JPH1162561A - Hydrocarbon adsorbed quantity detector of exhaust emission purifying catalyzer - Google Patents

Hydrocarbon adsorbed quantity detector of exhaust emission purifying catalyzer

Info

Publication number
JPH1162561A
JPH1162561A JP9214817A JP21481797A JPH1162561A JP H1162561 A JPH1162561 A JP H1162561A JP 9214817 A JP9214817 A JP 9214817A JP 21481797 A JP21481797 A JP 21481797A JP H1162561 A JPH1162561 A JP H1162561A
Authority
JP
Japan
Prior art keywords
amount
catalyst
hydrocarbon
hydrocarbons
toxic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9214817A
Other languages
Japanese (ja)
Other versions
JP3712314B2 (en
Inventor
Shigeki Omichi
重樹 大道
Naohisa Oyama
尚久 大山
Shinya Hirota
信也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP21481797A priority Critical patent/JP3712314B2/en
Publication of JPH1162561A publication Critical patent/JPH1162561A/en
Application granted granted Critical
Publication of JP3712314B2 publication Critical patent/JP3712314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately evaluate the poisoning state of a catalyzer due to hydrocarbon. SOLUTION: An inflow quantity per specified time of poisonous hydrocarbon (poisonous HC) flowing into a catalyzer at each specified time is calculated (step 101 to 104), and an amount of consumption per specified time of the poisonous HC reactively consumed by the catalyzer at each specified time is calculated (step 105 to 107). In addition, a adsorptive rate f1 of the poisonous HC to the catalyzer is multiplied to the deducted value of consumption from the inflow quantity per specified time of the poisonous HC at each specified time, and thereby the adsorbed quantity per specified time of the poisonous HC to the catalyzer is calculated (step 108 and 109), whereby a desorbed quantity per specified time of the poisonous HC being adsorbed in the catalyzer at each specified time is calculated (step 110 and 111). Subsequently, the deducted value of the desorbed quantity from the adsorbed quantity per specified time of the poisonous HC at each specified time is integrated, and thereby the poisonous HC adsorbed quantity of the catalyzer at the current point of time is calculated (step 112).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒に窒素酸化物
の還元剤として炭化水素を供給することで、排ガス中の
窒素酸化物を還元浄化する排気浄化システムにおいて、
例えば触媒への炭化水素供給量を制御するために、触媒
の炭化水素吸着量を算出する排気浄化用触媒の炭化水素
吸着量検出装置に関するものである。
The present invention relates to an exhaust gas purification system for reducing and purifying nitrogen oxides in exhaust gas by supplying hydrocarbons as a nitrogen oxide reducing agent to a catalyst.
For example, the present invention relates to a device for detecting the amount of hydrocarbon adsorbed on an exhaust purification catalyst which calculates the amount of adsorbed hydrocarbon on the catalyst in order to control the amount of hydrocarbon supplied to the catalyst.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の酸素過剰下で燃
料の燃焼が行われる内燃機関から排出される排気中の窒
素酸化物(NOx)を浄化するために、排気管内にNO
x触媒を設置し、燃料等の炭化水素(HC)を還元剤と
してNOx触媒に供給してNOxを還元浄化する排気浄
化システムが開発されている。この排気浄化システムで
は、近年、特開平9一4437号公報に示すように、触
媒への過剰な燃料の供給による燃費悪化を少なくするた
めに、触媒のHC吸着割合と触媒からのHC脱離速度等
に応じて触媒へのHC供給量を制御することが提案され
ている。
2. Description of the Related Art In order to purify nitrogen oxides (NOx) in exhaust gas discharged from an internal combustion engine in which fuel is burned under an excessive amount of oxygen such as a diesel engine, a NO.
An exhaust purification system has been developed in which an x catalyst is installed and hydrocarbons (HC) such as fuel are supplied to a NOx catalyst as a reducing agent to reduce and purify NOx. In recent years, as disclosed in Japanese Patent Application Laid-Open No. Hei 9-14437, in this exhaust purification system, in order to reduce fuel consumption deterioration due to excessive supply of fuel to the catalyst, the HC adsorption ratio of the catalyst and the HC desorption speed from the catalyst are reduced. It has been proposed to control the amount of HC supplied to the catalyst according to the conditions.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、最近、
NOx触媒の被毒現象を調査したところ、供給したHC
が触媒に多量に吸着されると、そのHCによって触媒が
被毒を受けて元の状態に回復しにくい状態となり、NO
x浄化性能が著しく低下する現象を発見した。このよう
な触媒の被毒は、触媒のHC吸着量が一定値を越えたと
きに発生し始める(以下、この時のHC吸着量を「被毒
限界値」と呼ぶ)。一旦、触媒が被毒されると、ガソリ
ンエンジンと比較して排ガス温度が低い通常のディーゼ
ルエンジンの運転条件では、触媒からHCが脱離しにく
い状態になって、触媒の回復が因難になることが分かっ
てきた。この調査結果から、長期間に亘って高いNOx
浄化性能を維持するためには、触媒のHC吸着量が被毒
限界値を越えないように触媒へのHC供給量を制御する
必要があることが判明した。
SUMMARY OF THE INVENTION The present inventors have recently
When the poisoning phenomenon of the NOx catalyst was investigated, the supplied HC
Is adsorbed on the catalyst in a large amount, the catalyst is poisoned by the HC, and it becomes difficult for the catalyst to recover to its original state.
x A phenomenon in which the purification performance was significantly reduced was discovered. Such poisoning of the catalyst starts to occur when the HC adsorption amount of the catalyst exceeds a certain value (hereinafter, the HC adsorption amount at this time is referred to as “poisoning limit value”). Once the catalyst is poisoned, under normal operating conditions of diesel engines, where the exhaust gas temperature is lower than that of gasoline engines, it becomes difficult for HC to be desorbed from the catalyst, making recovery of the catalyst difficult. I knew it. From this survey result, high NOx over a long period
In order to maintain the purification performance, it has been found that it is necessary to control the amount of HC supplied to the catalyst so that the HC adsorption amount of the catalyst does not exceed the poisoning limit value.

【0004】ところで、触媒に供給するHCは、燃料
(軽油)が用いられることが多いが、燃料には、化学構
造(カーボンナンバー)の異なる多くの種類のHCが含
まれ、それらのHCの沸点も異なる。低沸点のHCは、
触媒に吸着されても、排気熱により比較的短時間で触媒
から揮発して脱離するため、低沸点のHCの吸着は、触
媒の被毒には影響しない。
[0004] Incidentally, fuel (light oil) is often used as HC supplied to the catalyst, and the fuel contains many types of HC having different chemical structures (carbon numbers), and the boiling points of these HCs are included. Is also different. HC with low boiling point
Even if it is adsorbed by the catalyst, it is volatilized and desorbed from the catalyst in a relatively short time by the exhaust heat, so that the adsorption of HC having a low boiling point does not affect the poisoning of the catalyst.

【0005】上記公報のHC供給量制御方法を用いる
と、触媒に吸着されたHC吸着量を推定することができ
るが、このHC吸着量の中には、被毒に影響しない低沸
点のHCも含まれるため、推定したHC吸着量から触媒
の被毒状態を過大評価してしまう。被毒状態の過大評価
は、触媒へのHC供給量を過少に制御する原因となり、
NOxを還元浄化するためのHCが不足して、NOx浄
化率が低下する原因となる。
[0005] The use of the method for controlling the amount of supplied HC disclosed in the above publication makes it possible to estimate the amount of HC adsorbed on the catalyst. Therefore, the poisoning state of the catalyst is overestimated from the estimated HC adsorption amount. Overestimation of the poisoning condition causes the amount of HC supplied to the catalyst to be under-controlled,
Insufficient HC for reducing and purifying NOx causes a reduction in the NOx purification rate.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、HCによる触媒の被
毒状態を正確に評価できる排気浄化用触媒の炭化水素吸
着量検出装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, it is an object of the present invention to provide an apparatus for detecting the amount of hydrocarbon adsorbed on an exhaust purification catalyst, which can accurately evaluate the poisoning state of the catalyst by HC. Is to do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の排気浄化用触媒の炭化水素吸着
量検出装置は、触媒に吸着されている炭化水素のうち、
該触媒に被毒を生じさせる炭化水素成分(以下「被毒性
炭化水素」という)の吸着量を被毒性炭化水素吸着量算
出手段により算出する。これにより、触媒に吸着された
炭化水素から、被毒に影響しない低沸点のHCを除外し
て、被毒性炭化水素のみの吸着量を求めることができ、
触媒の被毒状態を正確に評価できる。
According to a first aspect of the present invention, there is provided an apparatus for detecting the amount of hydrocarbons adsorbed on an exhaust gas purifying catalyst, the method comprising:
The amount of adsorption of a hydrocarbon component (hereinafter referred to as “toxic hydrocarbon”) that causes poisoning of the catalyst is calculated by a toxic hydrocarbon adsorption amount calculating means. Thus, from the hydrocarbons adsorbed on the catalyst, low-boiling HC that does not affect poisoning is excluded, and the amount of adsorption of only toxic hydrocarbons can be obtained.
The poisoning state of the catalyst can be accurately evaluated.

