JPH1161554A - Highly heat-resistant polypropylene fiber - Google Patents

Highly heat-resistant polypropylene fiber

Info

Publication number
JPH1161554A
JPH1161554A JP23656397A JP23656397A JPH1161554A JP H1161554 A JPH1161554 A JP H1161554A JP 23656397 A JP23656397 A JP 23656397A JP 23656397 A JP23656397 A JP 23656397A JP H1161554 A JPH1161554 A JP H1161554A
Authority
JP
Japan
Prior art keywords
fiber
cement
yarn
polypropylene
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23656397A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
賢治 小林
Toru Matsumura
徹 松村
Toshikuni Hata
俊邦 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PORIKEMU KK
Original Assignee
NIPPON PORIKEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PORIKEMU KK filed Critical NIPPON PORIKEMU KK
Priority to JP23656397A priority Critical patent/JPH1161554A/en
Publication of JPH1161554A publication Critical patent/JPH1161554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polypropylene fibrous material which does not melt at >=170 deg.C autoclave curing temperature, especially polypropylene fiber or yarn excellent in shape retaining property in autoclave curing at 175-180 deg.C as fibrous material for reinforcing cement. SOLUTION: This highly heat-resistant polypropylene fiber or yarn is obtained by melt-molding a polypropylene resin composition obtained by adding 0.001-5 pts.wt. nucleating agent forming β crystal to 100 pts.wt. homopolypropylene having >=96% isotactic pentad fraction and satisfying 0.3-30 g/10 min melt flow rate and drawing the molded material. In the fiber or yarn, the fiber shape is retained even in autoclave curing at 180 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐熱性ポリプロ
ピレン繊維もしくはヤーンに関し、特にセメント補強用
繊維もしくはヤーンに関する。
FIELD OF THE INVENTION The present invention relates to high heat resistant polypropylene fibers or yarns, and more particularly to cement reinforcing fibers or yarns.

【0002】[0002]

【従来の技術】セメント補強用繊維としては、従来アス
ベストが使用されていたが、アスベストは人体に悪影響
を与えるためにその使用が規制され、この代替として近
年ポリオレフィン繊維が使用され始めている。セメント
はその成形を行う段階で、養生過程を必要とする。養生
はオートクレーブ内(10kgf/cm2)で170〜
180℃、数十時間行うものである。しかしながら通常
のポリプロピレン繊維では融点が160〜165℃であ
るため、この養生に耐えきれず融解してしまい、養生終
了後にコンクリート中にポリプロピレンが繊維として存
在しない問題が生じてくる。コンクリートの養生温度を
165〜170℃に下げれば、ポリプロピレン繊維が溶
融することなく養生を行うことが出来るが、これでは養
生に長時間必要で生産性低下を引き起こす。
2. Description of the Related Art Conventionally, asbestos has been used as a fiber for reinforcing cement. However, asbestos has been restricted in use because it has a bad effect on the human body, and polyolefin fibers have recently begun to be used as a substitute for this. Cement requires a curing process at the stage of its forming. Curing in an autoclave (10 kgf / cm 2 ) 170 ~
This is performed at 180 ° C. for several tens of hours. However, since ordinary polypropylene fibers have a melting point of 160 to 165 ° C., they cannot withstand this curing and are melted, which causes a problem that polypropylene does not exist as a fiber in concrete after curing. If the curing temperature of the concrete is lowered to 165 to 170 ° C., curing can be performed without melting the polypropylene fiber. However, this requires a long time for curing and lowers productivity.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
の観点から、セメント補強用繊維状物として、オートク
レーブ養生温度170℃以上で融解しないポリプロピレ
ン繊維状物、特に175〜180℃のオートクレーブ養
生時に形態保持性に優れる新規ポリプロピレン繊維もし
くはヤーンを提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide, as a fiber reinforcing material for cement, a polypropylene fibrous material which does not melt at an autoclave curing temperature of 170 ° C. or more, and particularly an autoclave curing at 175 to 180 ° C. It is intended to provide a novel polypropylene fiber or yarn which is sometimes excellent in shape retention.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を達成すべく鋭意研究を行った結果、特定の立体規則性
を持ったポリプロピレンにβ晶核剤を添加することによ
って高耐熱性ポリプロピレン繊維が得られることを見出
し、本発明を完成した。すなわち、本発明は、アイソタ
クチックペンタッドフラクションが96%以上でかつメ
ルトフローレイトが0.3〜30g/10分を満たすホ
モポリプロピレン100重量部にβ晶を形成させる造核
剤を0.001〜5重量部添加したポリプロピレン樹脂
組成物を溶融成形後、延伸してなる高耐熱性ポリプロピ
レン繊維もしくはヤーンである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, by adding a β crystal nucleating agent to polypropylene having a specific stereoregularity, high heat resistance is obtained. The present inventors have found that polypropylene fibers can be obtained, and have completed the present invention. That is, the present invention provides a nucleating agent for forming β crystals in 100 parts by weight of homopolypropylene having an isotactic pentad fraction of 96% or more and a melt flow rate of 0.3 to 30 g / 10 min. It is a high heat-resistant polypropylene fiber or yarn obtained by melt-molding a polypropylene resin composition to which about 5 parts by weight has been added and then stretching.

【0005】[0005]

【発明の実施の形態】 1.ポリプロピレン樹脂 本発明におけるポリプロピレン樹脂は、立体規則性の指
標であるアイソタクチックペンタッドフラクション(以
下、IPFという)が96%以上でかつメルトフローレ
イト(以下、MFRという)が0.3〜30を満たすホ
モポリプロピレンである。IPFが96%未満である
と、当該ポリプロピレン樹脂及びその成形物の融解温度
が低く、セメント補強材として好ましくない。MFRが
0.3未満であると、溶融成形(おもに繊維の紡糸)時
にダイス出口の圧力が上昇しすぎるため好ましくない。
また、MFRが30を超えると、ポリプロピレン中の高
分子量成分が少なくなり、延伸後の繊維又はヤーンに配
向結晶が少なく、その結果繊維又はヤーンの融解温度が
低くなり、セメント補強材として好ましくない。更に、
ポリプロピレンの分子量分布(Mw/Mn)は、3.5
〜12が好ましく、特に4〜9が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Polypropylene resin The polypropylene resin in the present invention has an isotactic pentad fraction (hereinafter, referred to as IPF) as an index of stereoregularity of 96% or more and a melt flow rate (hereinafter, referred to as MFR) of 0.3 to 30. Filling homopolypropylene. If the IPF is less than 96%, the melting temperature of the polypropylene resin and its molded product is low, which is not preferable as a cement reinforcing material. If the MFR is less than 0.3, the pressure at the die outlet is excessively increased during melt molding (mainly, fiber spinning), which is not preferable.
On the other hand, if the MFR exceeds 30, the high molecular weight component in the polypropylene decreases, and the oriented fiber or yarn has less oriented crystals. As a result, the melting temperature of the fiber or yarn decreases, which is not preferable as a cement reinforcing material. Furthermore,
The molecular weight distribution (Mw / Mn) of polypropylene is 3.5
To 12 are preferable, and 4 to 9 are particularly preferable.

