JPH1162948A - Dynamic pressure air bearing - Google Patents

Dynamic pressure air bearing

Info

Publication number
JPH1162948A
JPH1162948A JP22168297A JP22168297A JPH1162948A JP H1162948 A JPH1162948 A JP H1162948A JP 22168297 A JP22168297 A JP 22168297A JP 22168297 A JP22168297 A JP 22168297A JP H1162948 A JPH1162948 A JP H1162948A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
shaft
peripheral surface
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22168297A
Other languages
Japanese (ja)
Inventor
Natsuhiko Mori
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP22168297A priority Critical patent/JPH1162948A/en
Publication of JPH1162948A publication Critical patent/JPH1162948A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost bearing of high accuracy by forming the bearing of a sintered alloy, providing a bearing face opposed to the outer peripheral surface of a shaft through a clearance, and inclined dynamic pressure grooves formed on the bearing face, and levitating to support the shaft by dynamic pressure action of air in the clearance. SOLUTION: A bearing face 4 opposed to the outer peripheral surface of a shaft through a bearing clearance is formed on the inner peripheral surface of a bearing body 1 formed of a sintered alloy into porous cylindrical shape. The bearing face 4 has a first dynamic pressure generating area m1 with a plurality of dynamic pressure grooves 5 inclined in one direction in relation to an axial direction and arranged in a circumferential direction, a second dynamic pressure generating area M2 axially separated from the first area M1 and having a plurality of dynamic pressure grooves inclined in the other direction in relation to the axial direction and arranged in the circumferential direction, and an annular smooth part (n) formed between both areas M1, m2. Air is collected to the smooth part (n) by the relative rotation of the shaft and bearing body 1, and dynamic pressure at this part is heightened. Bearing rigidity is increased because of no dynamic pressure groove in the smooth part (m). The grooves 5 can be formed by compression molding so as to reduce cost, and thermal deformation is small because of the sintered alloy so as to be able to maintain high accuracy even under high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質体からなる
焼結合金の内周面に動圧溝を形成することによって軸と
の間の相対運動で動圧を発生させ、この動圧作用によっ
て回転軸を支持するようにした動圧空気軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure generating device which forms a dynamic pressure groove by forming a dynamic pressure groove in an inner peripheral surface of a sintered alloy made of a porous body, thereby generating a dynamic pressure by a relative motion between the shaft and the shaft. The present invention relates to a dynamic pressure air bearing configured to support a rotating shaft.

【0002】[0002]

【従来の技術】動圧軸受は、軸が回転速度の1/2の速
度で振れ回るいわゆるホワールと呼ばれる不安定振動を
抑制することができるので、例えばレーザビームプリン
タのポリゴンミラーモータや磁気ディスクドライブ用の
スピンドルモータなどのように高速下で高回転精度が要
求される機器の軸受として好適である。
2. Description of the Related Art A dynamic pressure bearing can suppress unstable vibration called so-called whirling, in which a shaft oscillates at half the rotational speed. For example, a polygon mirror motor of a laser beam printer or a magnetic disk drive is used. It is suitable as a bearing for equipment that requires high rotational accuracy at high speeds, such as a spindle motor for motors.

【0003】この種の動圧軸受では、動圧発生用の動圧
溝を軸受面に形成する場合があり、その場合の動圧溝の
加工方法としては、軸の外周面にエッチング加工を施す
のが最も一般的な方法である。
In this type of dynamic pressure bearing, a dynamic pressure groove for generating a dynamic pressure may be formed on the bearing surface. In such a case, a method of forming the dynamic pressure groove is to etch the outer peripheral surface of the shaft. Is the most common method.

【0004】[0004]

【発明が解決しようとする課題】しかし、エッチングは
精度の良い加工が可能であるという利点を有する一方
で、化学的な処理工程が多く生産コストが高いために量
産に向かないという欠点を有する。
However, while etching has the advantage of being capable of high-precision processing, it has the disadvantage of being unsuitable for mass production due to many chemical processing steps and high production costs.