【0008】ここで、被毒性炭化水素の吸着量の具体的
な算出方法としては、次の〜の手順で行うと良い
(請求項2)。 所定時間毎に前記触媒に流入する被毒性炭化水素の所
定時間当たりの流入量を算出する。 所定時間毎に触媒で反応して消費される被毒性炭化水
素の所定時間当たりの消費量を算出する。 所定時間毎に被毒性炭化水素の所定時間当たりの流入
量から消費量を差し引いた値に、触媒への被毒性炭化水
素の吸着割合を乗算して、該触媒への被毒性炭化水素の
所定時間当たりの吸着量を算出する。 所定時間毎に触媒に吸着されている被毒性炭化水素の
所定時間当たりの脱離量を算出する。 所定時間毎に被毒性炭化水素の所定時間当たりの吸着
量から脱離量を引いた値を積算して現時点の触媒の被毒
性炭化水素吸着量を算出する。
Here, as a specific method of calculating the amount of adsorption of the toxic hydrocarbon, the following procedure may be performed (claim 2). An inflow amount of the poisoned hydrocarbon flowing into the catalyst per predetermined time is calculated every predetermined time. The consumption amount of the poisoned hydrocarbon consumed by the reaction with the catalyst every predetermined time is calculated per predetermined time. The value obtained by subtracting the consumption amount from the inflow amount of the poisonous hydrocarbon per predetermined time at each predetermined time is multiplied by the adsorption rate of the poisonous hydrocarbon to the catalyst, and the value of the poisonous hydrocarbon to the catalyst for the predetermined time Calculate the amount of adsorption per hit. The desorbed amount of the toxic hydrocarbon adsorbed on the catalyst per predetermined time is calculated per predetermined time. At each predetermined time, a value obtained by subtracting the desorption amount from the adsorption amount of the poisonous hydrocarbon per predetermined time is integrated to calculate the current poisoned hydrocarbon adsorption amount of the catalyst.

【0009】以上の〜の手順で被毒性炭化水素吸着
量を算出すれば、触媒への被毒性炭化水素の流入、反応
(消費)、脱離を考慮して、現時点の触媒の被毒性炭化
水素吸着量を精度良く算出することができる。
By calculating the adsorbed amount of the poisoned hydrocarbon by the above-mentioned procedures, the poisoned hydrocarbon of the catalyst at the present time is considered in consideration of the inflow, reaction (consumption) and desorption of the poisoned hydrocarbon to the catalyst. The amount of adsorption can be calculated accurately.

【0010】この場合、内燃機関から排出される排ガス
中にも被毒性炭化水素が含まれるため、請求項3のよう
に、被毒性炭化水素の所定時間当たりの流入量を、内燃
機関から排出される排ガス中の被毒性炭化水素の量と、
触媒の上流で排ガスに添加される被毒性炭化水素の量と
を合計して求めることが好ましい。これにより、被毒性
炭化水素の所定時間当たりの流入量を正確に評価するこ
とができる。
In this case, since the toxic hydrocarbon is also contained in the exhaust gas discharged from the internal combustion engine, the inflow amount of the toxic hydrocarbon per predetermined time is discharged from the internal combustion engine. The amount of toxic hydrocarbons in the exhaust gas
It is preferable to obtain the total amount of the poisoned hydrocarbons added to the exhaust gas upstream of the catalyst. Thereby, the inflow amount of the poisoned hydrocarbon per predetermined time can be accurately evaluated.

【0011】また、請求項4のように、内燃機関から排
出される炭化水素中の被毒性炭化水素の割合を内燃機関
運転条件に基づいて設定するようにしても良い。つま
り、内燃機関から排出される炭化水素中の被毒性炭化水
素の割合は、内燃機関回転数やアクセル開度等の内燃機
関運転条件に応じて変化するので、炭化水素中の被毒性
炭化水素の割合を内燃機関運転条件に基づいて設定すれ
ば、内燃機関運転条件に合わせて被毒性炭化水素の流入
量を精度良く推定することができる。
Further, the ratio of the poisoned hydrocarbon in the hydrocarbon discharged from the internal combustion engine may be set based on the operating condition of the internal combustion engine. In other words, the proportion of toxic hydrocarbons in the hydrocarbons discharged from the internal combustion engine changes according to the internal combustion engine operating conditions such as the internal combustion engine speed and the accelerator opening. If the ratio is set based on the operating conditions of the internal combustion engine, it is possible to accurately estimate the inflow amount of the poisoned hydrocarbon in accordance with the operating conditions of the internal combustion engine.

【0012】同様に、請求項5のように、触媒の上流で
排ガスに添加される炭化水素中の被毒性炭化水素の割合
を排ガスの温度に基づいて設定するようにしても良い。
つまり、排ガスに添加された炭化水素は排ガスの熱によ
り改質され、一部の被毒性炭化水素が被毒に影響しない
低沸点の炭化水素に変化する。このような炭化水素の改
質により、排ガスの温度が高くなるほど、炭化水素中の
被毒性炭化水素の割合が低下する特性があるため、炭化
水素中の被毒性炭化水素の割合を排ガスの温度に基づい
て設定すれば、排ガスの温度に応じて被毒性炭化水素の
流入量を精度良く推定することができる。
Similarly, the ratio of the toxic hydrocarbon in the hydrocarbon added to the exhaust gas upstream of the catalyst may be set based on the temperature of the exhaust gas.
That is, the hydrocarbons added to the exhaust gas are reformed by the heat of the exhaust gas, and some of the poisonous hydrocarbons are changed into low-boiling hydrocarbons that do not affect poisoning. Due to such hydrocarbon reforming, the higher the temperature of the exhaust gas, the lower the proportion of toxic hydrocarbons in the hydrocarbon.Therefore, the proportion of toxic hydrocarbons in the hydrocarbon is reduced to the temperature of the exhaust gas. If it is set based on the temperature, the inflow amount of the poisoned hydrocarbon can be accurately estimated according to the temperature of the exhaust gas.

【0013】また、触媒温度に応じて触媒内での被毒性
炭化水素の消費量(反応量)が変化するため、請求項6
のように、触媒内での被毒性炭化水素の所定時間当たり
の消費量を、触媒温度に応じて予め設定された被毒性炭
化水素の定常浄化率を用いて算出するようにしても良
い。ここで、被毒性炭化水素の定常浄化率とは、触媒温
度を一定に保って定常運転した時の被毒性炭化水素の浄
化率であり、予め、実験等により正確に求めることがで
きる。従って、触媒温度に応じた定常浄化率を用いるこ
とで、触媒内での被毒性炭化水素の消費量を精度良く算
出することができる。
The consumption (reaction amount) of poisoned hydrocarbons in the catalyst varies depending on the catalyst temperature.
As described above, the consumption amount of the poisoned hydrocarbon in the catalyst per predetermined time may be calculated by using the steady-state purification rate of the poisoned hydrocarbon preset in accordance with the catalyst temperature. Here, the steady-state purification rate of the poisoned hydrocarbon is a purification rate of the poisoned hydrocarbon when the catalyst temperature is kept constant and the steady-state operation is performed, and can be accurately obtained in advance by an experiment or the like. Therefore, by using the steady-state purification rate according to the catalyst temperature, the consumption amount of the toxic hydrocarbon in the catalyst can be accurately calculated.