【0006】2.β晶核剤 本発明において用いるβ晶を形成させる造核剤として
は、一般式(1)又は(2)で表される一種若しくは二
種以上のアミド系化合物である。 R2−NHCO−R1−CONH−R3 (1) 〔式中、R1は炭素数1〜24の飽和若しくは不飽和の
脂肪族カルボン酸残基、炭素数4〜28の飽和もしくは
不飽和の脂環族ジカルボン酸残基又は炭素数6〜28の
芳香族ジカルボン酸残基を表す。R2、R3は同一又は異
なって、炭素数3〜18のシクロアルキル基、炭素数3
〜12のシクロアルケニル基、一般式a、一般式b、一
般式c又は一般式dで示される基を表す。〕
[0006] 2. β crystal nucleating agent The nucleating agent used to form β crystals used in the present invention is one or more amide compounds represented by the general formula (1) or (2). R 2 -NHCO-R 1 -CONH-R 3 (1) wherein R 1 is a saturated or unsaturated aliphatic carboxylic acid residue having 1 to 24 carbon atoms, and a saturated or unsaturated residue having 4 to 28 carbon atoms Represents an alicyclic dicarboxylic acid residue or an aromatic dicarboxylic acid residue having 6 to 28 carbon atoms. R 2 and R 3 are the same or different and are a cycloalkyl group having 3 to 18 carbon atoms,
To 12 cycloalkenyl groups, groups represented by general formula a, general formula b, general formula c or general formula d. ]

【0007】[0007]

【化1】 〔式中、R4は炭素数1〜12の直鎖もしくは分岐鎖状
のアルキル基又は炭素数2〜12の直鎖状もしくは分岐
状のアルケニル基、炭素数6〜10のシクロアルキル基
又はフェニル基を表す。〕
Embedded image [Wherein, R 4 represents a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms, a cycloalkyl group having 6 to 10 carbon atoms, or phenyl. Represents a group. ]

【0008】[0008]

【化2】 〔式中、R5は一般式aにおけるR4と同義である。〕Embedded image [Wherein, R 5 has the same meaning as R 4 in formula (a)]. ]

【0009】[0009]

【化3】 〔式中、R6は炭素数1〜4の直鎖状又は分岐状のアル
キレン基を表す。〕
Embedded image [In the formula, R 6 represents a linear or branched alkylene group having 1 to 4 carbon atoms. ]

【0010】[0010]

【化4】 〔式中、R7は一般式cにおけるR6と同義である。〕Embedded image [Wherein, R 7 has the same meaning as R 6 in general formula c. ]

【0011】 R9−CONH−R8−NHCO−R10 (2) 〔式中、R8は一般式(1)におけるR1と、R9は一般
式(1)におけるR2と、R10は一般式(1)における
3とそれぞれ同義である。〕 具体的には、N,N′−ジシクロヘキシル−2,6−ナ
フタレンジカルボキシアミド、N,N′−ジシクロヘキ
シルテレフタルアミド、N,N′−ジフェニルヘキサン
ジアミド、N,N′−ジシクロヘキサンカルボニル−p
−フェニレンジアミン、N,N′−ジベンゾイル−1,
4−ジアミノシクロヘキサン等が挙げられ、これらのβ
晶造核剤として、新日本理化(株)よりエヌジェスタ−
(商品名)として販売されている。
R 9 -CONH-R 8 -NHCO-R 10 (2) wherein R 8 is R 1 in the general formula (1), R 9 is R 2 and R 10 in the general formula (1) Has the same meaning as R 3 in formula (1). Specifically, N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide, N, N'-dicyclohexylterephthalamide, N, N'-diphenylhexanediamide, N, N'-dicyclohexanecarbonyl-p
Phenylenediamine, N, N'-dibenzoyl-1,
4-diaminocyclohexane and the like.
Ngesta from Shin-Nippon Rika Co., Ltd. as a crystal nucleating agent
(Product name).

【0012】本発明において、β晶核剤の使用量はポリ
プロピレン樹脂100重量部に対して0.001〜5重
量部、好ましくは0.005〜1重量部である。0.0
01重量部未満では、未延伸糸又はヤーン中にβ晶が生
成し難く、5重量部を超えて含有しても効果の優位性は
認められず、逆に紡糸時に糸切れなどを引き起こす。当
該造核剤は、ポリプロピレン樹脂調製時に配合してもよ
いし、別途調製した樹脂に添加してもよい。
In the present invention, the amount of the β crystal nucleating agent is 0.001 to 5 parts by weight, preferably 0.005 to 1 part by weight, based on 100 parts by weight of the polypropylene resin. 0.0
If the amount is less than 01 parts by weight, β crystals are hardly generated in the undrawn yarn or the yarn, and if the amount exceeds 5 parts by weight, the superiority of the effect is not recognized, and conversely, the yarn breaks during spinning. The nucleating agent may be added at the time of preparing the polypropylene resin, or may be added to a separately prepared resin.

【0013】3.その他の添加剤 本発明のポリプロピレン樹脂延伸繊維又はヤーンには、
使用目的に応じて適宜従来公知のポリオレフィン用改質
剤を併用することができる。例えば酸化防止剤、紫外線
吸収剤、光安定剤、有機カルボン酸、帯電防止剤、界面
活性剤、中和剤、分散剤、エポキシ安定剤、可塑剤、滑
剤、抗菌剤、難燃剤、充填剤、発泡剤、発泡助剤、架橋
剤、架橋助剤、顔料等である。酸化防止剤としては、フ
ェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸
化防止剤、アミン系酸化防止剤及びビタミン類などが挙
げられる。分散剤をかねた中和剤としては、金属石鹸、
ハイドロタルサイト類、リチウムアルミニウム複合水酸
化物塩、ケイ酸塩、金属酸化物、金属水酸化物などが挙
げられる。また、セメント中での繊維又はヤーンの分散
性を向上させるために、ポリエチレングリコール、ポリ
エチレンオキサイド等の親水性のポリマーを0.1〜2
0重量部の範囲内で添加することも有効である。
3. Other additives In the polypropylene resin drawn fiber or yarn of the present invention,
Conventionally known modifiers for polyolefins can be used in combination depending on the purpose of use. For example, antioxidants, ultraviolet absorbers, light stabilizers, organic carboxylic acids, antistatic agents, surfactants, neutralizers, dispersants, epoxy stabilizers, plasticizers, lubricants, antibacterial agents, flame retardants, fillers, Foaming agents, foaming assistants, crosslinking agents, crosslinking assistants, pigments and the like. Examples of the antioxidant include a phenolic antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, an amine-based antioxidant, and vitamins. Neutralizing agents that also serve as dispersants include metal soaps,
Examples include hydrotalcites, lithium aluminum composite hydroxide salts, silicates, metal oxides, metal hydroxides, and the like. Further, in order to improve the dispersibility of fibers or yarns in cement, a hydrophilic polymer such as polyethylene glycol and polyethylene oxide is used in an amount of 0.1 to 2%.
It is also effective to add within the range of 0 parts by weight.

【0014】4.ポリプロピレン繊維又はヤーンの製造
方法 (1)未延伸成形体の製造 未延伸繊維の成形は溶融成形で、一般に溶融押出成形に
より行われる。例えば紡糸口金を通してポリプロピレン
を溶融押出する事により延伸用フィラメントが得られ、
またフラットダイあるいはリングダイを通してポリプロ
ピレンを押し出すことにより延伸用ヤーンが得られる。
また、インフレーションフィルム成形後に裁断すること
により延伸用スプリットヤーンが得られる。本発明のβ
晶核剤含有ポリプロピレン組成物を用い、このようにし
て得られた未延伸ポリプロピレン成形体の延伸性を向上
させるために、未延伸成形体の結晶系のβ晶化をさらに
促進することが好ましい。そのためには未延伸フィラメ
ントあるいはヤーン成形時に比較的徐冷することが望ま
しい。β晶の生成促進の手法として紡糸ノズル直下を加
熱保温することも有効な方法である。
4. Method for Producing Polypropylene Fiber or Yarn (1) Production of Unstretched Molded Article Unstretched fiber is molded by melt molding, generally by melt extrusion molding. For example, a filament for drawing is obtained by melt-extruding polypropylene through a spinneret,
In addition, a yarn for drawing can be obtained by extruding polypropylene through a flat die or a ring die.
Further, by performing cutting after forming the blown film, a split yarn for stretching can be obtained. Β of the present invention
In order to improve the stretchability of the unstretched polypropylene molded article thus obtained using the crystal nucleating agent-containing polypropylene composition, it is preferable to further promote β-crystallization of the crystal system of the unstretched molded article. For that purpose, it is desirable to relatively slowly cool the undrawn filament or the yarn during molding. It is also an effective method to promote the formation of β crystals by heating and keeping the temperature directly below the spinning nozzle.