【0005】他の加工法としては、例えば特公平 5-316
81号公報に記載された方法がある。これは、内周面に予
め接着剤を施した金属製の外筒体を外型の内周面に嵌装
し、内型の外周面に動圧溝の形状に対応する突条を配列
して、この内型と外筒体との間の環状空間に溶融した合
成樹脂を注入し、樹脂の固化によって成形された内筒体
を外筒体に固着させて軸受を製造するものである。この
方法は、エッチング加工に比べれば量産に適している
が、金属製の外筒体の内周面に毎回接着剤を塗布する必
要があるなど、生産コストの低減に限界がある。また、
樹脂部分は薄肉になっているとはいえ、熱による変形が
金属に比べて大きいため、周囲温度の変化に伴って適正
な軸受隙間を確保するのが難しくなる。
As another processing method, for example, Japanese Patent Publication No. 5-316
There is a method described in JP-A-81. In this method, a metal outer cylinder having an adhesive applied to an inner peripheral surface thereof is fitted on the inner peripheral surface of the outer die, and ridges corresponding to the shape of the dynamic pressure groove are arranged on the outer peripheral surface of the inner die. Then, molten synthetic resin is injected into the annular space between the inner mold and the outer cylinder, and the inner cylinder molded by solidification of the resin is fixed to the outer cylinder to produce a bearing. This method is more suitable for mass production than etching, but has a limit in reducing production costs, such as the need to apply an adhesive to the inner peripheral surface of a metal outer cylinder every time. Also,
Although the resin portion is thin, the deformation due to heat is larger than that of metal, so that it becomes difficult to secure an appropriate bearing clearance with a change in the ambient temperature.

【0006】そこで、本発明では、低コストでかつ高精
度の動圧空気軸受の提供を目的とする。
Accordingly, an object of the present invention is to provide a low-cost and highly accurate dynamic pressure air bearing.

【0007】[0007]

【課題を解決するための手段】以上の目的達成のため、
本発明では、焼結合金からなり、支持すべき軸の外周面
と軸受隙間を介して対向する軸受面と、軸受面に形成さ
れた傾斜状の動圧溝とを備え、軸との相対回転時に生じ
る軸受隙間内の空気の動圧作用で軸を浮上支持するよう
にした。
Means for Solving the Problems To achieve the above objects,
According to the present invention, a bearing surface made of a sintered alloy and opposed to an outer peripheral surface of a shaft to be supported via a bearing gap, and an inclined dynamic pressure groove formed on the bearing surface are provided. The shaft is floated and supported by the dynamic pressure action of the air in the bearing gap that sometimes occurs.

【0008】この場合、少なくとも軸受面に封孔処理を
施した上で動圧溝を形成するのが望ましい。
[0008] In this case, it is desirable to form a dynamic pressure groove after performing sealing processing on at least the bearing surface.

【0009】封孔処理は、ショットブラスト、サンドブ
ラスト、バレル研摩、タンブラー処理、回転サイジング
の何れかの方法によって、または、焼結合金の細孔内に
加熱硬化型、あるいは嫌気性硬化型の有機含浸剤を含浸
させることによって行なうことができる。
The sealing treatment may be performed by any one of shot blasting, sand blasting, barrel polishing, tumbling, and rotary sizing, or by heat impregnating or anaerobic curing organic impregnation in the pores of the sintered alloy. It can be carried out by impregnating an agent.

【0010】また、動圧溝の形成後に少なくとも軸受面
を樹脂でコーティングしてもよい。
Further, at least the bearing surface may be coated with a resin after the formation of the dynamic pressure grooves.

