JPH1162308A - Damping structure - Google Patents

Damping structure

Info

Publication number
JPH1162308A
JPH1162308A JP21951097A JP21951097A JPH1162308A JP H1162308 A JPH1162308 A JP H1162308A JP 21951097 A JP21951097 A JP 21951097A JP 21951097 A JP21951097 A JP 21951097A JP H1162308 A JPH1162308 A JP H1162308A
Authority
JP
Japan
Prior art keywords
earthquake
wall
shearing
strength
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21951097A
Other languages
Japanese (ja)
Inventor
Takehito Tezuka
武仁 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP21951097A priority Critical patent/JPH1162308A/en
Publication of JPH1162308A publication Critical patent/JPH1162308A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an earthquake-proof ability by making a notch on a part of the earthquake-proof wall of a steel reinforced concrete, and giving a damping ability by means of a shearing transmittance mechanism of wall reinforcement generated by shearing deformation. SOLUTION: Vertical slits 3 are respectively formed near the posts at the left and right ends of an earthquake-proof wall 1, and a horizontal notch 4 is made at the nearly central part of height. The notched part 4 is needed to be plastically deformed by bearing force in order to operate as an energy absorption part at a great earthquake, as a result, a plastic deformation ability is raised by the use of the shearing transmittance of a wall reinforcement 5 by the stress of bearing strength. In the case where the reinforcement is not closely densed, or the strength is so small that bearing strength breakage takes place before the shearing breakage of concrete, such bearing strength breakage becomes dominant. In many existing buildings having a small concrete strength, repair work can be done for the earthquake proof wall by providing the slit 3 and notch 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、既存建物の耐震補
強及び新築建物等で建物の地震力を低減する必要がある
場合の制震構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic control structure for an earthquake-resistant reinforcement of an existing building and a new building or the like when it is necessary to reduce the seismic force of the building.

【0002】[0002]

【従来の技術】一般に、建物の耐震壁は大地震に充分耐
え得る強度設計が行われ、補強筋は剪断耐力の向上を目
的として配筋されている。耐震余裕度の少ない建物で
は、壁を増設して強度を増大させる補強が行われてい
る。
2. Description of the Related Art Generally, earthquake-resistant walls of buildings are designed to have sufficient strength to withstand large earthquakes, and reinforcing bars are arranged to improve shear strength. Buildings with small seismic margins have been reinforced to increase the strength by adding walls.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、中高層
の建物の場合には、剛強な壁が増設されるほど、固有周
期が短くなり短周期化の効果により作用する地震力は一
般的には大きくなる。又、壁の増設や厚さを大きくする
増し打ちは、建築空間の遮断や減少に結び付いて機能性
を損なうことになる。
However, in the case of a middle-to-high-rise building, as the rigid walls are increased, the natural period becomes shorter and the seismic force acting due to the effect of the shorter period generally increases. . Further, the addition of the wall and the overstretching to increase the thickness are linked to the interruption or reduction of the architectural space, thereby impairing the functionality.

【0004】本発明は、上記従来の事態に鑑みなされた
もので、壁の増設や厚さを大きくすることなく耐震性能
を向上させるようにした制震構造を提供することを目的
とする。
[0004] The present invention has been made in view of the above-mentioned conventional situation, and has as its object to provide a vibration control structure capable of improving the seismic performance without increasing the wall thickness or increasing the thickness.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
めの手段として、本発明は、鉄筋コンクリート構造の耐
震壁の一部に切り込みを設け、ずれ変形により発生する
壁筋の剪断伝達機構を利用して、減衰性能を付与する制
震構造を要旨とする。又、ずれ変形を発生する位置とし
て、耐震壁の高さのほぼ中央部分に水平方向の切り込み
を入れたこと、ずれ変形を発生する位置として、耐震壁
の上下端部に水平方向の切り込みを入れたこと、を要旨
とする。
As a means for achieving the above-mentioned object, the present invention utilizes a shear transmission mechanism of a wall reinforcement generated by shear deformation by providing a cut in a part of an earthquake-resistant wall of a reinforced concrete structure. The gist is a vibration control structure that provides damping performance. In addition, horizontal cuts were made at approximately the center of the height of the shear wall as positions where shear deformation occurs, and horizontal cuts were made at the upper and lower ends of the shear wall as positions where shear deformation occurs. That is the gist.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳説する。図1において、1は耐震壁で
あり、左右端の柱2際に鉛直方向のスリット3をそれぞ
れ設けると共に、高さのほぼ中央部分に水平方向の切り
込み4を設ける。この切り込み4は、スリットにする必
要はなく幅も数mm程度で良いが、大地震時にこの部分
が確実に「ずれ変形」を発生するような条件で深さを設
定する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes an earthquake-resistant wall, which is provided with vertical slits 3 near pillars 2 at the left and right ends, and a horizontal notch 4 at a substantially central portion of the height. The notch 4 does not need to be a slit and may have a width of about several mm, but the depth is set under such a condition that this portion surely generates “shear deformation” during a large earthquake.

