a configuration as described above. What has been conventionally limited to measurement in the atmosphere, gas atmosphere, liquid atmosphere, and vacuum atmosphere is replaced by scanning tunneling microscope measurement in a low-temperature plasma environment atmosphere. Is possible.

【0007】[0007]

【実施例】図1は本発明装置の実施例を示す概略図であ
る。図において1はプローブ、2は試料部、3はピエゾ
アクチュエーターなどのプローブ走査ユニット、4は試
料走査ユニット、7は低温プラズマ発生装置、6は発生
させた低温プラズマであり、これら走査式プローブ顕微
鏡装置一式が、容器5の中に収められ、ガス導入口8、
同排出口9が設置されている。図面は本研究実施例であ
り、本発明の範囲がこれらに限定されるものでないこと
は勿論である。図2および図3は、実際に高周波グロー
空気プラズマ環境下で測定した走査式トンネル顕微鏡の
グラファイト像である。プラズマ中でのナノスケールレ
ベルの表面構造解析の初めての例である。
FIG. 1 is a schematic view showing an embodiment of the apparatus of the present invention. In the figure, 1 is a probe, 2 is a sample unit, 3 is a probe scanning unit such as a piezo actuator, 4 is a sample scanning unit, 7 is a low-temperature plasma generator, and 6 is a low-temperature plasma generated. The set is housed in the container 5 and the gas inlet 8,
The outlet 9 is provided. The drawings are working examples, and the scope of the present invention is not limited to these working examples. 2 and 3 are graphite images of a scanning tunneling microscope actually measured in a high-frequency glow air plasma environment. This is the first example of nanoscale surface structure analysis in plasma.

【0008】[0008]

【発明の効果】従来、ガス雰囲気、液体雰囲気、真空雰
囲気での計測に限られていた走査式プローブ顕微鏡を、
プラズマ雰囲気中での測定を可能とする。さらにまた、
これら走査式プローブ顕微鏡を利用した、トンネル分光
装置、および、プラズマ環境下という新たな条件下での
成膜、エッチング、化学反応合成、原子操作、表面処理
などの材料プロセシング装置/方法を提供する。
The scanning probe microscope, which has been conventionally limited to measurement in a gas atmosphere, a liquid atmosphere, and a vacuum atmosphere,
Enables measurement in a plasma atmosphere. Furthermore,
Provided are a tunneling spectrometer and a material processing apparatus / method such as film formation, etching, chemical reaction synthesis, atomic manipulation, surface treatment, etc. under new conditions of a plasma environment using these scanning probe microscopes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験装置の概略を示す図である。FIG. 1 is a diagram schematically showing an experimental apparatus.

【図2】実際に高周波グロー空気プラズマ(430MH
z,0.3Torr)環境下で測定した走査式トンネル
顕微鏡のグラファイト表面像である。プラズマ環境中で
のナノスケールレベルの走査式トンネル顕微鏡表面構造
解析の初めての例である。
FIG. 2 shows a high-frequency glow air plasma (430 MH)
3 is a graphite surface image of a scanning tunneling microscope measured under an environment of (z, 0.3 Torr). This is the first example of surface structure analysis of a scanning tunneling microscope at the nanoscale in a plasma environment.

【図3】図2と同じく、実際に高周波グロー空気プラズ
マ(430MHz,0.3Torr)環境下で測定した
走査式トンネル顕微鏡のグラファイト表面テラス像
(A)とその切断面(A−A’)構造図(B)。5nm
の高さのステップ構造が認められる。
FIG. 3 is a graph showing a terrace surface image (A) of a graphite tunnel surface of a scanning tunneling microscope actually measured in a high-frequency glow air plasma (430 MHz, 0.3 Torr) environment and a cross-section (AA ′) structure thereof as in FIG. Figure (B). 5 nm
A step structure of height is observed.