【0015】(2)延伸操作 延伸操作は1段あるいは2段以上の多段で行うことがで
きる。延伸温度は70〜150℃の範囲で、オーブン
内、熱板、遠赤外線などを熱源として行う。延伸倍率
は、繊維の場合1.5〜10倍、好ましくは2〜7倍、
ヤーンの場合は2〜16倍、好ましくは4〜14倍であ
る。
(2) Stretching operation The stretching operation can be performed in one stage or in two or more stages. The stretching temperature is in the range of 70 to 150 ° C., and the heat treatment is performed in an oven, a hot plate, far infrared rays, or the like. The draw ratio is 1.5 to 10 times, preferably 2 to 7 times in the case of fiber,
In the case of yarn, it is 2 to 16 times, preferably 4 to 14 times.

【0016】(3)熱処理 このようにして得られたポリプロピレン繊維又はヤーン
は所望により(拘束条件下で)熱処理を施すことができ
る。この熱処理は一般に140〜170℃、好ましくは
150〜165℃の範囲内で、0.5〜30分、好まし
くは1〜20分行う。この熱処理により配向結晶部の結
晶化が進行し更なる高融点化がもたらされる。オートク
レーブ養生する場合、170〜180℃の目的温度まで
ゆっくりと2〜5時間掛けて上げていくため、結果的に
ポリプロピレン繊維に熱処理を施しているのと同じ状況
となっている。このため、熱処理を、オートクレーブ養
生時に兼ねて行ってもよい。
(3) Heat Treatment The thus obtained polypropylene fiber or yarn can be subjected to a heat treatment (under constrained conditions) if desired. This heat treatment is generally carried out at a temperature of 140 to 170 ° C., preferably 150 to 165 ° C., for 0.5 to 30 minutes, preferably 1 to 20 minutes. By this heat treatment, the crystallization of the oriented crystal part progresses, and the melting point is further increased. In the case of autoclave curing, the temperature is gradually increased to the target temperature of 170 to 180 ° C. over 2 to 5 hours, and as a result, the situation is the same as when the polypropylene fiber is subjected to the heat treatment. Therefore, the heat treatment may be performed at the time of autoclave curing.

【0017】5.本発明の繊維又はヤーンがセメント補
強材として適用されるセメント 本発明の繊維又はヤーンがセメント補強材として適用さ
れるセメントとしては、例えば、通常ポルトランドセメ
ント、白色ポルトランドセメント、アルミナセメント、
シリカセメント、マグネシアセメント、ポゾランセメン
トなどの水硬性セメント、石膏、石炭などの気硬性セメ
ント、耐酸セメントなどの特殊セメントなどを挙げるこ
とができる。また、上記セメントを用いたセメント組成
物としては、例えば、上述したセメントのうち一種また
は二種以上に炭酸カルシウム、水酸化マグネシウムまた
はチタンホワイトなどの無機材料や、必要に応じて小
石、砂などの骨材、パラフィン、ワックス、レゾール型
フェノール樹脂などの熱硬化性水溶性樹脂、各種のポリ
マーエマルジョン、硬化促進剤、硬化遅延剤、減水剤な
どを配合することにより得ることができる。このセメン
ト組成物を硬化させる場合には、セメント組成物に水を
加える際のセメントと水との混合比、いわゆるC/W比
は1〜10の範囲とすることが好ましい。C/W比が1
以下では水の量が多くなりすぎ、セメント硬化物の強度
が十分に高くならず、10より大きくなるとセメント組
成物の流動性が悪化する。
5. The fiber or the yarn of the present invention is applied as a cement reinforcing material.As the cement to which the fiber or the yarn of the present invention is applied as a cement reinforcing material, for example, usually Portland cement, white Portland cement, alumina cement,
Examples thereof include hydraulic cements such as silica cement, magnesia cement and pozzolan cement, air-hardening cements such as gypsum and coal, and special cements such as acid-resistant cements. In addition, as the cement composition using the cement, for example, one or more of the above-described cements, calcium carbonate, inorganic materials such as magnesium hydroxide or titanium white, and pebbles, sand, and the like as necessary. It can be obtained by mixing an aggregate, a paraffin, a wax, a thermosetting water-soluble resin such as a resol type phenol resin, various polymer emulsions, a curing accelerator, a curing retarder, a water reducing agent and the like. When the cement composition is hardened, the mixing ratio of cement and water when adding water to the cement composition, that is, the so-called C / W ratio is preferably in the range of 1 to 10. C / W ratio is 1
Below, the amount of water becomes too large, and the strength of the cement hardened product is not sufficiently increased. If it is more than 10, the fluidity of the cement composition is deteriorated.

【0018】6.本発明の繊維又はヤーンをセメント補
強材として用いるの使用態様 本発明の繊維又はヤーンをセメント補強材として用いる
に際しては、繊維又はヤーンの形状によって使用する形
態が異なる。ヤーンをセメント補強材とした場合には、
上記セメント組成物が完全に硬化していない段階で、本
発明に係わるセメント補強材をロックボルトなどにより
セメント組成物の半硬化物に固定し、さらにセメント組
成物を供給する方法などが用いられる。
6. Usage Mode of Using the Fiber or Yarn of the Present Invention as a Cement Reinforcing Material When using the fiber or yarn of the present invention as a cement reinforcing material, the form used depends on the shape of the fiber or the yarn. If yarn is used as cement reinforcement,
At a stage where the cement composition is not completely cured, a method of fixing the cement reinforcing material according to the present invention to a semi-cured cement composition with a rock bolt or the like and further supplying the cement composition is used.

【0019】また、繊維をセメント補強材とした場合に
は、好ましくはセメント補強材繊維を3〜30mm程度
の長さに切断した後、上記セメント組成物中に混入して
用いればよい。この場合、繊維長が30mmより長い
と、セメント組成物中に均一に分散しづらくなり、逆に
3mmより短くなると十分な補強効果を得ることが出来
なくなることがある。また、繊維のセメント補強材を混
入させる量については、繊維セメント補強材の量が少な
すぎると、十分な補強効果を得ることが出来ず、多すぎ
るとセメント補強材が均一に分散しづらくなる。従っ
て、セメント組成物100重量部に対し、セメント補強
材繊維の混入量は0.5〜30重量部の範囲であるが、
より好ましくは1〜15重量部である。
When the fiber is used as the cement reinforcing material, the cement reinforcing fiber is preferably cut into a length of about 3 to 30 mm and then mixed with the cement composition. In this case, if the fiber length is longer than 30 mm, it becomes difficult to uniformly disperse in the cement composition, and if it is shorter than 3 mm, a sufficient reinforcing effect may not be obtained. As for the amount of the fiber cement reinforcing material to be mixed, if the amount of the fiber cement reinforcing material is too small, a sufficient reinforcing effect cannot be obtained, and if the amount is too large, the cement reinforcing material is difficult to be uniformly dispersed. Therefore, for 100 parts by weight of the cement composition, the mixing amount of the cement reinforcing fiber is in the range of 0.5 to 30 parts by weight,
More preferably, it is 1 to 15 parts by weight.