【0011】この場合には、上述の封孔処理(ショット
ブラスト、サンドブラスト、バレル研摩、タンブラー処
理、回転サイジングの何れかを行い、あるいは、軸受本
体に加熱硬化型、あるいは嫌気性硬化型の有機含浸剤を
含浸させる)を施し、動圧溝を形成した後に少なくとも
軸受面を樹脂でコーティングするのが望ましい。
In this case, any one of the above-mentioned sealing treatments (shot blasting, sand blasting, barrel polishing, tumbler treatment, rotation sizing, or heat impregnating or anaerobic curable organic impregnation of the bearing body) is performed. It is desirable to coat at least the bearing surface with a resin after forming the dynamic pressure groove.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図1乃
至図3に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0013】図1に示すように、軸受本体(1)は、焼
結合金で多孔質の円筒状に成形される。軸受本体(1)
の内周面には、図示しない軸の外周面と軸受隙間を介し
て対向する軸受面(4)が形成され、軸受面(4)に
は、軸方向に傾斜した、例えばへリングボーン型(スパ
イラル型でもよい)の動圧溝(5)が複数条設けられて
いる。この動圧溝(5)によって軸との相対回転時に軸
受隙間に動圧が発生し、その動圧作用で軸が軸受本体
(1)に対して浮上支持される。
As shown in FIG. 1, the bearing body (1) is formed of a sintered alloy into a porous cylindrical shape. Bearing body (1)
A bearing surface (4) is formed on an inner peripheral surface of the shaft, which faces an outer peripheral surface of a shaft (not shown) via a bearing gap. The bearing surface (4) has an axially inclined, for example, herringbone type ( A plurality of spiral pressure dynamic grooves (5) may be provided. The dynamic pressure groove (5) generates dynamic pressure in the bearing gap during relative rotation with the shaft, and the dynamic pressure action causes the shaft to float and be supported on the bearing body (1).

【0014】軸受面(4)には、軸方向に対して一方に
傾斜した複数の動圧溝(5)を円周方向に配列した第1
動圧発生領域(m1)と、第1領域(m1)から軸方向に離
隔し、軸方向に対して他方に傾斜した複数の動圧溝
(5)を円周方向に配列した第2動圧発生領域(m2)
と、第1領域(m1)と第2領域(m2)との間に位置する
環状の平滑部(n)とが形成される。両領域(m1)(m
2)の動圧溝(5)は、その間の軸受面の一部領域(平
滑部n)で区画されて非連続となっており、軸受幅方向
の中心線(L)を中心として対称に形成されている。な
お、動圧溝(5)の背の部分(6)と平滑部(n)は連
続して形成される。
A first surface in which a plurality of dynamic pressure grooves (5) inclined to one side with respect to the axial direction are arranged in the circumferential direction on the bearing surface (4).
A dynamic pressure generating region (m1) and a second dynamic pressure in which a plurality of dynamic pressure grooves (5) which are axially separated from the first region (m1) and inclined to the other side with respect to the axial direction are arranged in the circumferential direction. Generation area (m2)
And an annular smooth portion (n) located between the first region (m1) and the second region (m2). Both areas (m1) (m
The dynamic pressure groove (5) in (2) is partitioned by a part of the bearing surface (smooth portion n) therebetween and is discontinuous, and is formed symmetrically about the center line (L) in the bearing width direction. Have been. The back portion (6) of the dynamic pressure groove (5) and the smooth portion (n) are formed continuously.

【0015】以上のように、動圧溝(5)を軸方向に離
隔する2つの動圧発生領域(第1領域m1、第2領域m2)
のそれぞれに逆向きに形成したのは、 軸と軸受本体(1)との間に相対回転が生じると、逆
向きに形成された動圧溝によって空気が平滑部(n)に
集められるため、この部分での動圧が高まり、 平滑部には動圧溝がないため、動圧溝を軸方向で連続
させた場合に比べて軸受剛性が高くなり、 開孔のばらつきによる動圧発生の不均一性を避けるこ
とができるからである。
As described above, the two dynamic pressure generating regions (the first region m1 and the second region m2) separating the dynamic pressure groove (5) in the axial direction.
Are formed in the opposite directions. When relative rotation occurs between the shaft and the bearing body (1), the air is collected in the smooth portion (n) by the dynamic pressure grooves formed in the opposite direction. Since the dynamic pressure in this part increases and there is no dynamic pressure groove in the smooth part, the rigidity of the bearing is higher than when the dynamic pressure groove is continuous in the axial direction. This is because uniformity can be avoided.