【0007】前記切り込み4は、大地震時にエネルギー
吸収部分として作用させるためであり、そのエネルギー
吸収を実現するためには、耐力を保って塑性変形する必
要があり、支圧応力による壁筋5の剪断伝達を利用して
塑性変形能力を向上させる。建物の一部に塑性履歴をす
るエネルギー吸収部分があると、ダンピング効果により
建物に作用する地震力は低減するのである。
The notch 4 serves as an energy absorbing portion in the event of a large earthquake. In order to realize the energy absorption, it is necessary to carry out plastic deformation while maintaining proof stress. Utilizes shear transmission to improve plastic deformation capacity. If a part of the building has an energy absorbing part that has a plastic history, the seismic force acting on the building will be reduced due to the damping effect.

【0008】ところで、鉄筋が存在する剪断面の破壊
は、鉄筋下のコンクリートが支圧破壊するか又は剪断破
壊することにより発生する。剪断面の鉄筋の応力度pt
σs が40〜80kgf/cm2 の範囲では、鉄筋下の
コンクリートによる支圧応力により剪断力が伝達され
る。即ち、配筋があまり密でない場合か、又はコンクリ
ートが剪断破壊する前に支圧破壊するような強度が小さ
い場合には、支圧破壊が支配的となる。支圧応力は局部
的な応力であり、コンクリートの一軸強度の約6倍程度
に達する値である。
[0008] Destruction of a shear plane in which a reinforcing bar is present occurs when concrete under the reinforcing bar breaks down or shears. Stress level p t of the reinforcing bar in shear plane
sigma s is in the range of 40~80kgf / cm 2, a shear force is transmitted by Bearing stress due concrete under rebar. That is, when the reinforcement is not very dense, or when the concrete has a small strength to bear and break before shearing, the bearing failure becomes dominant. The bearing stress is a local stress, and is a value that reaches about six times the uniaxial strength of concrete.

【0009】支圧応力伝達面では、鉄筋が全塑性モーメ
ントに達したと考えた剪断伝達が行われ、鉄筋の履歴特
性が応力伝達面の特性として発揮されるために、この剪
断伝達面では、剪断力とずれ変形が安定したBi-Linear
型の弾塑性履歴を行う。支圧破壊面での剪断力とずれ変
位の関係を図3に示す。
On the bearing stress transmitting surface, shear transmission is performed on the assumption that the reinforcing bar has reached the total plastic moment, and the hysteresis characteristics of the reinforcing bar are exhibited as characteristics of the stress transmitting surface. Bi-Linear with stable shear and shear deformation
Perform the elasto-plastic history of the mold. FIG. 3 shows the relationship between the shearing force and the displacement at the bearing surface.

【0010】又、支圧破壊が支配的な剪断伝達面の耐力
は、以下の式により表すことができる。
Further, the proof stress of the shearing transmission surface where the bearing rupture is dominant can be expressed by the following equation.

【数1】 (Equation 1)

【0011】前記壁筋5が少なく、コンクリート強度が
小さい多くの既存建物においては、支圧破壊の条件を満
たす耐震壁が多く、図1のようにスリット3と切り込み
4を設けて耐震壁1の改修工事を行うことによりエネル
ギー吸収が可能な耐震構造とすることができる。
In many existing buildings having a small number of wall streaks 5 and small concrete strength, many earthquake-resistant walls satisfying the conditions of bearing failure are provided, and slits 3 and cuts 4 are provided as shown in FIG. By performing renovation work, a seismic structure capable of absorbing energy can be obtained.