【0020】7.本発明の繊維又はヤーンをセメント補
強材として用いたセメント製品 本発明の繊維又はヤーンをセメント補強材として上記セ
メント組成物に適用することにより得られる製品として
は、種々のセメント製品が挙げられる。例えば、テトラ
ポットなどの水中構造物、橋梁、トンネルなどの道路や
鉄道用構造物、ビル、住宅及び壁面など建造物、護岸ブ
ロック、瓦などを挙げることが出来る。
[7] FIG. Cement products using fibers or yarns of the present invention as cement reinforcements The various products obtained by applying the fibers or yarns of the present invention as a cement reinforcement to the above cement composition include various cement products. Examples include underwater structures such as tetrapods, road and railway structures such as bridges and tunnels, structures such as buildings, houses and walls, seawall blocks, and tiles.

【0021】[0021]

【実施例】以下に、実施例で本発明を詳細に説明する。
実施例における試験法は以下の通りである。 (1)IPF:Macromolecules,,9
25(1973)に記載の13C−NMRスペクトル法に
より求めた。すなわち、13C−NMRスペクトルにおい
て5個連続したプロピレン単量体単位を示すピークから
アイソタクチック結合に相当するピーク分率を求めた。
ピークの帰属は、Macromolecules,
687(1975)に記載の方法にて行った。 (2)MFR:JIS K 7210により荷重2.1
6kg、230℃にて測定した。 (3)DSC測定:サンプル(延伸繊維もしくはヤー
ン)約10mgについて、室温から走査温度10℃/分
にて210℃まで昇温して測定した。 (4)分子量分布:GPCにて測定した。 (5)紡糸性:連続60分間紡糸時に30本中3本以上
断糸した場合を×とした。 (6)最高延伸倍率の評価:延伸工程において、20分
間延伸による糸切れが生じない上限の倍率とした。 (7)オートクレーブ養生後の繊維形態評価手法:養生
後のコンクリートテストピースを割り、その断面に残っ
ている繊維形状で評価した。すなわち、ほぼ全部繊維状
態で残っているものを○、半分程度まで繊維状態で残っ
ているものを△、半分も残っていないものを×とした。
The present invention will be described below in detail with reference to examples.
The test method in the examples is as follows. (1) IPF: Macromolecules, 6 , 9
Was determined by 13 C-NMR spectroscopy according to 25 (1973). That is, a peak fraction corresponding to isotactic bonding was determined from peaks indicating five consecutive propylene monomer units in the 13 C-NMR spectrum.
Peak assignments were made using Macromolecules, 8 ,
687 (1975). (2) MFR: Load 2.1 according to JIS K7210
It was measured at 6 kg and 230 ° C. (3) DSC measurement: About 10 mg of a sample (drawn fiber or yarn) was measured by increasing the temperature from room temperature to 210 ° C. at a scanning temperature of 10 ° C./min. (4) Molecular weight distribution: measured by GPC. (5) Spinnability: A case where three or more yarns out of 30 yarns were broken during continuous 60-minute spinning was evaluated as x. (6) Evaluation of maximum stretching ratio: In the stretching step, the upper limit was set to a value at which yarn breakage due to stretching for 20 minutes did not occur. (7) Fiber morphology evaluation method after curing in an autoclave: The concrete test piece after curing was divided, and the fiber shape remaining in the cross section was evaluated. That is, ○ indicates that almost all remained in the fibrous state, Δ indicates that the fiber remained to about half, and X indicates that no half remained.

【0022】実施例1 IPFが96%、MFRが2g/10分、分子量分布
(Mw/Mn)が6のホモポリプロピレン100重量部
に、酸化防止剤としてIr1010及びIr168(チ
バガイギー製)を各々0.05重量部、中和剤としてカ
ルシウムステアレートを0.05重量部、及びβ晶核剤
エヌジェスター(新日本理化(株)製)を0.1重量部
加え、スーパーミキサーを用いてブレンドした後、50
mmφの押出成形機にて230℃、75rpmのスクリ
ュー回転数で溶融混練し、ペレット状のポリプロピレン
を得た。
Example 1 Ir1010 and Ir168 (manufactured by Ciba Geigy) as antioxidants were added to 100 parts by weight of homopolypropylene having an IPF of 96%, an MFR of 2 g / 10 min, and a molecular weight distribution (Mw / Mn) of 6. After adding 0.05 parts by weight, 0.05 parts by weight of calcium stearate as a neutralizing agent, and 0.1 parts by weight of N-gester (Nippon Rika Co., Ltd.) as a neutralizing agent, and blending using a super mixer. , 50
The mixture was melt-kneaded at 230 ° C. and a screw rotation speed of 75 rpm with an extruder having a diameter of mm to obtain a polypropylene pellet.

【0023】これをギアポンプ付きマルチフィラメント
紡糸機(ダイス:0.8mmφ×30穴)を用いて、紡
糸温度290℃、巻取速度300m/分で溶融紡糸し、
約20デニールの未延伸糸を得た。次いで、フィードス
ピード50m/分、フィードロール温度90℃、延伸点
のヒーター温度130℃、ドローロール温度110℃の
条件下で延伸を行った。最高延伸倍率は5倍で、4.5
倍延伸糸を得た。上記のようにして得られた延伸繊維を
長さ15mmに切断した後、ポルトランドセメント(秩
父小野田(株)製)、8号珪砂及び水を重量比で、ポル
トランドセメント:珪砂:水=100:100:60と
なるように配合してなるセメント組成物中に混入させ
た。なお、セメント組成物と上記繊維状セメント補強材
との混合比は、重量比でセメント組成物:繊維状セメン
ト補強材=100:1とした。
This was melt-spun using a multifilament spinning machine with a gear pump (die: 0.8 mmφ × 30 holes) at a spinning temperature of 290 ° C. and a winding speed of 300 m / min.
An undrawn yarn of about 20 denier was obtained. Next, stretching was performed under the conditions of a feed speed of 50 m / min, a feed roll temperature of 90 ° C, a heater temperature of a stretching point of 130 ° C, and a draw roll temperature of 110 ° C. The maximum draw ratio is 5 times and 4.5.
A double drawn yarn was obtained. After cutting the drawn fiber obtained as described above to a length of 15 mm, Portland cement (manufactured by Chichibu Onoda Co., Ltd.), No. 8 silica sand and water are used in a weight ratio of Portland cement: silica sand: water = 100: 100. : 60 was mixed into the cement composition. The mixing ratio of the cement composition and the fibrous cement reinforcing material was set to be cement composition: fibrous cement reinforcing material = 100: 1 by weight.

【0024】上記のようにして得られたセメント−繊維
状セメント補強材混合物を、長さ80mm、幅30m
m、高さ20mmの型枠中に流し込み、次のような常圧
蒸気養生1日、次いでオートクレーブ養生を1日行っ
た。 常圧蒸気養生:23℃で2〜5時間前養生した後、65
℃まで20℃/時間の速度で上げた後、3〜5時間等温
養生。その後10〜15時間かけ23℃までゆっくりと
冷却。 オートクレーブ養生:脱型した後、オートクレーブ釜へ
投入。3〜6時間かけて180℃、10気圧まで加熱、
加圧した後、3〜5時間等温等圧。その後、釜の外壁の
空間に水を張り7〜10時間かけて冷却。
The cement-fibrous cement reinforcing material mixture obtained as described above was used for a length of 80 mm and a width of 30 m.
m and a height of 20 mm were poured into a mold and subjected to the following normal-pressure steam curing for one day and then to autoclave curing for one day. Atmospheric pressure steam curing: After curing at 23 ° C. for 2 to 5 hours, 65
After raising the temperature to 20 ° C. at a rate of 20 ° C./hour, isothermal curing for 3 to 5 hours. Then slowly cool to 23 ° C over 10-15 hours. Autoclave curing: After demolding, put into autoclave pot. Heating to 180 ° C. and 10 atm over 3 to 6 hours,
After pressing, isothermal isobar for 3-5 hours. After that, water was applied to the space on the outer wall of the kettle and cooled for 7 to 10 hours.