【0016】以上の動圧溝(5)は、以下の手順で圧縮
成形することができる。すなわち、焼結後のサイジング
工程等において、コアロッド(サイジングピン)の外周
面に軸方向に傾斜した凹凸からなる成形部を成形し、こ
のコアロッドの外周面に、焼結して得た円筒状の多孔質
体(軸受本体素材)を供給し、多孔質体に圧迫力を加え
てその内径部をコアロッドの成形部に加圧し、当該内径
部にコアロッドの成形部に対応した形状の動圧溝を転写
するのである。動圧溝の形成後は、圧迫力を除去するこ
とによる多孔質体のスプリングバックを利用すれば、動
圧溝を崩すことなくコアロッドを多孔質体(軸受本体)
の内径部から離型することができる。
The above-mentioned dynamic pressure groove (5) can be compression molded by the following procedure. That is, in a sizing process after sintering, etc., a molded portion formed of irregularities inclined in the axial direction is formed on the outer peripheral surface of the core rod (sizing pin), and a cylindrical shape obtained by sintering is formed on the outer peripheral surface of the core rod. A porous body (bearing body material) is supplied, and a pressing force is applied to the porous body to press the inner diameter portion thereof against the core rod forming portion, and a dynamic pressure groove having a shape corresponding to the core rod forming portion is formed on the inner diameter portion. It is transcribed. After the formation of the dynamic pressure groove, if the spring back of the porous body by removing the compression force is used, the core rod can be connected to the porous body (bearing body) without breaking the dynamic pressure groove.
Can be released from the inner diameter portion of the mold.

【0017】その他にも、中空で且つ弾性的に縮径可能
の軸部材の外周面に同様の成形部を形成し、軸部材の内
径部にコア部材を挿入して軸部材を一定径に保持すると
共に、軸部材の成形部に多孔質体を供給し、その状態で
多孔質体に圧迫力を加えて多孔質体の内径部を成形部に
加圧することにより、当該内径部に成形部に対応した形
状の動圧溝を形成し、その後、コア部材を軸部材の内径
部から抜いて軸部材を縮径可能としてから、多孔質体を
軸部材から離型することによっても成形することができ
る。
In addition, a similar molded portion is formed on the outer peripheral surface of a hollow and elastically contractible shaft member, and a core member is inserted into the inner diameter portion of the shaft member to hold the shaft member at a constant diameter. At the same time, the porous body is supplied to the shaping portion of the shaft member, and in this state, a pressing force is applied to the porous body to press the inner diameter portion of the porous body against the forming portion, so that the inner diameter portion is formed into the forming portion. After forming a dynamic pressure groove having a corresponding shape, the core member can be removed from the inner diameter portion of the shaft member so that the shaft member can be reduced in diameter, and then the porous body can be formed by releasing the shaft member from the shaft member. it can.

【0018】何れの方法であっても、従来からのサイジ
ング装置に若干の改良を施すだけで対応可能となるの
で、低コストに軸受本体(1)を製造することができ、
また、焼結合金であるから樹脂に比べて熱変形が小さ
く、高温下でも高精度を維持することができる。
In either method, the bearing body (1) can be manufactured at low cost because it can be dealt with by only slightly improving the conventional sizing device.
Further, since it is a sintered alloy, thermal deformation is smaller than that of resin, and high accuracy can be maintained even at high temperatures.

【0019】ところで、軸受本体(1)の軸受面には、
開孔部(軸受本体の多孔組織をなす細孔が外表面に開口
した部分)が存在するため、軸受の使用条件によっては
エアの逃げ量が多くなって動圧作用が不十分となる場合
も起こり得る。従って、そのような場合は、軸受本体
(1)の外表面、特に軸受面(4)に封孔処理を施し、
軸受面(4)での表面開孔率を10%以下、望ましくは5
%以下にするのが望ましい。
By the way, on the bearing surface of the bearing body (1),
Since there are openings (portions where the pores forming the porous structure of the bearing body are open to the outer surface), depending on the conditions of use of the bearing, the amount of air escape may increase and the dynamic pressure effect may become insufficient. It can happen. Therefore, in such a case, the outer surface of the bearing body (1), particularly the bearing surface (4) is subjected to sealing treatment,
The surface porosity on the bearing surface (4) is 10% or less, preferably 5% or less.
% Is desirable.