【0014】また、触媒への被毒性炭化水素の吸着割合
は、前回の処理で求めた触媒の被毒性炭化水素吸着量
と、触媒に流入する排ガス中の被毒性炭化水素の濃度
と、触媒温度と、排ガス流量とによって変化するため、
請求項7のように、これら4つのパラメータの少なくと
も1つに基づいて被毒性炭化水素の吸着割合を設定する
ようにしても良い。これにより、被毒性炭化水素の吸着
割合を精度良く設定することができる。
Further, the adsorption ratio of the toxic hydrocarbon to the catalyst is determined by the adsorption amount of the toxic hydrocarbon of the catalyst obtained in the previous treatment, the concentration of the toxic hydrocarbon in the exhaust gas flowing into the catalyst, and the catalyst temperature. And the exhaust gas flow rate,
As described in claim 7, the adsorption ratio of the toxic hydrocarbon may be set based on at least one of these four parameters. Thereby, the adsorption ratio of the toxic hydrocarbon can be set with high accuracy.

【0015】同様に、触媒からの被毒性炭化水素の脱離
割合も、前回の処理で求めた触媒の被毒性炭化水素吸着
量と、触媒に流入する排ガス中の被毒性炭化水素の濃度
と、触媒温度と、排ガス流量とによって変化するため、
請求項8のように、これら4つのパラメータの少なくと
も1つに基づいて被毒性炭化水素の脱離割合を設定する
ようにしても良い。これにより、被毒性炭化水素の脱離
割合を精度良く設定することができる。
Similarly, the desorption ratio of the poisoned hydrocarbons from the catalyst is determined by the amount of the poisoned hydrocarbons adsorbed by the catalyst obtained in the previous treatment, the concentration of the poisoned hydrocarbons in the exhaust gas flowing into the catalyst, Because it changes depending on the catalyst temperature and the exhaust gas flow rate,
As described in claim 8, the desorption rate of the toxic hydrocarbon may be set based on at least one of these four parameters. This makes it possible to accurately set the desorption ratio of the toxic hydrocarbon.

【0016】また、請求項9のように、現時点の触媒の
被毒性炭化水素吸着量が予め設定した被毒限界値を越え
ないように、触媒への炭化水素供給量を制御するように
しても良い。このようにすれば、触媒の被毒性炭化水素
吸着量が被毒限界値を越えないように、触媒への炭化水
素供給量を適正化することができて、長期間に亘って高
いNOx浄化性能を維持できる。
Further, the amount of hydrocarbon supplied to the catalyst may be controlled so that the amount of poisoned hydrocarbon adsorbed by the catalyst at this time does not exceed a preset poisoning limit value. good. This makes it possible to optimize the amount of hydrocarbon supplied to the catalyst so that the amount of adsorbed toxic hydrocarbons of the catalyst does not exceed the poisoning limit value, and to achieve high NOx purification performance over a long period of time. Can be maintained.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態(1)を
図1乃至図9に基づいて説明する。まず、図1に基づい
てシステム全体の構成を説明する。内燃機関であるディ
ーゼルエンジン11の排気管12(排気通路)の途中に
は、排ガス中のNOxを還元浄化するNOx触媒13が
設けられている。このNOx触媒13は、活性金属であ
る白金を多孔質ゼオライトの一種に担持させたものであ
り、このNOx触媒13の内部で排気中のNOxが炭化
水素(HC)と反応して浄化される。このNOx触媒1
3の出口部には、触媒温度を評価するために、NOx触
媒13から流出する排ガスの温度を検出する排ガス温度
センサ14が設置されている。尚、排ガス温度センサ1
4はNOx触媒13の入口部に設置しても良く、この場
合でも、NOx触媒13に流入する排ガスの温度から触
媒温度を評価することが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment (1) of the present invention will be described below with reference to FIGS. First, the configuration of the entire system will be described with reference to FIG. A NOx catalyst 13 that reduces and purifies NOx in exhaust gas is provided in the exhaust pipe 12 (exhaust passage) of a diesel engine 11 that is an internal combustion engine. The NOx catalyst 13 has platinum, which is an active metal, supported on a kind of porous zeolite. In the NOx catalyst 13, NOx in exhaust gas reacts with hydrocarbons (HC) to be purified. This NOx catalyst 1
An exhaust gas temperature sensor 14 that detects the temperature of exhaust gas flowing out of the NOx catalyst 13 is installed at the outlet of the exhaust gas sensor 3 to evaluate the catalyst temperature. The exhaust gas temperature sensor 1
4 may be installed at the inlet of the NOx catalyst 13, and even in this case, the catalyst temperature can be evaluated from the temperature of the exhaust gas flowing into the NOx catalyst 13.

【0018】また、排気管12のうちのNOx触媒13
の上流側には、還元剤用のHCとして軽油等の燃料をN
Ox触媒13に供給するHC供給ノズル15が設けられ
ている。このHC供給ノズル15には、燃料タンク(図
示せず)から噴射ポンプ16で汲み上げた燃料が供給さ
れる。HC供給ノズル15から噴射する燃料の量は、エ
ンジン制御回路17によって制御される。
The NOx catalyst 13 in the exhaust pipe 12
Upstream of the fuel, such as light oil as HC for the reducing agent
An HC supply nozzle 15 for supplying the Ox catalyst 13 is provided. Fuel pumped by an injection pump 16 from a fuel tank (not shown) is supplied to the HC supply nozzle 15. The amount of fuel injected from the HC supply nozzle 15 is controlled by the engine control circuit 17.

【0019】このエンジン制御回路17は、マイクロコ
ンピュータを主体として構成され、排ガス温度センサ1
4、エンジン回転数センサ(図示せず)等、エンジン運
転条件を検出する各種センサの出力に基づいてディーゼ
ルエンジン11の各気筒への燃料噴射量を制御する。
The engine control circuit 17 is mainly composed of a microcomputer, and has an exhaust gas temperature sensor 1.
4. The amount of fuel injected into each cylinder of the diesel engine 11 is controlled based on the output of various sensors that detect engine operating conditions, such as an engine speed sensor (not shown).

【0020】また、このエンジン制御回路17は、RO
M(記憶媒体)に記憶された図2の被毒性HC吸着量演
算プログラムを実行することで、現時点のNOx触媒1
3の被毒性炭化水素(被毒性HC)の吸着量を算出する
被毒性炭化水素吸着量算出手段として機能し、更に、図
3のHC供給量制御プログラムを実行することで、NO
x触媒13の被毒性HC吸着量が予め設定した被毒限界
値を越えないようにHC供給量を制御する。以下、図2
及び図3のプログラムの処理内容を説明する。
Further, this engine control circuit 17
By executing the toxic HC adsorption amount calculation program of FIG. 2 stored in M (storage medium), the current NOx catalyst 1
3 functions as a toxic hydrocarbon adsorption amount calculation means for calculating the adsorption amount of the toxic hydrocarbon (toxic HC), and further executes the HC supply amount control program of FIG.
The HC supply amount is controlled such that the poisoned HC adsorption amount of the x catalyst 13 does not exceed a preset poisoning limit value. Hereinafter, FIG.
And the processing contents of the program in FIG. 3 will be described.

【0021】図2の被毒性HC吸着量演算プログラム
は、所定時間Δt毎に繰り返し実行される。本プログラ
ムの処理が開始されると、まずステップ101で、エン
ジン運転条件を検出するために、エンジン回転数Ne、
アクセル開度Ac、NOx触媒13の出口部の排ガス温
度Tex等を読み込む。この後、ステップ102で、所定
時間Δt内にディーゼルエンジン11から排出される被
毒性HC排出量ΔHCexを次式により算出する。
The toxic HC adsorption amount calculation program shown in FIG. 2 is repeatedly executed at predetermined time intervals Δt. When the processing of this program is started, first, in step 101, in order to detect an engine operating condition, the engine speed Ne,
The accelerator opening Ac, the exhaust gas temperature Tex at the outlet of the NOx catalyst 13, and the like are read. Thereafter, at step 102, the toxic HC discharge amount ΔHCex discharged from the diesel engine 11 within the predetermined time Δt is calculated by the following equation.

【0022】ΔHCex=ΔHCexo ×fex ここで、ΔHCexo は、所定時間Δt内にディーゼルエ
ンジン11から排出される全てのHCの排出量であり、
エンジン回転数Ne等のエンジン運転条件をパラメータ
として設定されたHC排出量マップを検索して、その時
点のエンジン運転条件に応じたHC排出量ΔHCexo が
求められる。
ΔHCex = ΔHCexo × fex where ΔHCexo is the amount of all HC discharged from the diesel engine 11 within a predetermined time Δt.
A HC emission map in which engine operating conditions such as the engine speed Ne are set as parameters is searched, and an HC emission ΔHCexo according to the engine operating conditions at that time is obtained.