【0012】耐震壁の改修工事は図1のものに限らず、
例えば図2(イ) に示すように耐震壁11と上階の梁16
際に水平方向の切り込み14を設けたり、或は(ロ) のよ
うに耐震壁21と下階の梁26際に水平方向の切り込み
24を設けるようにしても良い。 いずれも地震時に切
り込み14、24部分にずれ変形が発生するようにする
ことで、切り込み部が支圧破壊面となることを可能にす
る。尚、これらの場合にも耐震壁11、21の左右端の
柱12、22際には鉛直方向のスリット13、23をそ
れぞれ設ける。
The repair work of the earthquake-resistant wall is not limited to the one shown in FIG.
For example, as shown in FIG.
In this case, a horizontal cutout 14 may be provided, or a horizontal cutout 24 may be provided between the earthquake-resistant wall 21 and the lower beam 26 as shown in FIG. In any case, by causing the cuts 14 and 24 to be displaced and deformed during the earthquake, the cuts can be used as bearing surfaces. In these cases, vertical slits 13 and 23 are provided near the columns 12 and 22 at the left and right ends of the earthquake-resistant walls 11 and 21, respectively.

【0013】このような改修工事を行うことにより、改
修耐震壁の耐力に相当するだけ建物の耐力は低減する
が、次のような機構によりエネルギー吸収が可能とな
り、ダンピング効果が発揮されて建物の受ける地震力は
低減する。
By performing such renovation work, the strength of the building is reduced by an amount corresponding to the strength of the renovated earthquake-resistant wall. The received seismic force is reduced.

【0014】図4に示すように改修耐震壁を除いた建物
の復元力を(a)とし、改修した耐震壁の復元力を
(b)とすると、建物全体の復元力は(a)と(b)と
が合成されたものであり、地震力が改修耐震壁の耐力を
超える場合には、黒く塗り潰した部分が改修耐震壁の支
圧破壊によりエネルギー吸収をして、建物に作用する地
震力を低減する制震構造として機能する。
As shown in FIG. 4, assuming that the restoring force of the building excluding the repaired shear wall is (a) and the restoring force of the repaired shear wall is (b), the restoring force of the entire building is (a) and (a). b) is synthesized, and if the seismic force exceeds the strength of the renovated shear wall, the black-painted part absorbs energy due to the bearing failure of the renovated shear wall, and the seismic force acting on the building It functions as a vibration control structure that reduces noise.

【0015】この場合、制震効果は前記復元力特性の図
に示した(a)と(b)の剛性比と耐力比により支配さ
れるが、柱際のスリットの切り方及び切り込み部の壁筋
の切断により、剛性比と耐力比を調整することも可能で
あり、制震効果を最適に調整することができる。
In this case, the vibration damping effect is governed by the rigidity ratio and the proof stress ratio of (a) and (b) shown in the graph of the restoring force characteristic. It is also possible to adjust the stiffness ratio and the proof stress ratio by cutting the streaks, so that the vibration control effect can be optimally adjusted.

【0016】尚、支圧破壊モードは、耐震壁が剪断変形
する場合に限定されるものではなく、中高層の建物の曲
げ・剪断変形を受ける場合においても、圧縮を受ける側
の壁の支圧強度が増す拘束効果を発揮して破壊機能が成
立する。
The bearing mode is not limited to the case where the shear-resistant wall undergoes shear deformation. Even when the middle and high-rise building is subjected to bending or shearing deformation, the bearing strength of the compression-receiving side wall is also considered. The destruction function is realized by exhibiting a restraining effect that increases.

【0017】[0017]

【発明の効果】以上説明したように、本発明は、既存耐
震壁のほぼ中央部分又は上下の梁際に切り込みを入れ、
大地震時にずれ変形が発生するように改修することによ
り、履歴エネルギー吸収作用を発揮させ、地震力を低減
させる効果を奏する。又、本発明によれば、特別な制震
デバイスを何ら必要とせず、このためデバイスの動特性
や地震波の周期特性に依存しない制震構造を提供するこ
とが可能であり、デバイスに係わる特別な保守等の作業
も必要としない等の優れた効果を奏する。
As described above, according to the present invention, a cut is made at the substantially central part of the existing earthquake-resistant wall or at the upper and lower beams.
By modifying so that the shear deformation occurs during a large earthquake, the hysteretic energy absorbing effect is exerted and the effect of reducing the seismic force is exhibited. Further, according to the present invention, it is possible to provide a vibration control structure which does not require any special vibration control device, and therefore does not depend on the dynamic characteristics of the device or the periodic characteristics of seismic waves. It has excellent effects such as not requiring maintenance work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る制震構造の一例を示すもので、
(イ) は要部の正面図、(ロ) は断面図である。
FIG. 1 shows an example of a vibration control structure according to the present invention.
(A) is a front view of a main part, and (B) is a cross-sectional view.

【図2】(イ) 、(ロ) は本発明に係る制震構造の他例を示
すそれぞれ正面図である。
FIGS. 2 (a) and 2 (b) are front views each showing another example of the vibration control structure according to the present invention.