【0020】封孔処理は、軸受本体(1)の外表面にシ
ョットブラスト、サンドブラスト、バレル研摩、タンブ
ラー処理、あるいは回転サイジングの何れかを施すこと
によって行なうことができ、これらの処理によって動圧
を高め、軸受本体(1)の剛性を向上させることが可能
となる。その他、軸受本体(1)に加熱硬化型、あるい
は嫌気性硬化型の有機含浸剤を含浸させて焼結合金の細
孔を封孔してもよく、その場合は空孔率をほぼ0%にす
ることができるので、上記封孔処理と同様に動圧や軸受
剛性の向上が図られる。動圧溝(5)は、これらの封孔
処理が終了した後で形成すればよい。
The sealing treatment can be performed by subjecting the outer surface of the bearing body (1) to any one of shot blasting, sand blasting, barrel polishing, tumbler treatment, and rotational sizing, and the dynamic pressure is reduced by these treatments. It is possible to increase the rigidity of the bearing body (1). Alternatively, the pores of the sintered alloy may be sealed by impregnating the bearing body (1) with a heat-curable or anaerobic-curing organic impregnating agent, in which case the porosity is reduced to almost 0%. Therefore, the dynamic pressure and the rigidity of the bearing can be improved in the same manner as in the sealing treatment. The dynamic pressure groove (5) may be formed after these sealing processes are completed.

【0021】また、図2に示すように、動圧溝(5)の
形成後に軸受本体(1)の少なくとも軸受面(4)をフ
ッ素樹脂等の潤滑性に富む樹脂(7)でコーティングし
てもよい(図2は、軸受面の断面を概念的に表すもの
で、各部の形状や寸法は実際のものとは異なる)。これ
により、軸受面(4)での表面開孔率がほぼ0%になる
ので、同様に動圧や軸受剛性を向上させることができ
る。また、起動停止時の摩擦摩耗特性を改善することが
できる。この樹脂コーティング前にコーティング予定部
位に予め上述の封孔処理(ショットブラスト等、あるい
は加熱硬化型等の有機含浸剤を含浸させる処理)を施し
ておくと、開孔部からの樹脂剤の逃げがなくなり、むら
のない良好なコーティング被膜(7)を得ることができ
る。
Further, as shown in FIG. 2, at least the bearing surface (4) of the bearing body (1) is coated with a highly lubricating resin (7) such as a fluororesin after the formation of the dynamic pressure groove (5). (FIG. 2 conceptually shows a cross section of the bearing surface, and the shape and dimensions of each part are different from actual ones). As a result, the surface porosity on the bearing surface (4) becomes substantially 0%, so that the dynamic pressure and the bearing rigidity can be similarly improved. Further, the friction and wear characteristics at the time of starting and stopping can be improved. If the above-mentioned sealing treatment (a treatment for impregnating with an organic impregnating agent such as shot blasting or a heat-curing type) is performed in advance on the portion to be coated before this resin coating, escape of the resin agent from the opening portion is prevented. Thus, a good coating film (7) without unevenness can be obtained.

【0022】[0022]

【実施例】実施例として、銅鉄系の粉末材料を所定の形
状に成形(フォーミング)し、これを焼結(シンタ
ー)、整形(サイジング)して円筒状の多孔質体を成形
し、これに嫌気性の有機含浸剤(日本ロックタイト社製
レジノール90C)を含浸させた。含浸剤の含浸工程で
は、まず、ドライバキューム、ウェットバキュームを行
ない、その後、加圧、水洗浄、硬化、乾燥処理を行なっ
た。得られた多孔質体に、上述の2種類の動圧溝形成方
法のうち前段の方法(スプリングバックを利用する方
法)で動圧溝(5)を形成し、次にフッ素樹脂(日本ア
チソン社製エムラロン352)を軸受本体(1)の全表
面にコーティングした。樹脂コーティングは、フッ素樹
脂をハンドスプレー、タンブラーコート処理により多孔
質体の表面にコーティングした後、所定温度で所定時間
(エムラロン352の場合、180℃で15分)乾燥す
ることにより行なった。なお、本実施例における軸受本
体(1)の内径寸法はφ10、外径寸法はφ15、軸方
向の幅寸法は10mmとした。
EXAMPLE As an example, a copper-iron-based powder material was formed into a predetermined shape (forming), and this was sintered (sintered) and shaped (sizing) to form a cylindrical porous body. Was impregnated with an anaerobic organic impregnating agent (Resinol 90C, manufactured by Nippon Loctite). In the impregnating step of the impregnating agent, first, driver vacuum and wet vacuum were performed, and then pressure, water washing, curing, and drying were performed. A dynamic pressure groove (5) is formed on the obtained porous body by the former method (a method using spring back) of the above two types of dynamic pressure groove forming methods, and then a fluororesin (Nippon Acheson Co., Ltd.) (Emuralon 352) was coated on the entire surface of the bearing body (1). The resin coating was performed by coating the surface of the porous body with a fluororesin by hand spraying and tumbler coating, followed by drying at a predetermined temperature for a predetermined time (in the case of Emuralon 352, at 180 ° C. for 15 minutes). In this embodiment, the inner diameter of the bearing body (1) was φ10, the outer diameter was φ15, and the width in the axial direction was 10 mm.