【0023】また、fexは、ディーゼルエンジン11か
ら排出されるHC中の被毒性HCの割合を示す係数であ
り、この係数fexは、図4に示すように、エンジン回転
数Neとアクセル開度Acとをパラメータとする二次元
マップから、その時点のエンジン回転数Neとアクセル
開度Acに応じて設定される。このようにする理由は、
ディーゼルエンジン11から排出されるHC中の被毒性
HCの割合は、エンジン回転数Neやアクセル開度Ac
等のエンジン運転条件に応じて変化するためである。
尚、係数fexのマップのパラメータは、エンジン回転数
Neとアクセル開度Acのいずれか一方のみであっても
良く、或は、排ガス温度Tex等の他のエンジン運転条件
を付加するようにしても良い。
Fex is a coefficient indicating the ratio of toxic HC in the HC discharged from the diesel engine 11, and as shown in FIG. 4, the coefficient fex is determined by the engine speed Ne and the accelerator opening Ac. Are set in accordance with the engine speed Ne and the accelerator opening Ac at that time from a two-dimensional map having the following parameters. The reason for doing this is
The ratio of poisoned HC in the HC discharged from the diesel engine 11 is determined by the engine speed Ne and the accelerator opening Ac.
This is because it changes according to the engine operating conditions such as.
The parameter of the map of the coefficient fex may be only one of the engine speed Ne and the accelerator opening Ac, or another engine operating condition such as the exhaust gas temperature Tex may be added. good.

【0024】そして、次のステップ103で、所定時間
Δt内にHC供給ノズル15から供給される被毒性HC
供給量ΔHCfdを次式により算出する。 ΔHCfd=ΔHCfdo ×ffd ここで、ΔHCfdo は、所定時間Δt内にHC供給ノズ
ル15から供給される全てのHCの供給量であり、HC
供給ノズル15に与える指令値(目標HC供給量)から
HC供給量ΔHCfdo が求められる。
Then, in the next step 103, the poisoned HC supplied from the HC supply nozzle 15 within a predetermined time Δt.
The supply amount ΔHCfd is calculated by the following equation. ΔHCfd = ΔHCfdo × ffd Here, ΔHCfdo is the supply amount of all HC supplied from the HC supply nozzle 15 within the predetermined time Δt, and
The HC supply amount ΔHCfdo is obtained from the command value (target HC supply amount) given to the supply nozzle 15.

【0025】また、ffdは、HC供給ノズル15から供
給されるHC中の被毒性HCの割合を示す係数であり、
この係数ffdは、図5に示すように、排ガス温度をパラ
メータとするマップから、その時点の排ガス温度に応じ
て設定される。このようにする理由は、排ガスに添加さ
れたHCが排ガスの熱により改質され、一部の被毒性H
Cが被毒に影響しない低沸点のHCに変化するためであ
り、排ガス温度が高くなるほど、排ガスに添加したHC
中の被毒性HCの割合が低下する特性があるため、図5
のマップから、HC中の被毒性HCの割合を示す係数f
fdを排ガス温度に応じて設定するものである。
Ffd is a coefficient indicating the ratio of poisoned HC in the HC supplied from the HC supply nozzle 15,
The coefficient ffd is set according to the exhaust gas temperature at that time from a map using the exhaust gas temperature as a parameter, as shown in FIG. The reason for this is that HC added to the exhaust gas is reformed by the heat of the exhaust gas, and some toxic H
This is because C changes to low boiling point HC which does not affect poisoning. As the exhaust gas temperature increases, HC added to the exhaust gas increases.
Because of the characteristic of reducing the ratio of toxic HC in the
From the map, the coefficient f indicating the ratio of toxic HC in HC
fd is set according to the exhaust gas temperature.

【0026】この後、ステップ104で、所定時間Δt
内にNOx触媒13に流入する被毒性HC流入量ΔHC
inを、上記ステップ102,103で算出した被毒性H
C排出量ΔHCexと被毒性HC供給量ΔHCfdとを合計
して求める。 ΔHCin=ΔHCex+ΔHCfd 上述したステップ102〜104の処理が特許請求の範
囲でいう流入量算出手段として機能する。
Thereafter, at step 104, a predetermined time Δt
HC flow amount ΔHC flowing into the NOx catalyst 13
in is the toxic H calculated in steps 102 and 103 described above.
The C emission amount ΔHCex and the toxic HC supply amount ΔHCfd are obtained by summing them. ΔHCin = ΔHCex + ΔHCfd The processing of steps 102 to 104 described above functions as an inflow amount calculating means described in the claims.

【0027】そして、次のステップ105で、所定時間
Δt内にNOx触媒13に流入する排ガス量ΔWinをエ
ンジン回転数Neからマップ等により算出する。
Then, in the next step 105, the exhaust gas amount ΔWin flowing into the NOx catalyst 13 within a predetermined time Δt is calculated from the engine speed Ne using a map or the like.

【0028】この後、ステップ106で、触媒温度と排
ガス量とをパラメータとする被毒性HC定常浄化率マッ
プを検索して、その時点の触媒温度と排ガス量ΔWinに
応じた被毒性HCの定常浄化率Krep を算出する。ここ
で、被毒性HCの定常浄化率とは、触媒温度を一定に保
って定常運転した時の被毒性HCの浄化率であり、予
め、実験等で正確に求めることができる。触媒温度は、
排ガス温度センサ14で検出した触媒出口部の排ガス温
度Texが代用される。或は、触媒入口部の排ガス温度を
検出して触媒温度として用いたり、NOx触媒13の担
体温度を直接検出するようにしても良い。或は、触媒温
度をエンジン回転数とアクセル開度から推定するように
しても良い。
Thereafter, in step 106, a toxic HC steady-state purification rate map using the catalyst temperature and the exhaust gas amount as parameters is searched, and the toxic HC constant purification according to the catalyst temperature and the exhaust gas amount ΔWin at that time is searched. Calculate the rate Krep. Here, the steady-state purification rate of poisonous HC is the purification rate of poisonous HC when the catalyst is operated at a constant temperature while maintaining the catalyst temperature constant, and can be accurately obtained in advance by experiments or the like. The catalyst temperature is
The exhaust gas temperature Tex at the catalyst outlet detected by the exhaust gas temperature sensor 14 is substituted. Alternatively, the temperature of the exhaust gas at the catalyst inlet may be detected and used as the catalyst temperature, or the temperature of the carrier of the NOx catalyst 13 may be directly detected. Alternatively, the catalyst temperature may be estimated from the engine speed and the accelerator opening.

【0029】そして、次のステップ107で、所定時間
Δt内にNOx触媒13内で反応して消費される被毒性
HC消費量ΔHCrec を、被毒性HC流入量ΔHCinに
定常浄化率Krep を乗算して求める。 ΔHCrec =ΔHCin×Krep 上述したステップ105〜107の処理が特許請求の範
囲でいう消費量算出手段として機能する。
Then, in the next step 107, the poisoning HC consumption ΔHCrec reacted and consumed in the NOx catalyst 13 within the predetermined time Δt is multiplied by the poisoning HC inflow ΔHCin by the steady-state purification rate Krep. Ask. ΔHCrec = ΔHCin × Krep The processing of steps 105 to 107 described above functions as a consumption calculating means in claims.

【0030】この後、ステップ108で、NOx触媒1
3への被毒性HCの吸着割合を示す吸着係数f1 を次式
により算出する。 f1 =f11×f12×f13×f14
Thereafter, at step 108, the NOx catalyst 1
The adsorption coefficient f 1 indicating the adsorption ratio of the toxic HC to No. 3 is calculated by the following equation. f 1 = f 11 × f 12 × f 13 × f 14

【0031】ここで、f11は、前回の処理で算出した被
毒性HC吸着量HCadsoに応じて図6(a)のマップか
ら求めた係数である。f12は、NOx触媒13に流入す
る被毒性HC濃度に応じて図6(b)のマップから求め
た係数である。f13は、触媒温度に応じて図6(c)の
マップから求めた係数である。f14は、排ガス量ΔWin
に応じて図6(d)のマップから求めた係数である。こ
れらの係数f11〜f14は、いずれも0〜1の範囲内の値
をとり、図6の(a)〜(d)のマップは実験等によっ
て設定される。尚、これらの係数f11〜f14の一部を省
略して、吸着係数f1 の算出を簡略化しても良い。
[0031] Here, f 11 is a coefficient determined from the map shown in FIG. 6 (a) in accordance with the poisoning HC adsorption amount HCadso calculated in the previous processing. f 12 is a coefficient determined from the map shown in FIG. 6 (b) in accordance with the poisoning HC concentration flowing into the NOx catalyst 13. f 13 is a coefficient determined from the map shown in FIG. 6 (c) according to the catalyst temperature. f 14 is, the amount of exhaust gas ΔWin
Is a coefficient obtained from the map of FIG. These coefficients f 11 ~f 14 are each take values within the range of 0 to 1, the map of (a) ~ (d) in FIG. 6 is set by an experiment or the like. Note that a part of these coefficients f 11 to f 14 may be omitted to simplify the calculation of the adsorption coefficient f 1 .