【0025】DSC測定による繊維状セメント補強材そ
のものの融解ピーク、終了温度はそれぞれ180℃、1
84℃で、従来に比べ格段の融点上昇がみられ、その結
果、180℃におけるオートクレーブ養生後においても
その繊維形態を保持していることが確認された。結果を
表1に示す。
The melting peak and end temperature of the fibrous cement reinforcing material itself were 180 ° C. and 1
At 84 ° C., a remarkable increase in the melting point was observed as compared with the conventional art. As a result, it was confirmed that the fiber form was maintained even after the autoclave curing at 180 ° C. Table 1 shows the results.

【0026】実施例2〜4 β晶核剤エヌジェスター添加量を0.005、1、5重
量部とした以外は、実施例1と同様にして延伸倍率4〜
4.5倍の繊維状セメント補強材を得、かつ実施例1と
同様にして試験サンプルを得た。その結果、DSC測定
による融解ピーク、終了温度はそれぞれ176〜180
℃、180〜184℃と格段の融点上昇が見られ、18
0℃におけるオートクレーブ養生後においてもその繊維
形態を保持していることが確認された。結果を表1に示
す。
Examples 2 to 4 Except that the amount of β crystal nucleating agent Engester was 0.005, 1, and 5 parts by weight, the stretching ratio was 4 to 4 in the same manner as in Example 1.
A 4.5-fold fibrous cement reinforcing material was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the termination temperature by DSC measurement were 176 to 180, respectively.
℃, 180 to 184 ℃ marked melting point rise,
It was confirmed that the fiber form was maintained even after autoclaving at 0 ° C. Table 1 shows the results.

【0027】実施例5 IPFが96.3%、MFRが2g/10分、分子量分
布が12のホモポリプロピレンを用いた以外は、実施例
1と同様にして延伸倍率4.2倍の繊維状セメント補強
材を得、かつ実施例1と同様にして試験サンプルを得
た。その結果、DSC測定による融解ピーク、終了温度
はそれぞれ181℃、184℃と格段の融点上昇が見ら
れ、180℃におけるオートクレーブ養生後においても
その繊維形態を保持していることが確認された。結果を
表1に示す。
Example 5 A fibrous cement having a draw ratio of 4.2 times in the same manner as in Example 1 except that a homopolypropylene having an IPF of 96.3%, an MFR of 2 g / 10 min, and a molecular weight distribution of 12 was used. A reinforcing material was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the termination temperature by DSC measurement were markedly increased to 181 ° C. and 184 ° C., respectively, and it was confirmed that the fiber morphology was maintained even after the autoclave curing at 180 ° C. Table 1 shows the results.

【0028】実施例6 IPFが97.0%、MFRが15g/10分、分子量
分布が6.2のホモポリプロピレンを用いた以外は、実
施例1と同様にして延伸倍率5.5倍の繊維状セメント
補強材を得、かつ実施例1と同様にして試験サンプルを
得た。その結果、DSC測定による融解ピーク、終了温
度はそれぞれ177℃、181℃と格段の融点上昇が見
られ、180℃におけるオートクレーブ養生後において
もその繊維形態を保持していることが確認された。結果
を表1に示す。
Example 6 A fiber having a draw ratio of 5.5 times in the same manner as in Example 1 except that a homopolypropylene having an IPF of 97.0%, an MFR of 15 g / 10 min, and a molecular weight distribution of 6.2 was used. A cementitious reinforcing material was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were markedly increased to 177 ° C. and 181 ° C., respectively, and it was confirmed that the fiber morphology was maintained even after autoclaving at 180 ° C. Table 1 shows the results.

【0029】実施例7 IPFが97.3%、MFRが30g/10分、分子量
分布が4.5のホモポリプロピレンを用いた以外は、実
施例1と同様にして延伸倍率6倍の繊維状セメント補強
材を得、かつ実施例1と同様にして試験サンプルを得
た。その結果、DSC測定による融解ピーク、終了温度
はそれぞれ176℃、180℃と格段の融点上昇が見ら
れ、180℃におけるオートクレーブ養生後においても
その繊維形態を保持していることが確認された。結果を
表1に示す。
Example 7 A fibrous cement having a draw ratio of 6 times in the same manner as in Example 1 except that a homopolypropylene having an IPF of 97.3%, an MFR of 30 g / 10 min, and a molecular weight distribution of 4.5 was used. A reinforcing material was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the termination temperature by DSC measurement were 176 ° C. and 180 ° C., respectively, and markedly increased melting points, and it was confirmed that the fiber form was maintained even after autoclaving at 180 ° C. Table 1 shows the results.

【0030】比較例1 IPFが92.0%、MFRが2g/10分、分子量分
布が6のホモポリプロピレンを用いた以外は、実施例1
と同様にして延伸倍率4.5倍の繊維状セメント補強材
を得、かつ実施例1と同様にして試験サンプルを得た。
その結果、DSC測定による融解ピーク、終了温度はそ
れぞれ160℃、165℃と融点は低く、180℃にお
けるオートクレーブ養生後においてその繊維形態は保持
されていないことが確認された。結果を表1に示す。
Comparative Example 1 Example 1 was repeated except that homopolypropylene having 92.0% of IPF, MFR of 2 g / 10 min, and molecular weight distribution of 6 was used.
In the same manner as in Example 1, a fibrous cement reinforcing material having a draw ratio of 4.5 was obtained, and in the same manner as in Example 1, a test sample was obtained.
As a result, it was confirmed that the melting peak was 160 ° C. and the ending temperature was 165 ° C., respectively, which was low by the DSC measurement, and the fiber morphology was not maintained after the autoclave curing at 180 ° C. Table 1 shows the results.

【0031】比較例2 IPFが96.8%、MFRが100g/10分、分子
量分布が6.2のホモポリプロピレンを用いた以外は、
実施例1と同様にして延伸倍率6.5倍の繊維状セメン
ト補強材を得、かつ実施例1と同様にして試験サンプル
を得た。その結果、DSC測定による融解ピーク、終了
温度はそれぞれ166℃、169℃と融点は低く、18
0℃におけるオートクレーブ養生後においてその繊維形
態は保持されていないことが確認された。結果を表1に
示す。
Comparative Example 2 A homopolypropylene having an IPF of 96.8%, an MFR of 100 g / 10 min and a molecular weight distribution of 6.2 was used.
A fibrous cement reinforcing material having a draw ratio of 6.5 times was obtained in the same manner as in Example 1, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were 166 ° C. and 169 ° C., respectively, and the melting point was low.
After the autoclave curing at 0 ° C., it was confirmed that the fiber form was not maintained. Table 1 shows the results.

【0032】比較例3 β晶核剤エヌジェスターの添加量を8重量部とした以外
は、実施例1と同様にして延伸倍率4.5倍の繊維状セ
メント補強材を得、かつ実施例1と同様にして試験サン
プルを得た。その結果、DSC測定による融解ピーク、
終了温度はそれぞれ180℃、184℃と融点は高く、
180℃におけるオートクレーブ養生後においてその繊
維形態は保持されていることが確認されたが、紡糸時に
糸切れが多発するといった紡糸性に問題が発生した。結
果を表1に示す。
Comparative Example 3 A fibrous cement reinforcing material having a draw ratio of 4.5 times was obtained in the same manner as in Example 1 except that the amount of β crystal nucleating agent Engester was changed to 8 parts by weight. A test sample was obtained in the same manner as described above. As a result, a melting peak by DSC measurement,
The end temperatures are 180 ° C and 184 ° C, respectively, and the melting points are high,
It was confirmed that the fiber form was maintained after the autoclave curing at 180 ° C., but there was a problem in spinnability such as frequent yarn breakage during spinning. Table 1 shows the results.