【符号の説明】[Explanation of symbols]

図1 1 プローブ 2 試料部 3 プローブ走査ユニット 4 試料走査ユニット 5 容器 6 プラズマ 7 プラズマ発生装置 8 ガス導入口 9 ガス排出口 FIG. 1 1 Probe 2 Sample section 3 Probe scanning unit 4 Sample scanning unit 5 Vessel 6 Plasma 7 Plasma generator 8 Gas inlet 9 Gas outlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】低温プラズマ発生部と走査式トンネル顕微
鏡部とから構成され、低温プラズマ環境下で動作/計測
を可能とする走査式トンネル顕微鏡。
1. A scanning tunnel microscope comprising a low-temperature plasma generating section and a scanning tunnel microscope section, and capable of operating / measuring in a low-temperature plasma environment.
【請求項2】低温プラズマ発生部と走査式トンネル顕微
鏡部とから構成され、かつ、30V以上の耐プラズマ電
圧性エレクトロニクスを有し、先端10μm以下の微小
部を残し絶縁被覆した探針を用い、低温プラズマ環境下
で動作/計測を可能とする走査式トンネル顕微鏡。
2. A probe comprising a low-temperature plasma generating section and a scanning tunneling microscope section, having a plasma voltage-resistant electronics of 30 V or more, and using an insulated coating tip except for a minute portion having a tip of 10 μm or less. A scanning tunnel microscope that can operate and measure in a low-temperature plasma environment.
【請求項3】上記装置(請求項1、2)を用いたトンネ
ルスペクトル装置。
3. A tunnel spectrum device using the above device (claims 1 and 2).
【請求項4】上記装置(請求項1、2)を利用した、材
料の表面改質、堆積、エッチング、原子操作、化学反応
合成などの材料プロセシング装置および材料プロセシン
グ方法。
4. A material processing apparatus and a material processing method using the above apparatus (claims 1 and 2), such as surface modification, deposition, etching, atomic operation, and chemical reaction synthesis of a material.
JP25122797A 1997-08-13 1997-08-13 Scanning tunnel microscope in plasma environment Pending JPH1164349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25122797A JPH1164349A (en) 1997-08-13 1997-08-13 Scanning tunnel microscope in plasma environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25122797A JPH1164349A (en) 1997-08-13 1997-08-13 Scanning tunnel microscope in plasma environment

Publications (1)

Publication Number Publication Date
JPH1164349A true JPH1164349A (en) 1999-03-05

Family

ID=17219608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25122797A Pending JPH1164349A (en) 1997-08-13 1997-08-13 Scanning tunnel microscope in plasma environment

Country Status (1)

Country Link
JP (1) JPH1164349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058626A (en) * 2009-09-07 2011-03-24 Fei Co High-vacuum seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058626A (en) * 2009-09-07 2011-03-24 Fei Co High-vacuum seal

Similar Documents

Publication Publication Date Title
JP3270165B2 (en) Surface analysis and processing equipment
Rye et al. Chemical‐state effects in Auger electron spectroscopy
McIntyre et al. A variable pressure/temperature scanning tunneling microscope for surface science and catalysis studies
US6982519B2 (en) Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates
JP2007187665A (en) Conductive carbon nanotube tip, scanning probe microscope with same, and method for manufacturing same
Popov et al. Comparison of macroscopic and microscopic emission characteristics of large area field emitters based on carbon nanotubes and graphene
Ussenov et al. Langmuir probe measurements in nanodust containing argon-acetylene plasmas
TW202001975A (en) Apparatus and method for examining and/or processing a sample
KR20050072891A (en) Electron source, apparatus and method for inspecting non-opening of a hole using the same
Hattori et al. Comparison of device structures for the dielectric breakdown measurement of hexagonal boron nitride
Rincón et al. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge
Hii et al. Characterizing field emission from individual carbon nanotubes at small distances
JPH1164349A (en) Scanning tunnel microscope in plasma environment
Tselev et al. In-situ near-field probe microscopy of plasma processing
Merkulov et al. Field emission properties of different forms of carbon
Kopelvski et al. Potentialities of a new dedicated system for real time field emission devices characterization: a case study
US7960695B1 (en) Micromachined electron or ion-beam source and secondary pickup for scanning probe microscopy or object modification
Albin et al. Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy
Koops et al. Novel lithography and signal processing with water vapor ions
JP4229849B2 (en) Acicular carbon film manufacturing method, acicular carbon film and field emission structure
Carrivain et al. Inspection of contamination in nitrogen plasmas by monitoring the temporal evolution of the UV bands of NO-γ and of the fourth positive system of N2
JP3837531B2 (en) Microscope and surface observation method
Terashima et al. Scanning tunneling microscopy operating under a plasma environment
Zhang et al. Direct Work Function Measurement Using In‐situ APXPS and Its Application on Copper Oxidation Process
JP2006059701A (en) Charged particle beam device and narrow gap electrode formation method using it