【0032】この後、ステップ109で、所定時間Δt
内にNOx触媒13に吸着される被毒性HC吸着量ΔH
Ccad を、HC流入量ΔHCinからHC消費量ΔHCre
c を差し引いた値に吸着係数f1 を乗算して求める。 ΔHCcad =(ΔHCin−ΔHCrec )×f1 これらステップ108,109の処理が特許請求の範囲
でいう今回吸着量算出手段として機能する。
Thereafter, at step 109, a predetermined time Δt
Amount of toxic HC adsorbed by NOx catalyst 13 in air ΔH
Ccad is calculated from the HC inflow amount ΔHCin to the HC consumption amount ΔHCre.
determined by multiplying the adsorption coefficient f 1 to a value obtained by subtracting or c. DerutaHCcad = treatment (ΔHCin-ΔHCrec) × f 1 the steps 108 and 109 functions as a current adsorption amount calculating means in the appended claims.

【0033】そして、次のステップ110で、脱離係数
2 を次式により算出する。 f2 =f21×f22×f23×f24
Then, in the next step 110, the desorption coefficient f 2 is calculated by the following equation. f 2 = f 21 × f 22 × f 23 × f 24

【0034】ここで、f21は、前回の処理で算出した被
毒性HC吸着量HCadsoに応じて図7(a)のマップか
ら求めた係数である。f22は、NOx触媒13に流入す
る被毒性HC濃度に応じて図7(b)のマップから求め
た係数である。f23は、触媒温度に応じて図7(c)の
マップから求めた係数である。f24は、排ガス量ΔWin
に応じて図7(d)のマップから求めた係数である。こ
れらの係数f21〜f24は、いずれも0〜1の範囲内の値
をとり、図7の(a)〜(d)のマップは実験等によっ
て設定される。尚、これらの係数f21〜f24の一部を省
略して、脱離係数f2 の算出を簡略化しても良い。
Here, f 21 is a coefficient obtained from the map of FIG. 7A in accordance with the toxic HC adsorption amount HCadso calculated in the previous processing. f 22 is a coefficient determined from the map shown in FIG. 7 (b) in accordance with the poisoning HC concentration flowing into the NOx catalyst 13. f 23 is a coefficient determined from the map shown in FIG. 7 (c) according to the catalyst temperature. f 24 is the exhaust gas amount ΔWin
Is a coefficient obtained from the map of FIG. Each of these coefficients f 21 to f 24 takes a value in the range of 0 to 1, and the maps of FIGS. 7A to 7D are set by experiments and the like. Incidentally, it omitted some of these coefficients f 21 ~f 24, may be simplified to calculate the desorption coefficient f 2.

【0035】この後、ステップ111で、所定時間Δt
内にNOx触媒13から脱離する被毒性HC脱離量ΔH
Cdisoを、被毒性HC吸着量ΔHCcad に脱離係数f2
を乗算して求める。 ΔHCdiso=ΔHCcad ×f2 これらステップ110,111の処理が特許請求の範囲
でいう脱離量算出手段として機能する。
Thereafter, at step 111, a predetermined time Δt
Toxic HC desorption amount ΔH desorbed from the NOx catalyst 13
Cdiso is converted to the toxic HC adsorption amount ΔHCcad by the desorption coefficient f 2
Multiplied by ΔHCdiso = ΔHCcad × f 2 The processing of steps 110 and 111 functions as a desorption amount calculation unit referred to in the claims.

【0036】そして、次のステップ112で、現時点t
0 におけるNOx触媒13の被毒性HC吸着量HCadso
(t0 )を次式により算出する。
Then, at the next step 112, the current time t
NOx catalyst adsorption amount HCadso of NOx catalyst 13 at 0
(T 0 ) is calculated by the following equation.

【0037】HCadso(t0 )=HCadso(t0 −Δ
t)+{ΔHCcad(t0 )−ΔHCdiso(t0 −Δ
t)} HCadso(t0 −Δt):前回の処理で算出した被毒性
HC吸着量 ΔHCcad(t0 ):今回の処理で算出した被毒性HC吸
着量 ΔHCdiso(t0 −Δt):前回の処理で算出した被毒
性HC脱離量
HCadso (t 0 ) = HCadso (t 0 -Δ)
t) + {ΔHCcad (t 0 ) −ΔHCdiso (t 0 −Δ
t)} HCadso (t 0 −Δt): Poisoned HC adsorption amount calculated in previous processing ΔHCcad (t 0 ): Poisoned HC adsorption amount calculated in current processing ΔHCdiso (t 0 −Δt): Previous processing HC desorption amount calculated by

【0038】このような演算を行うことで、前回処理時
の被毒性HC吸着量HCadso(t0−Δt)に、前回の
処理から今回の処理までに増加した被毒性HC吸着量
{ΔHCcad(t0 )−ΔHCdiso(t0 −Δt)}を加
算して、現時点t0 におけるNOx触媒13の被毒性H
C吸着量HCadso(t0 )を求める。この被毒性HC吸
着量HCadso(t0 )の値は、エンジン制御回路17内
のバックアップメモリ(不揮発性メモリ)に更新記憶さ
れる。これにより、新車時から現在までのNOx触媒1
3の履歴を追跡して、現時点t0 の被毒性HC吸着量H
Cadso(t0 )が求められる。これを数式で示すと次の
ように表される。
By performing such a calculation, the toxic HC adsorption amount adΔHCcad (t) increased from the previous process to the current process is added to the toxic HC adsorption amount HCadso (t 0 −Δt) in the previous process. 0 ) −ΔHCdiso (t 0 −Δt)}, and the poisoning H of the NOx catalyst 13 at the current time t 0 is calculated.
The C adsorption amount HCadso (t 0 ) is obtained. The value of the toxic HC adsorption amount HCadso (t 0 ) is updated and stored in a backup memory (non-volatile memory) in the engine control circuit 17. As a result, the NOx catalyst 1
3, the toxic HC adsorption amount H at the current time t 0 is traced.
Cadso (t 0 ) is determined. This is represented by the following equation.

【0039】[0039]

【数1】 (Equation 1)

【0040】次に、図3のHC供給量制御プログラムの
処理内容を説明する。本プログラムも所定時間Δt毎に
実行される。本プログラムの処理を開始すると、まずス
テップ201で、図2の被毒性HC吸着量演算プログラ
ムで算出した現時点t0 の被毒性HC吸着量HCadso
(t0 )を予め設定された被毒限界値と比較する。ここ
で、被毒限界値とは、これ以上の被毒性HCがNOx触
媒13に吸着されると、NOx触媒13が元の状態まで
回復しにくい状態となる限界の被毒性HC吸着量であ
る。
Next, the processing contents of the HC supply amount control program of FIG. 3 will be described. This program is also executed every predetermined time Δt. When the processing of this program is started, first, in step 201, the toxic HC adsorption amount HCadso of the present time t 0 calculated by the toxic HC adsorption amount calculation program of FIG.
(T 0 ) is compared with a preset poisoning limit value. Here, the poisoning limit value is a limit of the poisoning HC adsorption amount at which the NOx catalyst 13 becomes difficult to recover to the original state when the NOx catalyst 13 adsorbs more poisoning HC.