【0033】比較例4 β晶核剤エヌジェスターの添加量を0.0007重量部
とした以外は、実施例1と同様にして延伸倍率3.2倍
の繊維状セメント補強材を得、かつ実施例1と同様にし
て試験サンプルを得た。その結果、DSC測定による融
解ピーク、終了温度はそれぞれ172℃、176℃で、
180℃におけるオートクレーブ養生後においてその繊
維形態は保持性は芳しくなかった。結果を表1に示す。
Comparative Example 4 A fibrous cement reinforcing material having a draw ratio of 3.2 times was obtained in the same manner as in Example 1 except that the amount of the β crystal nucleating agent Engester was changed to 0.0007 parts by weight. A test sample was obtained in the same manner as in Example 1. As a result, the melting peak and end temperature by DSC measurement were 172 ° C. and 176 ° C., respectively.
After autoclaving at 180 ° C., the fiber morphology was poor in retention. Table 1 shows the results.

【0034】比較例5 β晶核剤エヌジェスターの代わりにソルビトール系造核
剤を0.2重量部用いた以外は、実施例1と同様にして
延伸倍率3倍の繊維状セメント補強材を得、かつ実施例
1と同様にして試験サンプルを得た。その結果、DSC
測定による融解ピーク、終了温度はそれぞれ171℃、
176℃で、180℃におけるオートクレーブ養生後に
おいてその繊維形態は保持性は芳しくなかった。結果を
表1に示す。
Comparative Example 5 A fibrous cement reinforcing material having a draw ratio of 3 times was obtained in the same manner as in Example 1 except that 0.2 parts by weight of a sorbitol-based nucleating agent was used instead of the β nucleating agent Ngester. A test sample was obtained in the same manner as in Example 1. As a result, DSC
Melting peak by measurement, end temperature is 171 ℃, respectively
After autoclaving at 176 ° C. and 180 ° C., the fiber morphology was poor in retention. Table 1 shows the results.

【0035】比較例6 β晶核剤エヌジェスターの代わりにリン系造核剤である
NA11(旭電化工業(株)製)を0.2重量部用いた
以外は、実施例1と同様にして延伸倍率3倍の繊維状セ
メント補強材を得、かつ実施例1と同様にして試験サン
プルを得た。その結果、DSC測定による融解ピーク、
終了温度はそれぞれ172℃、177℃で、180℃に
おけるオートクレーブ養生後においてその繊維形態の保
持性は芳しくなかった。結果を表1に示す。
Comparative Example 6 The procedure of Example 1 was repeated, except that 0.2 parts by weight of a phosphorus-based nucleating agent NA11 (manufactured by Asahi Denka Kogyo KK) was used instead of the β crystal nucleating agent Ngester. A fibrous cement reinforcing material having a draw ratio of 3 times was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, a melting peak by DSC measurement,
The termination temperatures were 172 ° C. and 177 ° C., respectively, and after the autoclave curing at 180 ° C., the fiber form retention was not good. Table 1 shows the results.

【0036】比較例7 IPFが97.0%、MFRが15g/10分、分子量
分布が6.2のホモポリプロピレンを用い、β晶核剤エ
ヌジェスターの代わりにソルビトール系造核剤を0.2
重量部用いた以外は、実施例1と同様にして延伸倍率4
倍の繊維状セメント補強材を得、かつ実施例1と同様に
して試験サンプルを得た。その結果、DSC測定による
融解ピーク、終了温度はそれぞれ171℃、175と融
点は低く、180℃におけるオートクレーブ養生後にお
いてその繊維形態は保持されていないことが確認され
た。結果を表1に示す。
Comparative Example 7 Using homopolypropylene having an IPF of 97.0%, an MFR of 15 g / 10 min, and a molecular weight distribution of 6.2, a sorbitol-based nucleating agent was used in place of β-nucleating agent Engester.
Except for using parts by weight, a stretching ratio of 4 was obtained in the same manner as in Example 1.
A double fibrous cement reinforcement was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were 171 ° C. and 175, respectively, and the melting points were low, and it was confirmed that the fiber morphology was not maintained after the autoclave curing at 180 ° C. Table 1 shows the results.

【0037】比較例8 IPFが97.1%。MFRが30g/10分、分子量
分布が4.5のホモポリプロピレンを用い、β晶核剤エ
ヌジェスターの代わりにリン系造核剤であるNA11
(旭電化工業(株)製)を0.2重量部用いた以外は、
実施例1と同様にして延伸倍率4.5倍の繊維状セメン
ト補強材を得、かつ実施例1と同様にして試験サンプル
を得た。その結果、DSC測定による融解ピーク、終了
温度はそれぞれ172℃、176℃と融点は低く、18
0℃におけるオートクレーブ養生後においてその繊維形
態は保持されていないことが確認された。結果を表1に
示す。
Comparative Example 8 IPF 97.1%. Homopolypropylene having an MFR of 30 g / 10 min and a molecular weight distribution of 4.5 was used, and instead of the β crystal nucleating agent Ngester, NA11 which was a phosphorus-based nucleating agent was used.
(Asahi Denka Kogyo Co., Ltd.) except that 0.2 parts by weight was used.
A fibrous cement reinforcing material having a draw ratio of 4.5 times was obtained in the same manner as in Example 1, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were 172 ° C. and 176 ° C., respectively, and the melting points were low,
After the autoclave curing at 0 ° C., it was confirmed that the fiber form was not maintained. Table 1 shows the results.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例8 実施例1で調製したペレット状のポリプロピレンを用
い、押出温度230℃、ブローアップ比0.90でイン
フレーションフィルムを成形したのち、これを幅方向に
裁断し、延伸を施した。延伸は熱板135℃、熱セット
(熱処理)温度150℃、巻き取りロールスピードは1
00m/分とし、繰出ロールスピードを調整し延伸倍率
を決定した。こうして、最高延伸倍率13倍で、12倍
延伸ヤーンを得た。前記延伸ヤーンをセメント補強材と
して実施例1と同様にして、試験サンプルを得た。
Example 8 An inflation film was formed from the pelletized polypropylene prepared in Example 1 at an extrusion temperature of 230 ° C. and a blow-up ratio of 0.90, and was cut in the width direction and stretched. . Stretching: hot plate 135 ° C, heat setting (heat treatment) temperature 150 ° C, take-up roll speed 1
The stretching ratio was determined by adjusting the feeding roll speed to 00 m / min. Thus, a 12-fold drawn yarn was obtained at a maximum draw ratio of 13 times. A test sample was obtained in the same manner as in Example 1 using the drawn yarn as a cement reinforcing material.

【0040】その結果、DSC測定による延伸テープの
融解ピーク、終了温度はそれぞれ180℃、183℃と
融点は高く、180℃におけるオートクレーブ養生後に
おいてその繊維形態は保持されていることが確認され
た。結果を表2に示す。
As a result, the melting peak and end temperature of the stretched tape measured by DSC were 180 ° C. and 183 ° C., respectively, and the melting points were high, and it was confirmed that the fiber form was maintained after the autoclave curing at 180 ° C. Table 2 shows the results.