【0023】本実施例の軸受本体と特公平 5-31681号公
報に開示された軸受本体との内径面の寸法精度と形状精
度とを比較評価したところ、本発明品の方が寸法や形状
が高精度であることが確認できた(図3参照)。
The dimensional accuracy and the shape accuracy of the inner diameter surface of the bearing body of this embodiment and the bearing body disclosed in Japanese Patent Publication No. 5-31681 were compared and evaluated. It was confirmed that the accuracy was high (see FIG. 3).

【0024】[0024]

【発明の効果】以上のように、本発明によれば、焼結合
金を利用して製造するので生産コストを安価に抑えるこ
とができ、しかも樹脂を利用したものに比べると熱変形
が少なく、高精度に仕上げることができる。
As described above, according to the present invention, the production cost can be reduced because the production is performed by using the sintered alloy, and the thermal deformation is less than that by using the resin. Can be finished with high precision.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧空気軸受の断面図である。FIG. 1 is a sectional view of a dynamic pressure air bearing according to the present invention.

【図2】軸受面の断面を概念的に示す図である。FIG. 2 is a view conceptually showing a cross section of a bearing surface.

【図3】本発明品と従来品との比較結果を示す図であ
る。
FIG. 3 is a diagram showing a comparison result between a product of the present invention and a conventional product.

【符号の説明】[Explanation of symbols]

1 軸受本体 4 軸受面 5 動圧溝 7 コーティング被膜 DESCRIPTION OF SYMBOLS 1 Bearing main body 4 Bearing surface 5 Dynamic pressure groove 7 Coating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼結合金からなり、支持すべき軸の外周
面と軸受隙間を介して対向する軸受面と、軸受面に形成
された傾斜状の動圧溝とを備え、軸との相対回転時に生
じる軸受隙間内の空気の動圧作用で軸を浮上支持するよ
うにした動圧空気軸受。
A bearing surface formed of a sintered alloy and opposed to an outer peripheral surface of a shaft to be supported via a bearing gap; and an inclined dynamic pressure groove formed in the bearing surface. A dynamic pressure air bearing that floats and supports the shaft by the dynamic pressure effect of air in the bearing gap generated during rotation.
【請求項2】 少なくとも軸受面に封孔処理を施した上
で動圧溝を形成した請求項1記載の動圧空気軸受。
2. The dynamic pressure air bearing according to claim 1, wherein at least the bearing surface is subjected to a sealing treatment and the dynamic pressure groove is formed.
【請求項3】 封孔処理が、ショットブラスト、サンド
ブラスト、バレル研摩、タンブラー処理、あるいは回転
サイジングの何れかによってなされた請求項2記載の動
圧空気軸受。
3. The dynamic pressure air bearing according to claim 2, wherein the sealing treatment is performed by any one of shot blasting, sand blasting, barrel polishing, tumbling treatment, and rotational sizing.
【請求項4】 封孔処理が、焼結合金の細孔内に加熱硬
化型、あるいは嫌気性硬化型の有機含浸剤を含浸させる
ことによってなされた請求項2記載の動圧空気軸受。
4. The dynamic pressure air bearing according to claim 2, wherein the pore sealing treatment is performed by impregnating the pores of the sintered alloy with a heat-curable or anaerobic-curable organic impregnating agent.
【請求項5】 動圧溝の形成後に少なくとも軸受面を樹
脂でコーティングした請求項1記載の動圧空気軸受。
5. The dynamic pressure air bearing according to claim 1, wherein at least the bearing surface is coated with a resin after forming the dynamic pressure groove.
【請求項6】 請求項3又は4記載の封孔処理を施し、
動圧溝を形成した後に少なくとも軸受面を樹脂でコーテ
ィングした動圧空気軸受。
6. The sealing treatment according to claim 3 or 4,
A dynamic pressure air bearing in which at least the bearing surface is coated with a resin after forming the dynamic pressure groove.
JP22168297A 1997-08-18 1997-08-18 Dynamic pressure air bearing Pending JPH1162948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22168297A JPH1162948A (en) 1997-08-18 1997-08-18 Dynamic pressure air bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22168297A JPH1162948A (en) 1997-08-18 1997-08-18 Dynamic pressure air bearing