【0041】もし、被毒性HC吸着量HCadso(t0
が被毒限界値を越えていれば、ステップ204に進み、
HC供給ノズル15からNOx触媒13へのHCの供給
を停止する。この場合は、被毒性HC吸着量HCadsoが
被毒限界値以下になるまで、NOx触媒13へのHCの
供給が停止される。これにより、NOx触媒13の被毒
性HC吸着量HCadsoが被毒限界値を越えて増加し続け
ることが防止され、NOx触媒13のNOx浄化能力が
保たれる。
If the toxic HC adsorption amount HCadso (t 0 )
If exceeds the poisoning limit, proceed to step 204,
The supply of HC from the HC supply nozzle 15 to the NOx catalyst 13 is stopped. In this case, the supply of HC to the NOx catalyst 13 is stopped until the poisoned HC adsorption amount HCadso becomes equal to or less than the poisoning limit value. As a result, the toxic HC adsorption amount HCadso of the NOx catalyst 13 is prevented from continuing to increase beyond the poisoning limit value, and the NOx purification ability of the NOx catalyst 13 is maintained.

【0042】一方、被毒性HC吸着量HCadso(t0
が被毒限界値以下の場合には、ステップ202に進み、
排ガス温度(触媒温度)とエンジン回転数等のエンジン
運転条件をパラメータとする目標HC供給量マップを検
索し、その時点のエンジン運転条件に応じた目標HC供
給量を求める。この後、ステップ203で、目標HC供
給量の信号をHC供給ノズル15に出力して、HC供給
ノズル15から目標HC供給量に相当する量の燃料を排
ガスに添加する。
On the other hand, the toxic HC adsorption amount HCadso (t 0 )
If is equal to or less than the poisoning limit value, the process proceeds to step 202,
A target HC supply map is searched using the engine operating conditions such as the exhaust gas temperature (catalyst temperature) and the engine speed as parameters, and a target HC supply amount according to the engine operating conditions at that time is obtained. Thereafter, in step 203, a signal of the target HC supply amount is output to the HC supply nozzle 15, and an amount of fuel corresponding to the target HC supply amount from the HC supply nozzle 15 is added to the exhaust gas.

【0043】本発明者は、以上説明した図2及び図3の
プログラムにより、NOx触媒13の被毒性HC吸着量
が予め設定した被毒限界値を越えないようにHC供給量
を制御する場合の効果を評価する試験を行ったので、そ
の試験結果について図8及び図9に基づいて説明する。
図8は従来技術のNOx触媒システムの挙動を示し、図
9は上記実施形態のNOx触媒システムの挙動を示して
いる。
The inventor of the present invention uses the program of FIGS. 2 and 3 described above to control the amount of HC supplied so that the adsorbed amount of toxic HC of the NOx catalyst 13 does not exceed a preset poisoning limit value. Since the test for evaluating the effect was performed, the test result will be described with reference to FIGS. 8 and 9.
FIG. 8 shows the behavior of the conventional NOx catalyst system, and FIG. 9 shows the behavior of the NOx catalyst system of the above embodiment.

【0044】従来技術(図8)では、NOx触媒の被毒
性HC吸着量に応じたHC供給量の制御が行われないた
め、被毒性HC吸着量が被毒限界値を越えて増加し続け
てしまい、NOx触媒が元の状態まで回復しにくい状態
となり、NOx浄化率が低下する。
In the prior art (FIG. 8), since the control of the amount of HC supplied in accordance with the amount of toxic HC adsorbed by the NOx catalyst is not performed, the amount of toxic HC adsorbed continues to increase beyond the poisoning limit value. As a result, it becomes difficult for the NOx catalyst to recover to the original state, and the NOx purification rate decreases.

【0045】これに対し、上記実施形態(図9)では、
NOx触媒13の被毒性HC吸着量が被毒限界値に達す
ると、HC供給が停止されて、排ガスのHC添加濃度が
低下する。これにより、被毒性HC吸着量が被毒限界値
を越えて増加し続けることが防止され、被毒性HC吸着
量が被毒限界値以下に抑えられて、長期間に亘ってNO
x浄化率の低下が防止される。
On the other hand, in the above embodiment (FIG. 9),
When the toxic HC adsorption amount of the NOx catalyst 13 reaches the poisoning limit value, the supply of HC is stopped, and the concentration of HC added to the exhaust gas decreases. As a result, the toxic HC adsorption amount is prevented from continuing to increase beyond the poisoning limit value, the toxic HC adsorption amount is suppressed below the poisoning limit value, and NO
x Reduction of the purification rate is prevented.

【0046】前記実施形態(1)では、NOx触媒13
にHCを供給する手段として、排気管12にHC供給ノ
ズル15を設けたが、図10に示す実施形態(2)で
は、蓄圧室20(コモンレール)から各気筒の燃料噴射
ノズル(図示せず)に燃料を分配するディーゼルエンジ
ン11において、燃料噴射ノズルから燃料を噴射した後
の膨脹行程で、少なくとも1気筒の燃料噴射ノズルから
ポスト噴射により少量の燃料を噴射し、これをNOx触
媒13に供給するようにしている。従って、排気管12
には、HC供給ノズルが設けられていない。
In the embodiment (1), the NOx catalyst 13
Although the HC supply nozzle 15 is provided in the exhaust pipe 12 as a means for supplying HC to the fuel cell, in the embodiment (2) shown in FIG. 10, a fuel injection nozzle (not shown) of each cylinder is provided from the pressure accumulation chamber 20 (common rail). In the diesel engine 11 that distributes fuel to the NOx catalyst 13, a small amount of fuel is injected by post-injection from at least one cylinder of fuel injection nozzles in the expansion stroke after the fuel is injected from the fuel injection nozzles and supplied to the NOx catalyst 13. Like that. Therefore, the exhaust pipe 12
Is not provided with an HC supply nozzle.

【0047】また、前記実施形態(1)では、排ガス温
度センサ14でNOx触媒13の出口部の温度を測定し
たが、実施形態(2)では、排ガス温度センサに代え
て、NOx触媒13の担体温度(触媒温度)を触媒温度
センサ21により直接検出するようにしている。これ以
外の構成は、前記実施形態(1)と同じである。
In the embodiment (1), the temperature of the outlet of the NOx catalyst 13 is measured by the exhaust gas temperature sensor 14. In the embodiment (2), the carrier of the NOx catalyst 13 is replaced with the exhaust gas temperature sensor. The temperature (catalyst temperature) is directly detected by the catalyst temperature sensor 21. The other configuration is the same as that of the embodiment (1).

【0048】この実施形態(2)でも、前記実施形態
(1)と同じ方法で、現時点のNOx触媒13の被毒性
HC吸着量を算出し、この被毒性HC吸着量が予め設定
した被毒限界値を越えた時には、ポスト噴射を停止す
る。この場合は、被毒性HC吸着量が被毒限界値以下に
なるまで、ポスト噴射が停止される。これにより、被毒
性HC吸着量が被毒限界値を越えて増加し続けることが
防止され、NOx触媒13のNOx浄化能力が保たれ
る。一方、被毒性HC吸着量が被毒限界値以下の場合に
は、触媒温度とエンジン回転数等のエンジン運転条件を
パラメータとする目標ポスト噴射量マップを検索し、そ
の時点のエンジン運転条件に応じた目標ポスト噴射量を
求めて、ポスト噴射を実行する。
Also in this embodiment (2), the current poisoned HC adsorption amount of the NOx catalyst 13 is calculated by the same method as in the embodiment (1), and this poisoned HC adsorbed amount is set to a preset poisoning limit. When the value is exceeded, post injection is stopped. In this case, the post injection is stopped until the poisoned HC adsorption amount becomes equal to or less than the poisoning limit value. As a result, the toxic HC adsorption amount is prevented from continuing to increase beyond the poisoning limit value, and the NOx purification capability of the NOx catalyst 13 is maintained. On the other hand, when the poisoned HC adsorption amount is equal to or less than the poisoning limit value, a target post-injection amount map using the engine operating conditions such as the catalyst temperature and the engine speed as parameters is searched, and according to the engine operating conditions at that time, The post injection is executed by obtaining the target post injection amount thus obtained.

【0049】尚、上記実施形態(1),(2)では、N
Ox触媒13に供給するHCとして燃料(軽油)を用い
たが、灯油等の液状のHCや、プロパン等のガス状のH
Cを用いるようにしても良い。
In the above embodiments (1) and (2), N
Although fuel (light oil) was used as HC to be supplied to the Ox catalyst 13, liquid HC such as kerosene or gaseous H such as propane was used.
C may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)における排気浄化シス
テム全体の構成図
FIG. 1 is a configuration diagram of an entire exhaust gas purification system according to an embodiment (1) of the present invention.