【0041】実施例9〜11 β晶核剤エヌジェスター添加量を0.005、1、5重
量部とした以外は、実施例8と同様にして延伸倍率12
〜12.5倍のヤーン状セメント補強材を得、かつ実施
例1と同様にして試験サンプルを得た。その結果、DS
C測定による補強材の融解ピーク、終了温度はそれぞれ
177〜180℃、181〜183℃と格段の融点上昇
が見られ、180℃におけるオートクレーブ養生後にお
いてもその形態を保持していることが確認された。結果
を表2に示す。
Examples 9 to 11 Except that the β crystal nucleating agent Engester was added in an amount of 0.005, 1, or 5 parts by weight, the stretching ratio was 12 in the same manner as in Example 8.
A 112.5 times yarn-like cement reinforcement was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, DS
The melting peak and the end temperature of the reinforcing material by C measurement show remarkable melting point increases of 177 to 180 ° C. and 181 to 183 ° C., respectively, and it is confirmed that the shape is maintained even after the autoclave curing at 180 ° C. Was. Table 2 shows the results.

【0042】実施例12 IPFが97.0%、MFRが15g/10分、分子量
分布が6.2のホモポリプロピレンを用いた以外は、実
施例8と同様にして延伸倍率13倍のヤーン状セメント
補強材を得、かつ実施例1と同様にして試験サンプルを
得た。その結果、DSC測定による融解ピーク、終了温
度はそれぞれ177℃、181℃と格段の融点上昇が見
られ、180℃におけるオートクレーブ養生後において
もその形態を保持していることが確認された。結果を表
2に示す。
Example 12 A yarn-like cement having a draw ratio of 13 times was produced in the same manner as in Example 8 except that a homopolypropylene having an IPF of 97.0%, an MFR of 15 g / 10 min, and a molecular weight distribution of 6.2 was used. A reinforcing material was obtained, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement showed remarkable rises in melting point of 177 ° C. and 181 ° C., respectively, and it was confirmed that the shape was maintained even after the autoclave curing at 180 ° C. Table 2 shows the results.

【0043】比較例9 IPFが92.0%、MFRが2g/10分、分子量分
布が6のホモポリプロピレンを用いた以外は、実施例8
と同様にして延伸倍率12.5倍のヤーン状セメント補
強材を得、かつ実施例1と同様にして試験サンプルを得
た。その結果、DSC測定による融解ピーク、終了温度
はそれぞれ162℃、167℃と融点は低く、180℃
におけるオートクレーブ養生後においてもその繊維形態
は保持されていないことが確認された。結果を表2に示
す。
Comparative Example 9 Example 8 except that homopolypropylene having an IPF of 92.0%, an MFR of 2 g / 10 min, and a molecular weight distribution of 6 was used.
In the same manner as in Example 1, a yarn-like cement reinforcing material having a draw ratio of 12.5 was obtained, and in the same manner as in Example 1, a test sample was obtained. As a result, the melting peak and end temperature by DSC measurement were 162 ° C. and 167 ° C., respectively, and the melting points were low, and 180 ° C.
It was confirmed that the fiber form was not retained even after the autoclave curing in the above. Table 2 shows the results.

【0044】比較例10 IPFが96.8%、MFRが100g/10分、分子
量分布が6.2のホモポリプロピレンでは、インフレー
ションフィルムの成形が出来ず評価不可能であった。結
果を表2に示す。
Comparative Example 10 With a homopolypropylene having an IPF of 96.8%, an MFR of 100 g / 10 min, and a molecular weight distribution of 6.2, it was not possible to form an inflation film and the evaluation was not possible. Table 2 shows the results.

【0045】比較例11 エヌジェスターの代わりにソルビトール系造核剤を0.
2重量部とした以外は、実施例8と同様にして延伸倍率
8倍のヤーン状セメント補強材を得、かつ実施例1と同
様にして試験サンプルを得た。その結果、DSC測定に
よる融解ピーク、終了温度はそれぞれ170℃、175
℃で、180℃におけるオートクレーブ養生後において
その形態の保持性は芳しくなかった。結果を表2に示
す。
Comparative Example 11 A sorbitol-based nucleating agent was used in place of Ngester.
Except for using 2 parts by weight, a yarn-like cement reinforcing material having a draw ratio of 8 was obtained in the same manner as in Example 8, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were 170 ° C. and 175, respectively.
After autoclaving at 180.degree. C. and 180.degree. C., the shape retention was poor. Table 2 shows the results.

【0046】比較例12 エヌジェスターの代わりにNA11を0.2重量部とし
た以外は、実施例8と同様にして延伸倍率8倍のヤーン
状セメント補強材を得、かつ実施例1と同様にして試験
サンプルを得た。その結果、DSC測定による融解ピー
ク、終了温度はそれぞれ172℃、176℃で、180
℃におけるオートクレーブ養生後においてその形態の保
持性は芳しくなかった。結果を表2に示す。
Comparative Example 12 A yarn-like cement reinforcing material having a draw ratio of 8 was obtained in the same manner as in Example 8, except that NA11 was used instead of NA11 in an amount of 0.2 part by weight. To obtain a test sample. As a result, the melting peak and end temperature by DSC measurement were 172 ° C. and 176 ° C., respectively,
After autoclaving at ℃, the retention of its morphology was poor. Table 2 shows the results.

【0047】比較例13 IPFが97.0%、MFRが15g/10分、分子量
分布が6.2のホモポリプロピレンを用い、エヌジェス
ターの代わりにソルビトール系造核剤を0.2重量部と
した以外は、実施例8と同様にして延伸倍率8倍のヤー
ン状セメント補強材を得、かつ実施例1と同様にして試
験サンプルを得た。その結果、DSC測定による融解ピ
ーク、終了温度はそれぞれ171℃、175℃と融点は
低く、180℃におけるオートクレーブ養生後において
その形態は保持されていないことが確認された。結果を
表2に示す。
Comparative Example 13 Homopolypropylene having an IPF of 97.0%, an MFR of 15 g / 10 min and a molecular weight distribution of 6.2 was used, and the sorbitol-based nucleating agent was replaced with 0.2 parts by weight in place of Ngester. Except for the above, a yarn-like cement reinforcing material having a draw ratio of 8 was obtained in the same manner as in Example 8, and a test sample was obtained in the same manner as in Example 1. As a result, the melting peak and the end temperature by DSC measurement were 171 ° C. and 175 ° C., respectively, and the melting points were low, and it was confirmed that the form was not retained after autoclaving at 180 ° C. Table 2 shows the results.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】本発明のポリプロピレン繊維もしくはヤ
ーンは、高立体規則性のポリプロピレンにβ晶核剤を添
加した組成物から得られた高耐熱性繊維もしくはヤーン
であり、セメント補強材として用いると、過酷な養生下
においてもその繊維形態が維持され、セメント補強材と
してその効果を十分に発揮できる。
The polypropylene fiber or yarn of the present invention is a high heat-resistant fiber or yarn obtained from a composition obtained by adding a β crystal nucleating agent to polypropylene having a high stereoregularity. The fiber form is maintained even under severe curing, and the effect can be sufficiently exhibited as a cement reinforcing material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アイソタクチックペンタッドフラクショ
ンが96%以上でかつメルトフローレイトが0.3〜3
0g/10分を満たすホモポリプロピレン100重量部
にβ晶を形成させる造核剤を0.001〜5重量部添加
したポリプロピレン樹脂組成物を溶融成形後、延伸して
なる高耐熱性ポリプロピレン繊維もしくはヤーン。
An isotactic pentad fraction of 96% or more and a melt flow rate of 0.3 to 3
A heat-resistant polypropylene fiber or yarn obtained by melt-molding a polypropylene resin composition obtained by adding 0.001 to 5 parts by weight of a nucleating agent for forming β crystals to 100 parts by weight of homopolypropylene satisfying 0 g / 10 minutes and then stretching. .
【請求項2】 セメント補強用繊維として用いる請求項
1記載の高耐熱性ポリプロピレンもしくはヤーン。
2. The highly heat-resistant polypropylene or yarn according to claim 1, which is used as a cement reinforcing fiber.
JP23656397A 1997-08-18 1997-08-18 Highly heat-resistant polypropylene fiber Pending JPH1161554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23656397A JPH1161554A (en) 1997-08-18 1997-08-18 Highly heat-resistant polypropylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23656397A JPH1161554A (en) 1997-08-18 1997-08-18 Highly heat-resistant polypropylene fiber