Publications (1)

Publication Number Publication Date
JPH1162948A true JPH1162948A (en) 1999-03-05

Family

ID=16770633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22168297A Pending JPH1162948A (en) 1997-08-18 1997-08-18 Dynamic pressure air bearing

Country Status (1)

Country Link
JP (1) JPH1162948A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737016B2 (en) 2001-05-09 2004-05-18 Hitachi Powdered Metals Co, Ltd. Process for manufacturing sintered slide bearing
US7251891B2 (en) 2004-05-24 2007-08-07 Hitachi Powdered Metals Co., Ltd. Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
JP2007231966A (en) * 2006-02-27 2007-09-13 Hitachi Powdered Metals Co Ltd Sintered hydrodynamic bearing manufacturing method
JP2010065843A (en) * 2009-08-12 2010-03-25 Ntn Corp Dynamic pressure bearing device
WO2015137059A1 (en) * 2014-03-11 2015-09-17 Ntn株式会社 Sintered bearing, fluid dynamic bearing device and motor comprising same, and sintered bearing manufacturing method
US9316253B2 (en) 2008-02-21 2016-04-19 Ntn Corporation Sintered bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737016B2 (en) 2001-05-09 2004-05-18 Hitachi Powdered Metals Co, Ltd. Process for manufacturing sintered slide bearing
US7251891B2 (en) 2004-05-24 2007-08-07 Hitachi Powdered Metals Co., Ltd. Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
JP2007231966A (en) * 2006-02-27 2007-09-13 Hitachi Powdered Metals Co Ltd Sintered hydrodynamic bearing manufacturing method
US9316253B2 (en) 2008-02-21 2016-04-19 Ntn Corporation Sintered bearing
JP2010065843A (en) * 2009-08-12 2010-03-25 Ntn Corp Dynamic pressure bearing device
WO2015137059A1 (en) * 2014-03-11 2015-09-17 Ntn株式会社 Sintered bearing, fluid dynamic bearing device and motor comprising same, and sintered bearing manufacturing method

Similar Documents

Publication Publication Date Title
US5357163A (en) Motor with dynamic-pressure type bearing device
JP3962168B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US5769544A (en) Dynamic pressure pneumatic bearing device and manufacturing method thereof
US7513689B2 (en) Hydrodynamic bearing device
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
US5114245A (en) Dynamic pressure bearing device
JPH1162948A (en) Dynamic pressure air bearing
US7251891B2 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
JP2008002650A (en) Dynamic-pressure bearing unit, its manufacturing method, and spindle motor
JP2007232113A (en) Method of manufacturing sintered dynamic pressure bearing
JPH07332353A (en) Dynamic pressurizing bearing
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
JP3883179B2 (en) Manufacturing method of sintered plain bearing
JPH07310733A (en) Dynamic pressure bearing device
JP2002206534A (en) Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor
KR100353092B1 (en) A manufacturing method of hemi-spherical bearing
JPH1193949A (en) Hemispherical bearing device
JPH05312213A (en) Dynamic pressure type bearing device and manufacture thereof
JP2870000B2 (en) Dynamic pressure bearing and manufacturing method thereof
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same
JP3580577B2 (en) Ceramic dynamic pressure bearing and method of manufacturing the same
JPH08196056A (en) Dynamic pressure bearing and manufacture thereof
JP2000110837A (en) Manufacture of dynamic pressure bearing device
KR100224811B1 (en) Hemi-spherical bearing and manufacturing process of it
JP3842415B2 (en) Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A521 Written amendment

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060327