【図2】被毒性HC吸着量演算プログラムの処理の流れ
を示すフローチャート
FIG. 2 is a flowchart showing a processing flow of a toxic HC adsorption amount calculation program;

【図3】HC供給量制御プログラムの処理の流れを示す
フローチャート
FIG. 3 is a flowchart showing a flow of processing of an HC supply amount control program;

【図4】ディーゼルエンジンから排出されるHC中の被
毒性HCの割合を表す係数fexのマップを概念的に示す
FIG. 4 is a diagram conceptually showing a map of a coefficient fex representing a ratio of toxic HC in HC discharged from a diesel engine.

【図5】HC供給ノズルから供給されるHC中の被毒性
HCの割合を表す係数ffdのマップを概念的に示す図
FIG. 5 is a diagram conceptually showing a map of a coefficient ffd representing a ratio of poisoned HC in HC supplied from an HC supply nozzle.

【図6】(a)は被毒性HC吸着量による吸着係数f11
のマップを概念的に示す図、(b)はNOx触媒に流入
する被毒性HC濃度による吸着係数f12のマップを概念
的に示す図、(c)は触媒温度による吸着係数f13のマ
ップを概念的に示す図、(d)は排ガス量による吸着係
数f14のマップを概念的に示す図
FIG. 6 (a) is an adsorption coefficient f 11 based on the toxic HC adsorption amount.
Conceptually illustrated FIG maps of the (b) conceptually shows FIG maps of Adsorption Factor f 12 by poisoning HC concentration flowing into the NOx catalyst, (c) the map of the adsorption coefficient f 13 by the catalyst temperature diagram conceptually illustrating, (d) is a diagram showing conceptually a map of adsorption factor f 14 by the exhaust gas amount

【図7】(a)は被毒性HC吸着量による脱離係数f21
のマップを概念的に示す図、(b)はNOx触媒に流入
する被毒性HC濃度による脱離係数f22のマップを概念
的に示す図、(c)は触媒温度による脱離係数f23のマ
ップを概念的に示す図、(d)は排ガス量による脱離係
数f24のマップを概念的に示す図
FIG. 7 (a) shows a desorption coefficient f 21 according to the amount of toxic HC adsorbed.
Diagram conceptually illustrating a map, (b) conceptually shows FIG maps desorption coefficient f 22 by poisoning HC concentration flowing into the NOx catalyst, (c) the desorption coefficient f 23 by the catalyst temperature conceptually shows a map, (d) is a diagram showing conceptually a map of desorption coefficient f 24 by the exhaust gas amount

【図8】従来技術のNOx触媒システムの挙動を示すタ
イムチャート
FIG. 8 is a time chart showing the behavior of a conventional NOx catalyst system.

【図9】実施形態(1)のNOx触媒システムの挙動を
示すタイムチャート
FIG. 9 is a time chart showing the behavior of the NOx catalyst system of the embodiment (1).

【図10】本発明の実施形態(2)における排気浄化シ
ステム全体の構成図
FIG. 10 is a configuration diagram of the entire exhaust gas purification system according to the embodiment (2) of the present invention.

【符号の説明】[Explanation of symbols]

11…ディーゼルエンジン(内燃機関)、12…排気管
(排気通路)、13…NOx触媒、14…排ガス温度セ
ンサ、15…HC供給ノズル、16…噴射ポンプ、17
…エンジン制御回路(被毒性炭化水素吸着量算出手段,
流入量算出手段,消費量算出手段,今回吸着量算出手
段,脱離量算出手段)、20…蓄圧室、21…触媒温度
センサ。
11: diesel engine (internal combustion engine), 12: exhaust pipe (exhaust passage), 13: NOx catalyst, 14: exhaust gas temperature sensor, 15: HC supply nozzle, 16: injection pump, 17
… Engine control circuit (toxic hydrocarbon adsorption amount calculation means,
Inflow amount calculation means, consumption amount calculation means, current adsorption amount calculation means, desorption amount calculation means), 20: pressure accumulating chamber, 21: catalyst temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大山 尚久 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 広田 信也 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naohisa Oyama 14 Iwatani, Shimowasumi-cho, Nishio City, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Inventor Shinya Hirota 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Inside the corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設置した触媒に、
窒素酸化物の還元剤として炭化水素を供給することで、
排ガス中の窒素酸化物を還元浄化する排気浄化システム
において、 前記触媒に吸着されている炭化水素のうち、該触媒に被
毒を生じさせる炭化水素成分(以下「被毒性炭化水素」
という)の吸着量を算出する被毒性炭化水素吸着量算出
手段を備えていることを特徴とする排気浄化用触媒の炭
化水素吸着量検出装置。
1. A catalyst installed in an exhaust passage of an internal combustion engine,
By supplying hydrocarbons as reducing agents for nitrogen oxides,
In an exhaust gas purification system for reducing and purifying nitrogen oxides in exhaust gas, a hydrocarbon component causing poisoning of the catalyst (hereinafter referred to as “toxic hydrocarbon”) among hydrocarbons adsorbed on the catalyst.
A device for calculating the amount of adsorbed toxic hydrocarbons, which calculates the amount of adsorbed hydrocarbons.
【請求項2】 前記被毒性炭化水素吸着量算出手段は、 所定時間毎に前記触媒に流入する被毒性炭化水素の所定
時間当たりの流入量を算出する流入量算出手段と、 所定時間毎に前記触媒で反応して消費される被毒性炭化
水素の所定時間当たりの消費量を算出する消費量算出手
段と、 所定時間毎に前記被毒性炭化水素の所定時間当たりの流
入量から消費量を差し引いた値に、前記触媒への被毒性
炭化水素の吸着割合を乗算して、該触媒への被毒性炭化
水素の所定時間当たりの吸着量を算出する今回吸着量算
出手段と、 所定時間毎に前記触媒に吸着されている被毒性炭化水素
の所定時間当たりの脱離量を算出する脱離量算出手段
と、 所定時間毎に前記被毒性炭化水素の所定時間当たりの吸
着量から脱離量を引いた値を積算して現時点の前記触媒
の被毒性炭化水素吸着量を算出する手段とから構成され
ていることを特徴とする請求項1に記載の排気浄化用触
媒の炭化水素吸着量検出装置。
2. The intoxication hydrocarbon adsorbing amount calculating means includes: an inflow amount calculating means for calculating an inflow amount of a poisoning hydrocarbon flowing into the catalyst per predetermined time every predetermined time; Consumption amount calculating means for calculating the consumption amount of the poisonous hydrocarbon consumed by the reaction with the catalyst per predetermined time; and the consumption amount is subtracted from the inflow amount of the poisonous hydrocarbon per predetermined time every predetermined time. This time multiplying the value by the adsorption rate of the poisoned hydrocarbon to the catalyst to calculate the adsorbed amount of the poisoned hydrocarbon to the catalyst per predetermined time; and A desorption amount calculating means for calculating a desorption amount of the toxic hydrocarbon adsorbed per predetermined time, and a desorption amount subtracted from the adsorption amount of the toxic hydrocarbon per predetermined time every predetermined time. Integrate the value and add the catalyst Hydrocarbon adsorption amount detection device of an exhaust purifying catalyst according to claim 1, characterized in that is composed of a means for calculating the poisoning hydrocarbon adsorption amount.
【請求項3】 前記流入量算出手段は、前記被毒性炭化
水素の所定時間当たりの流入量を、内燃機関から排出さ
れる排ガス中の被毒性炭化水素の量と、前記触媒の上流
で排ガスに添加される被毒性炭化水素の量とを合計して
求めることを特徴とする請求項2に記載の排気浄化用触
媒の炭化水素吸着量検出装置。
3. The inflow amount calculating means calculates an inflow amount of the toxic hydrocarbon per predetermined time into an amount of the toxic hydrocarbon in the exhaust gas discharged from the internal combustion engine and the amount of the toxic hydrocarbon into the exhaust gas upstream of the catalyst. 3. The device for detecting the amount of hydrocarbons adsorbed on an exhaust purification catalyst according to claim 2, wherein the amount is determined by adding up the amounts of the poisoned hydrocarbons added.
【請求項4】 前記流入量算出手段は、前記内燃機関か
ら排出される炭化水素中の被毒性炭化水素の割合を内燃
機関運転条件に基づいて設定することを特徴とする請求
項2又は3に記載の排気浄化用触媒の炭化水素吸着量検
出装置。
4. The system according to claim 2, wherein said inflow amount calculating means sets a ratio of toxic hydrocarbons in hydrocarbons discharged from said internal combustion engine based on internal combustion engine operating conditions. A device for detecting the amount of hydrocarbons adsorbed on an exhaust purification catalyst according to claim 1.
【請求項5】 前記流入量算出手段は、前記触媒の上流
で排ガスに添加される炭化水素中の被毒性炭化水素の割
合を排ガスの温度に基づいて設定することを特徴とする
請求項2乃至4のいずれかに記載の排気浄化用触媒の炭
化水素吸着量検出装置。
5. The system according to claim 2, wherein said inflow amount calculating means sets a ratio of toxic hydrocarbons in hydrocarbons added to the exhaust gas upstream of said catalyst based on a temperature of the exhaust gas. 4. The device for detecting the amount of adsorbed hydrocarbons of an exhaust purification catalyst according to any one of the above items 4.
【請求項6】 前記消費量算出手段は、前記被毒性炭化
水素の所定時間当たりの消費量を、触媒温度に応じて予
め設定された被毒性炭化水素の定常浄化率を用いて算出
することを特徴とする請求項2乃至5のいずれかに記載
の排気浄化用触媒の炭化水素吸着量検出装置。
6. The method according to claim 6, wherein the consumption calculating unit calculates the consumption of the poisoned hydrocarbon per predetermined time using a steady-state purification rate of the poisoned hydrocarbon set in advance according to a catalyst temperature. The device for detecting the amount of adsorbed hydrocarbons on an exhaust purification catalyst according to any one of claims 2 to 5.
【請求項7】 前記今回吸着量算出手段は、前記触媒へ
の被毒性炭化水素の吸着割合を、前回の処理で求めた前
記触媒の被毒性炭化水素吸着量と、前記触媒に流入する
排ガス中の被毒性炭化水素の濃度と、触媒温度と、排ガ
ス流量との少なくとも1つに基づいて設定することを特
徴とする請求項2乃至6のいずれかに記載の排気浄化用
触媒の炭化水素吸着量検出装置。
7. The present adsorption amount calculation means calculates an adsorption ratio of the toxic hydrocarbons to the catalyst, the adsorption amount of the toxic hydrocarbons of the catalyst obtained in a previous process, and an amount of the exhaust gas flowing into the catalyst. The hydrocarbon adsorption amount of the exhaust purification catalyst according to any one of claims 2 to 6, wherein the hydrocarbon adsorption amount is set based on at least one of the concentration of the toxic hydrocarbon, the catalyst temperature, and the exhaust gas flow rate. Detection device.
【請求項8】 前記脱離量算出手段は、前回の処理で求
めた前記触媒の被毒性炭化水素吸着量に脱離割合を乗算
して脱離量を求め、該脱離割合を、前回の処理で求めた
前記触媒の被毒性炭化水素吸着量と、前記触媒に流入す
る排ガス中の被毒性炭化水素の濃度と、触媒温度と、排
ガス流量との少なくとも1つに基づいて設定することを
特徴とする請求項2乃至7のいずれかに記載の排気浄化
用触媒の炭化水素吸着量検出装置。
8. The desorption amount calculating means calculates a desorption amount by multiplying a desorption ratio by the detoxification ratio of the toxic hydrocarbon adsorbed amount of the catalyst obtained in the previous process, and calculates the desorption ratio in the previous process. It is set based on at least one of the amount of poisoned hydrocarbons adsorbed by the catalyst obtained in the treatment, the concentration of poisoned hydrocarbons in the exhaust gas flowing into the catalyst, the catalyst temperature, and the exhaust gas flow rate. The device for detecting the amount of hydrocarbons adsorbed on an exhaust purification catalyst according to any one of claims 2 to 7.
【請求項9】 現時点の前記触媒の被毒性炭化水素吸着
量が予め設定した被毒限界値を越えないように、前記触
媒への炭化水素供給量を制御する手段を備えていること
を特徴とする請求項1乃至8のいずれかに記載の排気浄
化用触媒の炭化水素吸着量検出装置。
9. A system for controlling the amount of hydrocarbons supplied to the catalyst so that the amount of toxic hydrocarbons adsorbed by the catalyst at this time does not exceed a preset poisoning limit value. An apparatus for detecting the amount of hydrocarbons adsorbed on an exhaust purification catalyst according to any one of claims 1 to 8.
JP21481797A 1997-08-08 1997-08-08 Hydrocarbon adsorption detector for exhaust gas purification catalyst Expired - Fee Related JP3712314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21481797A JP3712314B2 (en) 1997-08-08 1997-08-08 Hydrocarbon adsorption detector for exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21481797A JP3712314B2 (en) 1997-08-08 1997-08-08 Hydrocarbon adsorption detector for exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH1162561A true JPH1162561A (en) 1999-03-05
JP3712314B2 JP3712314B2 (en) 2005-11-02