Publications (1)

Publication Number Publication Date
JPH1161554A true JPH1161554A (en) 1999-03-05

Family

ID=17002499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23656397A Pending JPH1161554A (en) 1997-08-18 1997-08-18 Highly heat-resistant polypropylene fiber

Country Status (1)

Country Link
JP (1) JPH1161554A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144523A (en) * 1998-11-09 2000-05-26 Japan Polychem Corp Highly heat-resistant polypropylene fiber
KR20020004215A (en) * 2000-07-04 2002-01-16 유현식 Polypropylene resin composition having good transparency and heat resistance
US6656404B2 (en) * 2001-05-17 2003-12-02 Milliken & Company Methods of making low-shrink polypropylene fibers
US6759124B2 (en) 2002-11-16 2004-07-06 Milliken & Company Thermoplastic monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels
US6794033B2 (en) 2002-11-02 2004-09-21 Milliken & Company Low-shrink polypropylene tape fibers comprising high amounts of nucleating agents
US6849330B1 (en) 2003-08-30 2005-02-01 Milliken & Company Thermoplastic fibers exhibiting durable high color strength characteristics
US6863976B2 (en) 2002-11-16 2005-03-08 Milliken & Company Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations
US6998081B2 (en) 2001-12-21 2006-02-14 Milliken & Company Method of producing low-shrink polypropylene tape fibers
US7041368B2 (en) 2002-11-17 2006-05-09 Milliken & Company High speed spinning procedures for the manufacture of high denier polypropylene fibers and yarns
KR100585328B1 (en) * 1999-06-04 2006-05-30 삼성토탈 주식회사 Polypropylene compositions having excellent heat resistance and creep resistance
KR100708315B1 (en) * 1999-06-10 2007-04-17 삼성토탈 주식회사 Polypropylene resin composition having good transparency and heat resistance
JP2008266871A (en) * 2007-03-26 2008-11-06 Kuraray Co Ltd Polypropylene yarn excellent in heat resistance
WO2012055797A1 (en) * 2010-10-28 2012-05-03 Lummus Novolen Technology Gmbh Nonwoven and yarn polypropylene with additivation
CN109153890A (en) * 2016-05-24 2019-01-04 大众汽车有限公司 Potting compound, the preparation method of potting compound, electronic device and motor vehicles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144523A (en) * 1998-11-09 2000-05-26 Japan Polychem Corp Highly heat-resistant polypropylene fiber
KR100585328B1 (en) * 1999-06-04 2006-05-30 삼성토탈 주식회사 Polypropylene compositions having excellent heat resistance and creep resistance
KR100708315B1 (en) * 1999-06-10 2007-04-17 삼성토탈 주식회사 Polypropylene resin composition having good transparency and heat resistance
KR20020004215A (en) * 2000-07-04 2002-01-16 유현식 Polypropylene resin composition having good transparency and heat resistance
US6656404B2 (en) * 2001-05-17 2003-12-02 Milliken & Company Methods of making low-shrink polypropylene fibers
US6998081B2 (en) 2001-12-21 2006-02-14 Milliken & Company Method of producing low-shrink polypropylene tape fibers
US6794033B2 (en) 2002-11-02 2004-09-21 Milliken & Company Low-shrink polypropylene tape fibers comprising high amounts of nucleating agents
US6759124B2 (en) 2002-11-16 2004-07-06 Milliken & Company Thermoplastic monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels
US6863976B2 (en) 2002-11-16 2005-03-08 Milliken & Company Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations
US6878443B2 (en) 2002-11-16 2005-04-12 Milliken & Company Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations
CN100398704C (en) * 2002-11-17 2008-07-02 美利肯公司 High speed spinning procedures for the manufacture of high denier polypropylene fibers and yarns
US7041368B2 (en) 2002-11-17 2006-05-09 Milliken & Company High speed spinning procedures for the manufacture of high denier polypropylene fibers and yarns
US6849330B1 (en) 2003-08-30 2005-02-01 Milliken & Company Thermoplastic fibers exhibiting durable high color strength characteristics
JP2008266871A (en) * 2007-03-26 2008-11-06 Kuraray Co Ltd Polypropylene yarn excellent in heat resistance
WO2012055797A1 (en) * 2010-10-28 2012-05-03 Lummus Novolen Technology Gmbh Nonwoven and yarn polypropylene with additivation
CN103237932A (en) * 2010-10-28 2013-08-07 鲁姆斯诺沃伦技术公司 Nonwoven and yarn polypropylene with additivation
EP2633104A1 (en) * 2010-10-28 2013-09-04 Lummus Novolen Technology Gmbh Nonwoven and yarn polypropylene with additivation
CN103237932B (en) * 2010-10-28 2016-09-28 鲁姆斯诺沃伦技术公司 Nonwoven containing additive and Weave type polypropylene
CN109153890A (en) * 2016-05-24 2019-01-04 大众汽车有限公司 Potting compound, the preparation method of potting compound, electronic device and motor vehicles
CN109153890B (en) * 2016-05-24 2021-08-10 大众汽车有限公司 Potting compound, preparation method of potting compound, electronic device and motor vehicle

Similar Documents

Publication Publication Date Title
JPH1161554A (en) Highly heat-resistant polypropylene fiber
JP4596672B2 (en) Manufacturing method of high heat-resistant polypropylene fiber
US6824863B1 (en) Fiber reinforced polypropylene-based composite material
AU2015366578C1 (en) Improved polypropylene fibers, methods for producing the same and uses thereof for the production of fiber cement products
Guo et al. The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites
JP5723482B2 (en) Cement reinforcing fiber and hardened cement body using the same
JP2721702B2 (en) High melt flow fiber reinforced propylene polymer composition
ES2181917T5 (en) POLYPROPYLENE / FIBER COMPOUND MATERIALS.
JP4002684B2 (en) High heat resistant polypropylene fiber
JP2002105748A (en) Highly heat-resistant polypropylene fiber
CN117264324A (en) High-modulus high-impact polypropylene composite material and preparation method thereof
JP3167900B2 (en) Polypropylene fiber for cement reinforcement
JP3517330B2 (en) Polypropylene fiber for cement reinforcement
JPH11181619A (en) Highly heat-resistant polypropylene fiber and fiber-reinforced cement molded product using the same
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JPH10265246A (en) Polypropylene fiber for reinforcing cement
KR102427613B1 (en) Polypropylene resin composition for 3D printer having isotropic shrinkage and high impact properties, manufacturing method of the same, and molded articles manufactured thereby
JP2002348157A (en) Fiber for reinforcement of cement
JPH07290564A (en) Aliphatic polyester stretched molded object and production thereof
CN115819879A (en) Polypropylene and basalt composite pipe and preparation method thereof
JPS62214920A (en) Mandrel for manufacturing hose
JP4990827B2 (en) Hydraulic composition and cured product
JP2565517B2 (en) Fiber reinforced hydraulic molding
JP3540841B2 (en) Fiber for cement reinforcement
JP4005315B2 (en) Polypropylene fiber for cement reinforcement