【図3】支圧破壊面での剪断力とずれ変位との関係図で
ある。
FIG. 3 is a diagram illustrating a relationship between a shearing force and a displacement on a bearing-breaking surface.

【図4】地震力と水平変形との関係図である。FIG. 4 is a relationship diagram between seismic force and horizontal deformation.

【符号の説明】[Explanation of symbols]

1…耐震壁 2…柱 3…スリット 4…切り込み 5…壁筋 11、21…耐震壁 12、22…柱 13、23…スリット 14、24…切り込み 16、26…梁 DESCRIPTION OF SYMBOLS 1 ... Shear wall 2 ... Column 3 ... Slit 4 ... Cut 5 ... Wall striation 11, 21 ... Shear wall 12, 22 ... Column 13, 23 ... Slit 14, 24 ... Cut 16, 26 ... Beam

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄筋コンクリート構造の耐震壁の一部に切
り込みを設け、ずれ変形により発生する壁筋の剪断伝達
機構を利用して、減衰性能を付与することを特徴とする
制震構造。
1. A vibration control structure characterized in that a notch is provided in a part of an earthquake-resistant wall of a reinforced concrete structure, and a damping performance is imparted by utilizing a shear transmission mechanism of a wall reinforcement generated by shear deformation.
【請求項2】ずれ変形を発生する位置として、耐震壁の
高さのほぼ中央部分に水平方向の切り込みを入れた請求
項1記載の制震構造。
2. The vibration damping structure according to claim 1, wherein a horizontal cut is made in a substantially central portion of the height of the shear wall as a position where the shear deformation occurs.
【請求項3】ずれ変形を発生する位置として、耐震壁の
上下端部に水平方向の切り込みを入れた請求項1記載の
制震構造。
3. The vibration control structure according to claim 1, wherein horizontal cuts are made at upper and lower ends of the earthquake-resistant wall as positions where the shear deformation occurs.
JP21951097A 1997-08-14 1997-08-14 Damping structure Pending JPH1162308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21951097A JPH1162308A (en) 1997-08-14 1997-08-14 Damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21951097A JPH1162308A (en) 1997-08-14 1997-08-14 Damping structure

Publications (1)

Publication Number Publication Date
JPH1162308A true JPH1162308A (en) 1999-03-05

Family

ID=16736601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21951097A Pending JPH1162308A (en) 1997-08-14 1997-08-14 Damping structure

Country Status (1)

Country Link
JP (1) JPH1162308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120815A (en) * 2003-09-24 2005-05-12 Ohbayashi Corp Earthquake-resisting wall and construction method of earthquake-resisting wall
JP2016151110A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Shear panel
JP2019044498A (en) * 2017-09-04 2019-03-22 株式会社竹中工務店 Earthquake-proof slit structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120815A (en) * 2003-09-24 2005-05-12 Ohbayashi Corp Earthquake-resisting wall and construction method of earthquake-resisting wall
JP2016151110A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Shear panel
JP2019044498A (en) * 2017-09-04 2019-03-22 株式会社竹中工務店 Earthquake-proof slit structure

Similar Documents

Publication Publication Date Title
Pincheira et al. Seismic response of RC frames retrofitted with steel braces or walls
JP4502484B2 (en) Seismic reinforcement wall
JPH10331477A (en) Vibration control frame
JP5082131B2 (en) Distribution warehouse with seismic isolation and control functions
JPH1162308A (en) Damping structure
JPH09203219A (en) Earthquake-resistant reinforcing method for existing building
JP2000129951A (en) Vibration control wall
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP4289271B2 (en) Seismic retrofit method for existing buildings
JP2000328810A (en) Vibration control frame
JP2810615B2 (en) Earthquake-resistant wall with vibration energy absorption function
JP2005314917A (en) Vibration control stud
JP3845834B2 (en) Damping structure building
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JPH0745784B2 (en) Earthquake resistant wall
JP2961220B2 (en) Extension method for existing structures
JPH11229632A (en) Damping reinforcing method for outer shell of existting building
JPH1162268A (en) Aseismatic repairing method of existing building, and aseismatic structure
Chao et al. Performance based seismic design of special truss moment frames
JP2955960B2 (en) Steel wall structure for damping structure
JPS647193B2 (en)
JP3728646B2 (en) Vibration control structure
JP2000291136A (en) High damping steel pipe column
JP2001336306A (en) Seismically isolated structure frame
Hayes et al. Earthquake resistance and blast resistance: a structural comparison

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050106

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Effective date: 20050316

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524