Family

ID=16662022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21481797A Expired - Fee Related JP3712314B2 (en) 1997-08-08 1997-08-08 Hydrocarbon adsorption detector for exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3712314B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161145A (en) * 2001-09-12 2003-06-06 Mitsubishi Motors Corp Exhaust emission control device
JP5093238B2 (en) * 2007-07-11 2012-12-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US20140033687A1 (en) * 2011-04-13 2014-02-06 Toyota Jidosha Kabushiki Kaisha Fuel injection control system of an internal combustion engine
EP2354504A3 (en) * 2010-02-09 2014-09-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engine
JP2018178774A (en) * 2017-04-05 2018-11-15 株式会社デンソー Exhaust emission control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095045B1 (en) * 2019-01-07 2020-03-30 주식회사 현대케피코 Method and apparatus for controlling heating catalyst temperature based on prediction model of unburned hydrocarbon in heating catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161145A (en) * 2001-09-12 2003-06-06 Mitsubishi Motors Corp Exhaust emission control device
JP5093238B2 (en) * 2007-07-11 2012-12-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8959897B2 (en) 2007-07-11 2015-02-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus in an internal combustion engine
EP2354504A3 (en) * 2010-02-09 2014-09-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engine
US20140033687A1 (en) * 2011-04-13 2014-02-06 Toyota Jidosha Kabushiki Kaisha Fuel injection control system of an internal combustion engine
US9169758B2 (en) * 2011-04-13 2015-10-27 Toyota Jidosha Kabushiki Kaisha Fuel injection control system of an internal combustion engine
JP2018178774A (en) * 2017-04-05 2018-11-15 株式会社デンソー Exhaust emission control system

Also Published As

Publication number Publication date
JP3712314B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
WO2008108499A1 (en) APPARATUS FOR DIAGNOSING DETERIORATION OF NOx CATALYST
JP6278005B2 (en) Exhaust purification device deterioration diagnosis device
JP6123822B2 (en) Exhaust purification device deterioration diagnosis device
JP2006138321A (en) Mechanical device, and its exhaust gas treatment method, control computer program and exhaust gas purifying catalyst
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP4214415B2 (en) Catalyst temperature estimation device
KR102440576B1 (en) Exhaust gas purification apparatus and method for controlling the same
US9084966B2 (en) Diesel oxidation catalyst aging level determination using NOX sensor NO2 interference
JP3712314B2 (en) Hydrocarbon adsorption detector for exhaust gas purification catalyst
US20180328252A1 (en) Exhaust Gas Control System for Internal Combustion Engine and Method of Controlling Exhaust Gas Control System for Internal Combustion Engine
JPH1181994A (en) Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine
JP2019203487A (en) Fuel reforming device and control method therefor
US10781734B2 (en) Exhaust gas control apparatus for internal combustion engine
US8707680B2 (en) Exhaust purification system of internal combustion engine
KR102518593B1 (en) CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
JP3750766B2 (en) Exhaust gas purification device for internal combustion engine
EP2966275B1 (en) Exhaust gas purification device of a motor vehicle engine comprising a selective catalytic reduction catalyst
JP2001271679A (en) Air-fuel ratio control method
JP2004169607A (en) Control device for internal combustion engine
US20060207244A1 (en) Method for operating an internal combustion engine and device for implementing the method
CN113914980A (en) Exhaust gas purification apparatus and method for controlling the same
WO2003083274A1 (en) METHOD OF DECIDING ON CATALYST DETERIORATION AND MEANS FOR DECIDING ON CATALYST DETERIORATION IN NOx PURGING SYSTEM
FR2998001A1 (en) EXHAUST GAS DEPOLLUTION DEVICE WITH CONTROLLED REDUCER AGENT INJECTION
JP4147702B2 (en) NOx adsorption catalyst for exhaust gas purification of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees